Notations and Useful Data	
\mathbb{N}	The set of positive integers
\mathbb{R}	The set of real numbers
\mathbb{R}^{n}	$\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}, i=1,2, \ldots, n\right\}, n=2,3, \ldots$
$\ln x$	Natural logarithm of $x, x>0$
$\operatorname{det}(M)$	Determinant of a square matrix M
adj M	Adjoint of a square matrix M, that is, transpose of cofactor matrix of M
\emptyset	Empty set
E^{C}	Complement of event E
$P(E)$	Probability of event E
$P(E \mid F)$	Conditional probability of event E given the occurrence of event F
$E(X)$	Expectation of a random variable X
$\operatorname{Var}(X)$	Variance of a random variable X
$\operatorname{Cov}(X, Y)$	Covariance between random variables X and Y
$\operatorname{Bin}(n, p)$	Binomial distribution with parameters n and $p, n \in \mathbb{N}, 0<p<1$
$U(a, b)$	Continuous uniform distribution on the interval (a, b), a<b,a,b, 顺
$\operatorname{Exp}(\lambda)$	Exponential distribution with the probability density function $f(x)=\left\{\begin{array}{cl} \lambda e^{-\lambda x}, & \text { if } x>0 \\ 0, & \text { if } x \leq 0 \end{array}, \text { for } \lambda>0\right.$
$N\left(\mu, \sigma^{2}\right)$	Normal distribution with mean μ and variance $\sigma^{2}, \mu \in \mathbb{R}, \sigma>0$
$N_{2}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$	Bivariate normal distribution with means μ_{1}, μ_{2}, variances $\sigma_{1}^{2}, \sigma_{2}^{2}$ and correlation $\rho, \quad \mu_{1} \in \mathbb{R}, \mu_{2} \in \mathbb{R}, \sigma_{1}>0, \sigma_{2}>0,-1<\rho<1$
$\phi(\cdot)$	The probability density function of $N(0,1)$ random variable
$\Phi(\cdot)$	The cumulative distribution function of $N(0,1)$ random variable
χ_{n}^{2}	Central chi-square distribution with n degrees of freedom, $n=1,2, \ldots$
t_{n}	Central Student's t distribution with n degrees of freedom, $n=1,2, \ldots$
$F_{m, n}$	Snedecor's central F-distribution with m and n degrees of freedom, $m, n \in \mathbb{N}$
$\chi_{n, \alpha}^{2}$	A constant such that $P\left(X>\chi_{n, \alpha}^{2}\right)=\alpha$, where X has central chi-square distribution with n degrees of freedom, $n=1,2, \ldots ; \alpha \in(0,1)$
$\overline{t_{n, \alpha}}$	A constant such that $P\left(X>t_{n, \alpha}\right)=\alpha$, where X has central Student's t distribution with n degrees of freedom, $n=1,2, \ldots ; \alpha \in(0,1)$
$\xrightarrow{\text { d }}$	Convergence in distribution
\xrightarrow{P}	Convergence in probability
i. i. d.	Independent and identically distributed

Section A: Q. 1 - Q. 10 Carry ONE mark each.

Q.1	Let $a_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ and $b_{n}=\frac{n^{2}}{2^{n}}$ for all $n \in \mathbb{N}$. Then
(A)	$\left\{a_{n}\right\}$ is a Cauchy sequence but $\left\{b_{n}\right\}$ is NOT a Cauchy sequence
(B)	$\left\{a_{n}\right\}$ is NOT a Cauchy sequence but $\left\{b_{n}\right\}$ is a Cauchy sequence
(C)	both $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are Cauchy sequences
(D)	neither $\left\{a_{n}\right\}$ nor $\left\{b_{n}\right\}$ is a Cauchy sequence
Q.2	Let $f(x, y)=2 x^{4}-3 y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Then
(A)	f has a point of local minimum
(B)	f has a point of local maximum
(C)	f has a saddle point no point of local minimum, no point of local maximum, and no saddle point

Q.3	Let $A=\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right)$ be a real matrix, where $a d=1$ and $c \neq 0$. If
	$A^{-1}+(\operatorname{adj} A)^{-1}=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$,
(hen $(\alpha, \beta, \gamma, \delta)$ is equal to	
(B)	$(a+d, 0,0, a+d)$
(C)	$(a, 0,0, d)$
(D)	$(a, 0, c, d)$

Q.4	A bag has 5 blue balls and 15 red balls. Three balls are drawn at random from the bag simultaneously. Then the probability that none of the chosen balls is blue equals
(A)	$\frac{75}{152}$
(B)	$\frac{91}{228}$
(C)	$\frac{27}{64}$
(D)	$\frac{273}{800}$
(D)	$\xi_{0.25}=2$
(C)	$\xi_{0.25} \geq 4$
(B)	$\xi_{0.75} \leq 4$
(A)	$\xi_{0.75} \geq 5$ Let Y be a continuous random variable such that $P(Y>0)=1$ and $E(Y)=1$. random variable $Y . ~ T h e n ~ w h i c h ~ o f ~ t h e ~ f o l l o w i n g ~ s t a t e m e n t s ~ i s ~ a l w a y s ~ c o r r e c t ? ~$
let ξ_{p} denote the $p^{\text {th }}$ quantile of the probability distribution of the	

Q.6	Let X be a continuous random variable having the $U(-2,3)$ distribution. Then which of the following statements is correct?
(A)	$2 X+5$ has the $U(1,10)$ distribution
(B)	$7-6 X$ has the $U(-11,19)$ distribution
(C)	$3 X^{2}+5$ has the $U(5,32)$ distribution
(D)	$1 X \mid$ has the $U(0,3)$ distribution
(D)	$\frac{3}{2} e^{-1}$
(C)	$\frac{5}{2} e^{-1}$
(B)	Let X be a random variable having the Poisson distribution with mean 1. Let $g: \mathbb{N} \cup\{0\} \rightarrow \mathbb{R}$ be defined by (A)
-1	

Q.10	Let $x_{1}, x_{2}, x_{3}, x_{4}$ be the observed values of a random sample from a $N\left(\mu, \sigma^{2}\right)$ distribution, where $\mu \in \mathbb{R}$ and $\sigma \in(0, \infty)$ are unknown parameters. Let \bar{x} and $s=\sqrt{\frac{1}{3} \sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)^{2}}$ be the observed sample mean and the sample standard deviation, respectively. For testing $H_{0}: \mu=0$ against $H_{1}: \mu \neq 0$, the likelihood ratio test of size $\alpha=0.05$ rejects H_{0} if and only if $\frac{\|\bar{x}\|}{s}>k$. Then the value of k is				
(A)	$\frac{1}{2} t_{3,0.025}$	$	$	(B)	$t_{3,0.025}$
:---	:---				
(C)	$2 t_{3,0.05}$				
(D)	$\frac{1}{2} t_{3,0.05}$				

\square
Section A: Q. 11 - Q. 30 Carry TWO marks each.

Q.11	For $n \in \mathbb{N}$, let $a_{n}=\sqrt{n} \sin ^{2}\left(\frac{1}{n}\right) \cos n$, and $b_{n}=\sqrt{n} \sin \left(\frac{1}{n^{2}}\right) \cos n$. Then
(A)	the series $\sum_{n=1}^{\infty} a_{n}$ converges but the series $\sum_{n=1}^{\infty} b_{n}$ does NOT converge
(B)	the series $\sum_{n=1}^{\infty} a_{n}$ does NOT converge but the series $\sum_{n=1}^{\infty} b_{n}$ converges
(C)	both the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge
(D)	neither the series $\sum_{n=1}^{\infty} a_{n}$ nor the series $\sum_{n=1}^{\infty} b_{n}$ converges

Q.13	Let $f(x, y)=\|x y\|+x$ for all $(x, y) \in \mathbb{R}^{2}$. Then the partial derivative of f with respect to x exists
(A)	at $(0,0)$ but NOT at $(0,1)$
(B)	at $(0,1)$ but NOT at $(0,0)$
(C)	at $(0,0)$ and $(0,1)$, both
(D)	neither at $(0,0)$ nor at $(0,1)$
Q.14	Let $f(x)=4 x^{2}-\sin x+\cos 2 x$ for all $x \in \mathbb{R}$. Then f has
(A)	a point of local maximum
(B)	no point of local minimum
(C)	at least two points of local minima one point of local minimum

Q.15	Consider the improper integrals
	$I_{1}=\int_{1}^{\infty} \frac{t \sin t}{e^{t}} d t$ and $I_{2}=\int_{1}^{\infty} \frac{1}{\sqrt{t}} \ln \left(1+\frac{1}{t}\right) d t$
(A)	I_{1} converges but I_{2} does NOT converge
(B)	I_{1} does NOT converge but I_{2} converges
(C)	both I_{1} and I_{2} converge
(D)	neither I_{1} nor I_{2} converges

Q. 17	Let $\Omega=\{1,2,3,4,5,6\}$. Then which of the following classes of sets is an algebra?
(A)	$\mathcal{F}_{1}=\{\emptyset, \Omega,\{1,2\},\{3,4\},\{3,6\}\}$
(B)	$\mathcal{F}_{2}=\{\varnothing, \Omega,\{1,2,3\},\{4,5,6\}\}$
(C)	$\mathcal{F}_{3}=\{\emptyset, \Omega,\{1,2\},\{4,5\},\{1,2,4,5\},\{3,4,5,6\},\{1,2,3,6\}\}$
(D)	$\mathcal{F}_{4}=\{\emptyset,\{4,5\},\{1,2,3,6\}\}$
Q. 18	Two fair coins S_{1} and S_{2} are tossed independently once. Let the events E, F and G be defined as follows: E : Head appears on S_{1} F : Head appears on S_{2} G : The same outcome (head or tail) appears on both S_{1} and S_{2} Then which of the following statements is NOT correct?
(A)	E and F are independent
(B)	F and G are independent
(C)	E and G^{C} are independent
(D)	E, F, and G are mutually independent

Q.19	Let $f_{1}(x)$ be the probability density function of the $N(0,1)$ distribution and $f_{2}(x)$ be the probability density function of the $N(0,6)$ distribution. Let Y be a random variable with probability density function Then $\operatorname{Var}(Y)$ is equal to
(A)	7
(B)	3
(C)	3.5
(D)	1

Q. 20	Which of the following functions represents a cumulative distribution function?
(A)	$F_{1}(x)=\left\{\begin{array}{cc} 0, & \text { if } x<\frac{\pi}{4} \\ \sin x, & \text { if } \frac{\pi}{4} \leq x<\frac{3 \pi}{4} \\ 1, & \text { if } x \geq \frac{3 \pi}{4} \end{array}\right.$
(B)	$F_{2}(x)=\left\{\begin{array}{cc} 0, & \text { if } x<0 \\ 2 \sin x, & \text { if } 0 \leq x<\frac{\pi}{4} \\ 1, & \text { if } x \geq \frac{\pi}{4} \end{array}\right.$
(C)	$F_{3}(x)=\left\{\begin{array}{cc} 0, & \text { if } x<0 \\ x, & \text { if } 0 \leq x<\frac{1}{3} \\ x+\frac{1}{3}, & \text { if } \frac{1}{3} \leq x \leq \frac{1}{2} \\ 1, & \text { if } x>\frac{1}{2} \end{array}\right.$
(D)	$F_{4}(x)=\left\{\begin{array}{cc} 0, & \text { if } x<0 \\ \sqrt{2} \sin x, & \text { if } 0 \leq x<\frac{\pi}{4} \\ 1, & \text { if } x \geq \frac{\pi}{4} \end{array}\right.$
	,

Q.21	Let X be a random variable such that X and $-X$ have the same distribution. Let $Y=X^{2}$ be a continuous random variable with the probability density function
\qquadThen $E\left((X-1)^{4}\right)$ is equal to$\frac{e^{-\frac{y}{2}}}{\sqrt{2 \pi y}}$, if $y>0$. 0, if $y \leq 0$ (A) 9 (C) 10 (D) 12 	

Q.22	Suppose that random variable X has $\operatorname{Exp}\left(\frac{1}{5}\right)$ distribution and, for any $x>0$, the conditional distribution of random variable Y, given $X=x$, is $N(x, 2)$. Then $\operatorname{Var}(X+Y)$ is equal to
(A)	52
(B)	50
(C)	2
(D)	102

Q.23	Let the random vector (X, Y) have the joint probability density function
$\qquad f(x, y)= \begin{cases}\frac{1}{x}, & \text { if } 0<y<x<1 . \\ 0, & \text { otherwise }\end{cases}$	
(A)	$\frac{1}{6}$
(B)	$\frac{1}{12}$
(C)	$\frac{1}{18}$
(D)	$\frac{1}{24}$

Q. 24	Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{20}, Y_{20}\right)$ be a random sample from the $N_{2}\left(0,0,1,1, \frac{3}{4}\right)$ distribution. Define $\bar{X}=\frac{1}{20} \sum_{i=1}^{20} X_{i}$ and $\bar{Y}=\frac{1}{20} \sum_{i=1}^{20} Y_{i}$. Then $\operatorname{Var}(\bar{X}-\bar{Y})$ is equal to
(A)	$\frac{1}{16}$
(B)	$\frac{1}{40}$
(C)	$\frac{1}{10}$
(D)	$\frac{3}{40}$
	1

Q.25	For $n \in \mathbb{N}$, let X_{n} be a random variable having the $\operatorname{Bin}\left(n, \frac{1}{4}\right)$ distribution. Then
	$\lim _{n \rightarrow \infty}\left[P\left(X_{n} \leq \frac{2 n-\sqrt{3 n}}{8}\right)+P\left(\frac{n}{6} \leq X_{n} \leq \frac{n}{3}\right)\right]$ $($ You may use $\Phi(0.5)=0.6915, ~$ $0.9772)$
(A)	1.6915
(B)	1.3085
(C)	1.1587
(D)	0.6915

Q.26	Let $X_{1}, X_{2}, \ldots, X_{10}$ be a random sample from the $N(3,4)$ distribution and let $Y_{1}, Y_{2}, \ldots, Y_{15}$ be a random sample from the $N(-3,6)$ distribution. Assume that the two samples are drawn independently. Define
	$\bar{X}=\frac{1}{10} \sum_{i=1}^{10} X_{i}, \bar{Y}=\frac{1}{15} \sum_{j=1}^{15} Y_{j}$, and $S=\sqrt{\frac{1}{9} \sum_{i=1}^{10}\left(X_{i}-\bar{X}\right)^{2}}$.
(A)	$N\left(0, \frac{4}{5}\right)$
(B)	χ_{9}^{2}
(C)	t_{9}
(D)	t_{23}

Q. 27	For $n \geq 2$, let $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$ be i.i.d. random variables having the $N(0,1)$ distribution. Consider n independent random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$ defined by $Y_{i}=\beta i+\epsilon_{i}, \quad i=1,2, \ldots, n$ where $\beta \in \mathbb{R}$. Define $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}, T_{1}=\frac{2 \bar{Y}}{n+1}$, and $T_{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{i}$. Then which of the following statements is NOT correct?
(A)	T_{1} is an unbiased estimator of β
(B)	T_{2} is an unbiased estimator of β
(C)	$\operatorname{Var}\left(T_{1}\right)<\operatorname{Var}\left(T_{2}\right)$
(D)	$\operatorname{Var}\left(T_{1}\right)=\operatorname{Var}\left(T_{2}\right)$
	-

Q. 28	A biased coin, with probability of head as p, is tossed m times independently. It is known that $p \in\left\{\frac{1}{4}, \frac{3}{4}\right\}$ and $m \in\{3,5\}$. If 3 heads are observed in these m tosses, then which of the following statements is correct?
(A)	$\left(3, \frac{3}{4}\right)$ is a maximum likelihood estimator of (m, p)
(B)	$\left(5, \frac{1}{4}\right)$ is a maximum likelihood estimator of (m, p)
(C)	$\left(5, \frac{3}{4}\right)$ is a maximum likelihood estimator of (m, p)
(D)	Maximum likelihood estimator of (m, p) is NOT unique

Q.29	Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an $\operatorname{Exp}(\lambda)$ distribution, where $\lambda \in\{1,2\}$. For testing $H_{0}: \lambda=1$ against $H_{1}: \lambda=2$, the most powerful test of size $\alpha, \alpha \in(0,1)$, will reject H_{0} if and only if
(A)	$\sum_{i=1}^{n} X_{i} \leq \frac{1}{2} \chi_{2 n, 1-\alpha}^{2}$
(B)	$\sum_{i=1}^{n} X_{i} \geq 2 \chi_{2 n, 1-\alpha}^{2}$
(C)	$\sum_{i=1}^{n} X_{i} \leq \frac{1}{2} \chi_{n, 1-\alpha}^{2}$
(D)	$\sum_{i=1}^{n} X_{i} \geq 2 \chi_{n, 1-\alpha}^{2}$

Q.30	Let $X_{1}, X_{2}, \ldots, X_{10}$ be a random sample from a $N\left(0, \sigma^{2}\right)$ distribution, where $\sigma>0$ is unknown. For testing $H_{0}: \sigma^{2} \leq 1$ against $H_{1}: \sigma^{2}>1$, a test of size $\alpha=0.05$ rejects H_{0} if and only if $\sum_{i=1}^{10} X_{i}^{2}>18.307$. Let β be the power of this test, at $\sigma^{2}=2$. Then β lies in the interval (You may use $\chi_{10,0.05}^{2}=18.307, \chi_{10,0.1}^{2}=15.9872, \chi_{10,0.25}^{2}=12.5489$, $\chi_{10,0.5}^{2}=9.3418, \chi_{10,0.75}^{2}=6.7372, \chi_{10,0.9}^{2}=4.8652, \chi_{10,0.95}^{2}=3.9403$, $\left.\chi_{10,0.975}^{2}=3.247\right)$
(A)	$(0.50,0.75)$
(B)	$(0.75,0.90)$
(C)	$(0.90,0.95)$
(D)	$(0.95,0.975)$

Section B: Q. 31 - Q. 40 Carry TWO marks each.

Q.31	Let $a_{1}=1, a_{n+1}=a_{n}\left(\frac{\sqrt{n}+\sin n}{n}\right)$ and $b_{n}=a_{n}^{2}$ for all $n \in \mathbb{N}$. Then which of the following statements is/are correct?
(A)	the series $\sum_{n=1}^{\infty} a_{n}$ converges
(B)	the series $\sum_{n=1}^{\infty} b_{n}$ converges
(C)	the series $\sum_{n=1}^{\infty} a_{n}$ converges but the series $\sum_{n=1}^{\infty} b_{n}$ does NOT converge
(D)	neither the series $\sum_{n=1}^{\infty} a_{n}$ nor the series $\sum_{n=1}^{\infty} b_{n}$ converges

Q. 32	Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function such that $f(0)=0, f(2)=4, f(4)=4 \text { and } f(8)=12 .$ Then which of the following statements is/are correct?
(A)	$f^{\prime}(x) \leq 1$ for all $x \in[0,2]$
(B)	$f^{\prime}\left(x_{1}\right)>1$ for some $x_{1} \in[0,2]$
(C)	$f^{\prime}\left(x_{2}\right)>1$ for some $x_{2} \in[4,8]$
(D)	$f^{\prime \prime}\left(x_{3}\right)=0$ for some $x_{3} \in[0,8]$
Q. 33	Let A be a 3×3 real matrix. Suppose that 1 and 2 are characteristic roots of A, and 12 is a characteristic root of $A+A^{2}$. Then which of the following statements is/are correct?
(A)	$\operatorname{det}(A) \neq 0$
(B)	$\operatorname{det}\left(A+A^{2}\right) \neq 0$
(C)	$\operatorname{det}(A)=0$
(D)	trace of $\left(A+A^{2}\right)$ is 20

Q. 35	Let X be a continuous random variable with a probability density function f and the moment generating function $M(t)$. Suppose that $f(x)=f(-x)$ for all $x \in \mathbb{R}$ and the moment generating function $M(t)$ exists for $t \in(-1,1)$. Then which of the following statements is/are correct?
(A)	$P(X=-X)=1$
(B)	0 is the median of X
(C)	$M(t)=M(-t)$ for all $t \in(-1,1)$
(D)	$E(X)=1$
Q. 36	Let X and Y be independent random variables having $\operatorname{Bin}(18,0.5)$ and $\operatorname{Bin}(20,0.5)$ distributions, respectively. Further, let $U=\min \{X, Y\}$ and $V=\max \{X, Y\}$. Then which of the following statements is/are correct?
(A)	$E(U+V)=19$
(B)	$E(\|X-Y\|)=E(V-U)$
(C)	$\operatorname{Var}(U+V)=16$
(D)	$38-(X+Y)$ has Bin $(38,0.5)$ distribution

$\left.\begin{array}{|r|l|}\hline \text { Q.37 } & \begin{array}{l}\text { Let } X \text { and } Y \text { be continuous random variables having the joint probability density } \\ \text { function }\end{array} \\ \qquad f(x, y)=\left\{\begin{array}{cc}e^{-x}, \quad \text { if } 0 \leq y<x<\infty \\ 0, & \text { otherwise }\end{array}\right. \\ \text { Then which of the following statements is/are correct? }\end{array}\right\}$

Q. 38	For $n \geq 2$, let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with $E\left(X_{1}\right)=0, \operatorname{Var}\left(X_{1}\right)=1$ and $E\left(X_{1}^{4}\right)<\infty$. Let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \text { and } S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ Then which of the following statements is/are always correct?
(A)	$E\left(S_{n}^{2}\right)=1$ for all $n \geq 2$
(B)	$\sqrt{n} \bar{X}_{n} \xrightarrow{d} Z$ as $n \rightarrow \infty$, where Z has the $N(0,1)$ distribution
(C)	\bar{X}_{n} and S_{n}^{2} are independently distributed for all $n \geq 2$
(D)	$\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \xrightarrow{P} 2, \text { as } n \rightarrow \infty$
	A

Q. 39	Let $X_{1}, X_{2}, \ldots, X_{50}$ be a random sample from a $N\left(0, \sigma^{2}\right)$ distribution, where $\sigma>0$. Define $\begin{gathered} \bar{X}_{e}=\frac{1}{25} \sum_{i=1}^{25} X_{2 i}, \quad \bar{X}_{o}=\frac{1}{25} \sum_{i=1}^{25} X_{2 i-1}, \\ S_{e}=\sqrt{\frac{1}{24} \sum_{i=1}^{25}\left(X_{2 i}-\bar{X}_{e}\right)^{2}} \text { and } S_{o}=\sqrt{\frac{1}{24} \sum_{i=1}^{25}\left(X_{2 i-1}-\bar{X}_{o}\right)^{2} .} \end{gathered}$ Then which of the following statements is/are correct?
(A)	$\frac{5 \bar{X}_{e}}{s_{e}}$ has t_{24} distribution
(B)	$\frac{5\left(\bar{X}_{e}+\bar{X}_{o}\right)}{\sqrt{S_{e}^{2}+S_{o}^{2}}}$ has t_{49} distribution
(C)	$\frac{49 S_{o}^{2}}{\sigma^{2}}$ has χ_{49}^{2} distribution
(D)	$\frac{s_{o}^{2}}{s_{e}^{2}}$ has $F_{24,24}$ distribution
	,

Q.40	Let θ_{0} and θ_{1} be real constants such that $\theta_{1}>\theta_{0}$. Suppose that a random sample is taken from a $N(\theta, 1)$ distribution, $\theta \in \mathbb{R}$. For testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ at level 0.05, let α and β denote the size and the power, respectively, of the most powerful test, ψ_{0}. Then which of the following statements is/are correct?
(A)	$\beta<\alpha$
(B)	The test ψ_{0} is the uniformly most powerful test of level α for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$
(C)	$\alpha<\beta$
The test ψ_{0} is the uniformly most powerful test of level α for testing $H_{0}: \theta=\theta_{0}$	
against $H_{1}: \theta<\theta_{0}$	

Section C: Q. 41 - Q. 50 Carry ONE mark each.

Q.41	The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2 n(x+3)^{n}}{5^{n}}$ is equal to (answer in integer)
Q.42	Let $f(x)=\int_{-1}^{x^{2}-2 x} e^{t^{2}-t} d t$ for all $x \in \mathbb{R}$. If f is decreasing on (0, m) and increasing on (m, ∞), then the value of m is equal to integer)
	Qanswer in
	Let $V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}\right\}$. Consider V as a subspace of \mathbb{R}^{4} over the real field. Then the dimension of V is equal to
	(answer in integer)

Q. 44	If 12 fair dice are independently rolled, then the probability of obtaining at least two sixes is equal to \qquad (round off to 2 decimal places)
Q. 45	Let X be a random variable with the moment generating function $M(t)=\frac{\left(1+3 e^{t}\right)^{2}}{16},-\infty<t<\infty$ Let $\alpha=E(X)-\operatorname{Var}(X)$. Then the value of 8α is equal to \qquad (answer in integer)
Q. 46	For $n \in \mathbb{N}$, let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the Cauchy distribution having probability density function $f(x)=\frac{1}{\pi\left(1+x^{2}\right)},-\infty<x<\infty .$ Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=\left\{\begin{array}{cc} x, & \text { if }-1000 \leq x \leq 1000 \\ 0, & \text { otherwise } \end{array}\right.$ Let $\alpha=\lim _{n \rightarrow \infty} P\left(\frac{1}{n^{\frac{3}{4}}} \sum_{i=1}^{n} g\left(X_{i}\right)>\frac{1}{2}\right) .$ Then 100α is equal to \qquad (answer in integer)

Q. 47	For $n \in \mathbb{N}$, let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the $F_{20,40}$ distribution. Then, as $n \rightarrow \infty, \frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_{i}}$ converges in probability to \qquad (round off to 2 decimal places)
Q. 48	Let $X_{1}, X_{2}, \ldots, X_{10}$ be a random sample from the $\operatorname{Exp}(1)$ distribution. Define $W=\max \left\{e^{-X_{1}}, e^{-X_{2}}, \ldots, e^{-X_{10}}\right\}$. Then the value of $22 E(W)$ is equal to \qquad (answer in integer)
Q. 49	Let X_{1}, X_{2}, X_{3} be i.i.d. random variables from a continuous distribution having probability density function $f(x)=\left\{\begin{array}{cl} \frac{1}{2 x^{3}}, & \text { if } x>\frac{1}{2} \\ 0, & \text { if } x \leq \frac{1}{2} \end{array}\right.$ Let $X_{(1)}=\min \left\{X_{1}, X_{2}, X_{3}\right\}$. Then the value of $10 E\left(X_{(1)}\right)$ is equal to \qquad (answer in integer)

Q.50	Suppose that the lifetimes (in months) of bulbs manufactured by a company have an $\operatorname{Exp}(\lambda)$ distribution, where $\lambda>0$. A random sample of size 10 taken from the bulbs manufactured by the company yields the sample mean lifetime $\bar{x}=3.52$ months. Then the uniformly minimum variance unbiased estimate of $\frac{1}{\lambda}$ based on this sample is equal to months (round off to 2 decimal places)

Section C: Q. 51 - Q. 60 Carry TWO marks each.

Q. 51	The value of $\lim _{n \rightarrow \infty} n\left(\sin \frac{1}{2 n}-\frac{1}{2} e^{-\frac{1}{n}}+\frac{1}{2}\right)$ is equal to _____ (answer in integer)
Q.52	The value of the integral is equal to $\quad \int_{0}^{2} \int_{x}^{\sqrt{8-x^{2}}} \frac{3 \sqrt{x^{2}+y^{2}}}{\sqrt{8} \pi} \mathrm{~d} y \mathrm{~d} x$
(answer in integer)	

Q.53	For some $a \leq 0$ and $b \in \mathbb{R}$, let

Q. 55	Let X be a discrete random variable with $P(X \in\{-5,-3,0,3,5\})=1$. Suppose that $\begin{gathered} P(X=-3)=P(X=-5), \\ P(X=3)=P(X=5) \text { and } \\ P(X>0)=P(X=0)=P(X<0) . \end{gathered}$ Then the value of $12 P(X=3)$ is equal to \qquad (answer in integer)
Q. 56	Consider a coin for which the probability of obtaining head in a single toss is $\frac{1}{3}$. Sunita tosses the coin once. If head appears, she receives a random amount of X rupees, where X has the $\operatorname{Exp}\left(\frac{1}{9}\right)$ distribution. If tail appears, she loses a random amount of Y rupees, where Y has the $\operatorname{Exp}\left(\frac{1}{3}\right)$ distribution. Her expected gain (in rupees) is equal to \qquad (answer in integer)

Q. 57	Let Θ be a random variable having $U(0,2 \pi)$ distribution. Let $X=\cos \Theta$ and $Y=\sin \Theta$. Let ρ be the correlation coefficient between X and Y. Then 100ρ is equal to (answer in integer)
Q.58	Let $X_{1}, X_{2}, \ldots, X_{10}$ be a random sample from a $U(-\theta, \theta)$ distribution, where $\theta \in(0, \infty)$. Let $X_{(10)}=\max \left\{X_{1}, X_{2}, \ldots, X_{10}\right\}$ and $X_{(1)}=$ min $\left\{X_{1}, X_{2}, \ldots, X_{10}\right\}$. If the observed values of $X_{(10)}$ and $X_{(1)}$ are 8 and -10, respectively, then the maximum likelihood estimate of θ is equal to

Q. 59	Suppose that the weights (in kgs) of six months old babies, monitored at a healthcare facility, have $N\left(\mu, \sigma^{2}\right)$ distribution, where $\mu \in \mathbb{R}$ and $\sigma>0$ are unknown parameters. Let $X_{1}, X_{2}, \ldots, X_{9}$ be a random sample of the weights of such babies. Let $\bar{X}=\frac{1}{9} \sum_{i=1}^{9} X_{i} \quad, \quad S=\sqrt{\frac{1}{8} \sum_{i=1}^{9}\left(X_{i}-\bar{X}\right)^{2}} \quad$ and let a 95% confidence interval for μ based on t-distribution be of the form $(\bar{X}-h(S), \bar{X}+h(S)),$ for an appropriate function h of random variable S. If the observed values of \bar{X} and S^{2} are 9 and 9.5 , respectively, then the width of the confidence interval is equal to \qquad (round off to 2 decimal places) $\left(\right.$ You may use $\left.t_{9,0.025}=2.262, t_{8,0.025}=2.306, t_{9,0.05}=1.833, t_{8,0.05}=1.86\right)$
Q. 60	Let X_{1}, X_{2}, X_{3} be a random sample from a Poisson distribution with mean $\lambda, \lambda>0$. For testing $H_{0}: \lambda=\frac{1}{8}$ against $H_{1}: \lambda=1$, a test rejects H_{0} if and only if $X_{1}+X_{2}+X_{3}>1$. The power of this test is equal to \qquad (round off to 2 decimal places)

