Chapter14. Dual Nature of Radiation and Matter.

MCQ'S (1 Mark Each)

1) The electrons are emitted in the photoelectric effect from a metal surface.

a) only if the frequency of radiation is above a certain threshold value.

b) only if the temperature of the surface is high.

c) at the that is independent of the nature of metal.

d) with a maximum velocity proportional to the frequency of incident radiation

Ans: a) only if the frequency of radiation is above a certain threshold value

- 2) As the intensity of incident light increases
 - a) photoelectric current increases
 - b) photoelectric current decreases.
 - c) kinetic energy of emitted photoelectrons increases
 - d) kinetic energy of emitted photoelectrons decreases.

Ans: a) photoelectric current increases.

3) The maximum kinetic energy of the photoelectrons depends only ona) potentialb) frequencyc) incident angled) pressure

Ans : b) frequency.

- 4) According to De-Broglie, the waves are associated with
 - a) moving neutral particles only.
 - b) moving charged particle only.
 - c) electrons only

d) all moving matter particles

Ans : d) all moving matter particles

5) The work function of a metal is 4.2 Ev.Its threshold wavelength will be

a) 4000
$$A^{\circ}$$
 b) 3500 A° c) 2959 A° d) 2500 A°
Ans : c) 2959 A° , $\lambda = \frac{hc}{\varphi_{\circ}}$

- 6) Ultraviolet radiation of 6.2 eV falls on an Aluminum surface (work function 4.2 eV).
 The kinetic energy in joules of the fastest electron emitted is
 - a) 3.2×10^{-21} b) 3.2×10^{-19} c) 3.2×10^{-17} d) 3.2×10^{-15}

Ans: b) 3.2 × 10⁻¹⁹ ,*K*. $E_{max} = \mathbf{h}v - \phi_{\circ}$

7) Plancks constant is 6.6 × 10^{-34} Js. The momentum of each photon in a given radiation is 3.3 × 10^{-29} kg/s. The λ of radiation is

a) 2×10^{10} m b) 2×10^{7} m c) 2×10^{5} m d) 2×10^{-5} m Ans: d) 2×10^{-5} m, $\lambda = \frac{h}{p}$

Very Short Answer (VSA) (1 MARK Each)

- 1 Define photoelectric effect.
- 2 Define threshold frequency.
- 3 What is cut off or stopping potential.
- 4 Define the work function of the metal.
- 5 The minimum frequency for photoelectric effect on a metal is 7×10^{14} Hz, Find the work function of the metal. Ans: $\phi_{\circ} = hv_{\circ} = 4.62 \times 10^{-19}$ J
- 6 Find the kinetic energy of emitted electron, if in a photoelectric effect energy of incident Photon is 4 eV and work function is 2.4 eV. (Ans: K. E. $_{max}$ =1.6 eV.)
- 7 Find energy of photon which have momentum 2×10^{-16} gm-cm/sec.

(Ans: $E = 6 \times 10^{-6}$ erg)

Short Answer I (SA1) (2 MARKS Each)

- 1 Explain the term 'wave particle duality' of matter.
- 2 Draw a neat labeled diagram of schematic of experimental set up for photoelectric effect.
- 3 What is mean by dual nature of matter.
- 4 Explain the concept of photoelectric effect.
- 5 If the total energy of radiation of frequency 10^{14} Hz is 6.63 J, Calculate the number of photons in the radiation. (Ans $n = \frac{E}{hv} = 10^{20}$)

6 An electron is accelerated through a potential of 120 V. Find its de Broglie wavelength.

(Ans $:\lambda = \frac{1.228}{\sqrt{V}} = 0.112 \text{ nm}$)

7 Calculate the stopping potential when the metal with the work function 0.6 eV is illuminated with the light of 2 eV. (Ans $V_0 = \frac{E - \phi_0}{e} = 1.4 V$)

Short Answer II (SA2) (3 MARKS Each)

- State Einstein photoelectric equation. Explain 2 characteristics of photoelectric effect on the basis of Einstein's photoelectric equation.
- 2) With the help of circuit diagram describe an experiment to study photoelectric effect.
- What is the photoelectric effect? Define stopping potential and photoelectric work function.
- 4) Describe photocell construction and working with a neat, labelled diagram.
- 5) With a neat, labelled diagram, describe the Davisson and Germer experiment in support of the concept of matter waves.
- 6) Calculate De Broglie wavelength of bullet moving with speed 90m/sec and having a mass 5 gm. (Ans. $\lambda = 1.472 \text{ x } 10^{-31} \text{ m}, \ \lambda = \frac{h}{mv}$)
- 7) The energy of photon is 2 eV. Find its frequency and wavelength. (Ans. Frequency, $v = \frac{E}{h} = 4.826 x \ 10^{14}$ Hz., Wavelengh $\lambda = \frac{c}{v} = 6229 \text{ Å}$)
- 8) The work function of a surface is 3.1 eV. A photon of frequency 1×10^{15} Hz. Is incident on it. Calculate the incident wavelength is photoelectric emission occur or not. *(Ans*

$$\lambda_{\circ} = \frac{hc}{\phi_{\circ}} = 4000 \text{ A}^{\circ}$$
 photoelectric emission occur.)

Long Answer (LA) (4 marks Each)

- With the help of circuit diagram describe the experiment to study the characteristics of photoelectric effect, Hence discuss any 2 characteristics of photoelectric effect.
- State Einstein's photoelectric equation. Explain all characteristics of photoelectric effect, on the basis of Einstein's photoelectric equation.
- 3) Explain De Broglie's Hypothesis.