INDIAN MARITIME UNIVERSITY (A Central University, Govt. of India)

B.Tech (Marine Engineering) - Semester I December 2015 End Semester Examinations

Basic Electrical & Electronics Engineering

Sub Code: UG11T2104/UG11T1104

Time : 3 hrsMax Marks: 100Date : 19.12.2015Pass Marks: 50

Part- A

{Compulsory Question}

(3 x 10 = 30 Marks)

1)

- a) State & explain Kirchhoff's Point Law.
- b) Distinguish Self & Mutual Inductance.
- c) Define FORM & CREST Factors.
- d) What are the conditions for a 3 phase balanced circuit?
- e) Expand a PMMC instrument. What are its disadvantages?
- f) What are the errors occurring with Wattmeter connections?
- g) What is Richardson- Dushman equation? Mention the parameters.
- h) Differentiate Linear & Non-Linear Resistors.
- i) Why Filters are required with semiconductor Rectifiers?
- j) Enumerate types of Transistors depending on applications.

Part B (5 x 14 = 70 Marks)

Answer Any Five of the Following

2)

- a) Derive an expression for the Maximum Power transferred in a circuit, assuming appropriate parameters. (6)
- b) A network consisting of two 12V Batteries connected in series aiding to three parallel Resistors of 3Ω , $6\Omega \& 12\Omega$. Calculate the difference in total current supplied by the Batteries if both are connected in parallel. (8)

3)

- a) Explain the term Hysteresis. How the Hysteresis loss can be minimized. (6)
- b) Derive the expression for total Inductance when 2 solenoids are connected in series?

(8)

4)				
	a)	Explain the effect of a sinusoidal voltage applied to a pure RL series circuit.	(6)	
	b)	A $250\sin 100\pi t$ alternating emf is connected to a series RLC circuit with R= L=100mH and C= 20μ F. Calculate the circuit parameters:	15Ω,	
		(i)Current (ii) Impedance (iii) Pf (iv) Active Power	(8)	
5)				
	a)	Discuss with a neat sketch, the working of a Dynamometer type of Wattmeter	(7)	
	b)	A moving coil galvanometer with internal resistance of 0.5Ω and a full scale deflection		
		of 10A is to be used to measure 100A. What would be the additional shunt Resistance		
		required for measuring a total of 100A. Draw the connection diagram	(7)	
6)				
	a)	Explain how two Wattmeters can be used for 3 phase power measurement.	(7)	
	b)	Explain with a neat sketch how a Maxwell's Bridge can be used to measure Inductant	ce.	
			(7)	
7)	a)	Write notes on (i) Field Emission (ii) Photo-Electric Emission	(6)	
	b)	Discuss with a neat sketch an unbiased PN junction Diode.	(8)	
8)	`			
	a)	With a neat sketch explain the working of a bridge rectifier in a single phase circuit.	(7)	
	b)	Distinguish between forward & reverse biasing of Diodes.	(7)	
9)				
	a)	With neat graphs explain the CB characteristics of a Transistor.	(6)	
	b)	Explain how the Transistor acts like an Amplifier	(5)	

c) Define α , β , & γ related to a Transistor (3)

4)