5. VECTOR AND THREE DIMENSIONAL GEOMETRY

I. MCQ (2 marks each)

1) If
$$|\bar{a}| = 3$$
, $|\bar{b}| = 4$, then the value of λ for which $\bar{a} + \lambda \bar{b}$ is perpendicular to
 $\bar{a} - \lambda \bar{b}$ is
A) $\frac{9}{16}$ B) $\frac{3}{4}$ C) $\frac{3}{2}$ D) $\frac{4}{3}$
2) $(\hat{i} + \hat{j} - \hat{k}) \cdot (\hat{i} - \hat{j} + \hat{k}) =$
A) $\hat{i} - \hat{j} - \hat{k}$ B) 1 C) -1 D) $-\hat{j} + \hat{k}$
3) The angle θ between two non-zero vectors $\bar{a} & \bar{b}$ is given by $\cos \theta = \cdots$
A) $\frac{a\bar{b}}{|\bar{a}||\bar{b}|}$ B) $\bar{a} \cdot \bar{b}$ C) $|\bar{a}||\bar{b}|$ D) $\frac{|\bar{a}||\bar{b}|}{a\bar{b}}$
4) If sum of two unit vectors is itself a unit vector, then the magnitude of their
difference is...
A) $\sqrt{2}$ B) $\sqrt{3}$ C) 1 D) 2
5) If α, β, γ are direction angles of a line and $\alpha = 60^{\circ}$, $\beta = 45^{\circ}$, then $\gamma =$
A) 30° or 90° B) 45° or 60° C) 90° or 30° D)
 60° or 120°
6) The distance of the point (3, 4, 5) from Y- axis is _______
A) 3 B) 5 C) $\sqrt{34}$ D) $\sqrt{41}$
7) If $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are the direction cosines of a line then the value of
 $\sin^{2} \alpha + \sin^{2} \beta + \sin^{2} \gamma$ is _______
A) 1 B) 2 C) 3 D) 4
8) If $|\bar{a}| = 2, |\bar{b}| = 5$, and $\bar{a} \cdot \bar{b} = 8$ then $|\bar{a} - \bar{b}| =$
A) 13 B) 12 C) $\sqrt{13}$ D) $\sqrt{21}$

9) If $\overline{AB} = 2\hat{\imath} + \hat{\jmath} - 3\hat{k}$, and A(1, 2, -1) is given point then coordinates of B are_____

A) (3, 3, -4) B) (-3, 3 -2) C) (3, 3, 2) D) (-3, 3, 4) 10) If l, m, n are direction cosines of a line then $l\hat{i} + m\hat{j} + n\hat{k}$ is _____ A) Null vector B) the unit vector along the line. C) Any vector along the line D) a vector perpendicular to the line. 11) The values of c that satisfy $|c \bar{u}| = 3$, $\bar{u} = \hat{i} + 2\hat{j} + 3\hat{k}$ is _____ B) 3√14 C) $\frac{3}{\sqrt{14}}$ A) $\sqrt{14}$ D) 3 12. The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ B) – 1 A) 0 C) 1 D) 3 13. The two vectors $\hat{j} + \hat{k} \otimes 3\hat{i} - \hat{j} + 4\hat{k}$ represents the two sides AB and AC, a $\triangle ABC$. The length of the median through A is respectively of A) $\frac{\sqrt{34}}{2}$ B) $\frac{\sqrt{48}}{2}$ C) $\sqrt{18}$ D) $\sqrt{34}$

14. If \bar{a} , \bar{b} and \bar{c} are non coplanar unit vectors, and $\bar{a} \times (\bar{b} \times \bar{c}) = \frac{\bar{b} + \sqrt{3}\bar{c}}{2}$, then the angle between \bar{a} and \bar{c} is ______ a) $\frac{5\pi}{3}$ b) $\frac{5\pi}{6}$ c) $\frac{\pi}{3}$ d) π

II. Very Short Answers (1 mark)

- 1. Find the magnitude of a vector with initial point : (1, -3, 4); terminal point : (1, 0, -1).
- 2. Find the coordinates of the point which is located Three units behind the YZplane, four units to the right of the XZ-plane and five units above the XY-Plane.
- 3. A(2,3), B(-1,5), C(-1,1) and D(-7,5) are four points in the Cartesian

plane, Check if, \overline{CD} is parallel to \overline{AB} .

- 4. Find a unit vector in the opposite direction of \bar{u} . Where $\bar{u} = 8\hat{i} + 3\hat{j} \hat{k}$.
- 5. The non zero vectors \bar{a} and \bar{b} are not collinear find the value of λ and μ :

if
$$\bar{a} + 3\bar{b} = 2\lambda\bar{a} - \mu\bar{b}$$

- 6. If $\bar{a} = 4\hat{i} + 3\hat{k}$ and $\bar{b} = -2\hat{i} + \hat{j} + 5\hat{k}$ then find $2\bar{a} + 5\bar{b}$
- 7. Find the distance from (4, -2, 6) to the XZ- Plane.
- 8. If the vectors $2\hat{i} q\hat{j} + 3\hat{k}$ and $4\hat{i} 5\hat{j} + 6\hat{k}$ are collinear then find the value of *q*.
- 9. Find $\overline{a} \cdot \overline{b} \times \overline{c}$, if $\overline{a} = 3\hat{i} \hat{j} + 4\hat{k}$, $\overline{b} = 2\hat{i} + 3\hat{j} \hat{k}$, $\overline{c} = -5\hat{i} + 2\hat{j} + 3\hat{k}$
- 10. If a line makes angle 90° , 60° and 30° with the positive direction of X, Y and Z axes respectively, find its direction cosines.
- 11. Find $\hat{k} \times (\hat{j} \times \hat{\imath})$

III. Short Answers (2 mark)

- 1. The vector \bar{a} is directed due north and $|\bar{a}| = 24$. The vector \bar{b} is directed due west and $|\bar{b}| = 7$. find $|\bar{a} + \bar{b}|$.
- 2. Show that following points are collinear P(4,5,2), Q(3,2,4), R(5,8,0)
- 3. If a vector has direction angles 45° and 60° find the third direction angle.
- 4. If $\overline{c} = 3\overline{a} 2\overline{b}$ then prove that $[\overline{a} \ \overline{b} \ \overline{c}] = 0$
- 5. If $|\bar{a}.\bar{b}| = |\bar{a} \times \bar{b}| \& \bar{a}.\bar{b} < 0$, then find the angle between $\bar{a} \& \bar{b}$.
- 6. Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are 1, 3, 2 and -1, 1,2
- 7. If \bar{a} , \bar{b} and \bar{c} are position vectors of the points A, B, C respectively and $5\bar{a} 3\bar{b} 2\bar{c} = \bar{0}$, then find the ratio in which the point C divides the line segment BA.
- 8. If \bar{a} and \bar{b} are two vectors perpendicular each other, prove that $(-, \bar{z})^2 = (-, \bar{z})^2$

$$(\bar{a}+b)^{-}=(\bar{a}-b)^{-}$$

- 9. Find the position vector of point R which divides the line joining the points P and Q whose position vectors are $2\hat{i} \hat{j} + 3\hat{k}$ and $-5\hat{i} + 2\hat{j} 5\hat{k}$ in the ratio 3:2
 - (i) internally (ii) externally.
- 10. Find a unit vector perpendicular to the vectors $\hat{j} + 2\hat{k} \& \hat{i} + \hat{j}$

IV. Short Answers (3 mark)

- 1. If two of the vertices of the triangle are A(3,1,4) and B(-4,5,-3) and the centroid of a triangle is G(-1,2,1), then find the co-ordinates of the third vertex C of the triangle.
- 2. Find the centroid of tetrahedron with vertices K(5, -7, 0), L(1,5,3), M(4, -6,3), N(6, -4,2)?
- 3. If a line has the direction ratios , 4, -12, 18 then find its direction cosines.
- 4. Show that the points *A*(2, −1,0) *B*(−3,0,4), *C*(−1, −1,4) and *D*(0, −5,2) are non coplanar.
- 5. Using properties of scalar triple product, prove that

$$\begin{bmatrix} \overline{a} + \overline{b} & \overline{b} + \overline{c} & \overline{c} + \overline{a} \end{bmatrix} = 2 \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$$

- 6. The direction ratios of \overline{AB} are -2, 2, 1. If A = (4,1,5) and l(AB) = 6 units, Then find B.
- 7. If G(a, 2, -1) is the centroid of the triangle with vertices P(1,2,3),

Q(3, b, -4) and R(5, 1, c) then find the values of a, b and c.

8. If A(5,1,p), B(1,q,p) and C(1,-2,3) are vertices of triangle and

$$G\left(r, -\frac{4}{3}, \frac{1}{3}\right)$$
 is its centroid then find the values of $p, q \& r$.

- 9. Prove by vector method that the angle subtended on semicircle is a right angle.
- 10.Prove that medians of a triangle are concurrent.
- 11.Prove that altitudes of a triangle are concurrent.

V. Long Answers (4 mark)

1. Express $-\hat{i} - 3\hat{j} + 4\hat{k}$ as linear combination of the vectors $2\hat{i} + \hat{j} - 4\hat{k}$,

$$2\hat{\imath} - \hat{\jmath} + 3\hat{k}$$
 and $3\hat{\imath} + \hat{\jmath} - 2\hat{k}$.

- 2. If Q is the foot of the perpendicular from P(2,4,3) on the line joining the points A(1,2,4) and B(3,4,5), find coordinates of Q.
- 3. Prove that the angle bisectors of a triangle are concurrent.
- 4. Using vector method, find the incenter of the triangle whose vertices are

A(0,3,0) B(0,0,4) and C(0,3,4).

5. Find the angles between the lines whose direction cosines l, m, n satisfy the

equations 5l + m + 3n = 0 and 5mn - 2nl + 6lm = 0

- 6. Let $A(\bar{a})$ and $B(\bar{b})$ be any two points in the space and $R(\bar{r})$ be a point on the line segment *AB* dividing it internally in the ratio m:n then prove that $\bar{r} = \frac{m\bar{b}+n\bar{a}}{m+n}$.
- 7. D and E divides sides BC and CA of a triangle ABC in the ratio 2:3 respectively. Find the position vector of the point of intersection of AD and BE and the ratio in which this point divides AD and BE.
- 8. If $\overline{u} = \hat{i} 2\hat{j} + \hat{k}$, $\overline{r} = 3\hat{i} + \hat{k}$ & $\overline{w} = \hat{j}$, \hat{k} are given vectors, then find $[\overline{u} + \overline{w}] \cdot [(\overline{w} \times \overline{r}) \times (\overline{r} \times \overline{w})]$
- 9. Find the volume of a tetrahedron whose vertices are

A(-1,2,3) B(3,-2,1),C(2,1,3) and D(-1,-2,4)

10.If four points A (\overline{a}), B(\overline{b}), C(\overline{c}) & D(\overline{d}) are coplanar

then show that $\begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$

- 11. Prove that the volume of parallelopiped with coterminous edges as \overline{a} , \overline{b} and \overline{c} is $[\overline{a} \quad \overline{b} \quad \overline{c}]$.
- 12. Prove that the volume of tetrahedron with coterminous edges as \bar{a} , \bar{b} and \bar{c} is $\frac{1}{6}[\bar{a} \ \bar{b} \ \bar{c}]$