MHT CET 2023 Question Paper Shift 2

Question 1. $\int 1 /\left[(x+2)(1+x)^{2}\right] d x=$?
Answer. $\log |(x+2) /(x+1)|-1 /(1+x)+c$

Question 2. $\int(\tan (1 / x) / x)^{2} d x=$?
Answer. $-\{\tan (1 / x)-(1 / x)\}+c$

Question 3. $\int 1 /\left(\cos ^{3} x \cdot \sqrt{ } \sin 2 x\right) d x=$?
Answer. $\sqrt{ } 2\left(\sqrt{ } \tan x+1 / 5(\tan x)^{5 / 2}\right)$

Question 4. The solution of $e^{y-x} d y / d x=y(\sin x+\cos x) /(1+y \log y)$ Answer. $e^{y}(\log y)=e^{x} \sin x+c$

Question 5. $\operatorname{Lim}_{x \rightarrow 0} x \cdot \cot 4 x /\left(\sin ^{2} x \cot ^{2}(2 x)\right)$
Answer. 1

Question 6. Solve for x, given $\tan ^{-1}(1-x / 1+x)=1 / 2 \tan ^{1} x$
Answer. $x=\sqrt{ } 3$

Question 7. $\int 1 / \cos ^{3} x \sqrt{ }(\sin 2 x) d x=$?
Answer. $1 / \sqrt{ } 2\left\{2 \sqrt{ } t+\int t^{3 / 2} d t\right\}$ where $t=t a n x$ and $\sec ^{2} x d x=d t$

Question 8. If a pair of line given by $(x \cos \alpha+y \sin \alpha)^{2}=\left(x^{2}+y^{2}\right) \sin ^{2} \alpha$ are perpendicular. What is the value of α ?
Answer. $\alpha=\pi / 4$

Question 9. Find $\cos ^{2} 48^{\circ}-\sin ^{2} 12^{\circ}$, if $\sin 18^{\circ}=(\sqrt{5}-1) / 4$
Answer. $(\sqrt{ } 5+1) / 8$

Question 10. If $A=[2 a-3 b]$
$\left[\begin{array}{ll}3 & 2\end{array}\right]$
and $\operatorname{adj} A=A A^{\top}$, then $2 a+3 b$ is?
Answer. 5

Question 11. $f(x)=x^{2}+1, g(x)=1 / x$. Find $f(g(g(f(x))))$ at $x=1$
A. 4
B. 1
C. 5
D. 3

Answer. C) 5

Question 12. Find $\sum\left(x-x_{i}\right)^{2}=100$, no. of observations $=20, \sum x_{i}=20$.

Question 13. Vertices of Tetrahedron is $(1,4,3) .(2,5,-6),(3,-x, 5)$ and ($1,-6,-3$) and volume of the tetrahedron is $11 / 6$ cubic unit. Then x is?

Question 14. K_{i} are possible values of K for which lines

$$
\begin{aligned}
& K x+2 y+2=0 \\
& 2 x+K y+3=0 \\
& 3 x+3 y+K=0
\end{aligned}
$$

are concurrent, then $\sum k_{i}$ has value.
A. 0
B. -2
C. 2
D. 5

Question 15. The equation of the normal to the curve $3 x^{2}+y^{2}=8$, which is parallel to the line $x+3 y=10$ is

