SECTION-A

1. An arc PQ of a circle subtends a right angle at its centre O. The mid point of the arc $P Q$ is R. If $\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{OR}}=\overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{OQ}}=\alpha \overrightarrow{\mathrm{u}}+\beta \overrightarrow{\mathrm{v}}$, then α, β^{2} are the roots of the equation:
(1) $3 x^{2}-2 x-1=0$
(2) $3 x^{2}+2 x-1=0$
(3) $x^{2}-x-2=0$
(4) $x^{2}+x-2=0$

Sol. (3)

Let $\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{u}}=\hat{\mathrm{i}}$
$\overrightarrow{\mathrm{OQ}}=\overrightarrow{\mathrm{q}}=\hat{\mathrm{j}}$
$\because \mathrm{R}$ is the mid point of $\overrightarrow{\mathrm{PQ}}$
Then $\overrightarrow{O R}=\vec{v}=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}$
Now
$\overrightarrow{O Q}=\alpha \vec{u}+\beta \vec{v}$
$\hat{\mathrm{j}}=\alpha \hat{\mathrm{i}}+\beta\left(\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{j}}\right)$
$\beta=\sqrt{2}, \alpha+\frac{\beta}{\sqrt{2}}=0 \Rightarrow \alpha=-1$
Now equation
$x^{2}-\left(\alpha+\beta^{2}\right) x+\alpha \beta^{2}=0$
$x^{2}-(-1+2) x+(-1)(2)=0$
$x^{2}-x-2=0$
2. A square piece of tin of side 30 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. If the volume of the box is maximum, then its surface area ($\mathrm{in}_{\mathrm{cm}}{ }^{2}$) is equal to :
(1) 800
(2) 1025
(3) 900
(4) 675

Sol. (1)
Let the side of the square to be cut off be x cm .
Then, the length and breadth of the box will be $(30-2 x) \mathrm{cm}$ each and the height of the box is x cm therefore,

The volume $\mathrm{V}(\mathrm{x})$ of the box is given by
$\mathrm{V}(\mathrm{x})=\mathrm{x}(30-2 \mathrm{x})^{2}$
$\frac{d v}{d x}=(30-2 x)^{2}+2 x \times(30-2 x)(-2)$
$0=(30-2 x)^{2}-4 x(30-2 x)$
$0=(30-2 x)[(30-2 x)-4 x]$
$0=(30-2 x)(30-6 x)$
$\mathrm{x}=15,5$
$\mathrm{x} \neq 15 \quad$ (Not possible)
$\{\therefore V=0\}$
Surface area without top of the box $=\ell b+2(b h+h \ell)$
$=(30-2 x)(30-2 x)+2[(30-2 x) x+(30-2 x) x]$
$=\left[(30-2 x)^{2}+4\{(30-2 x) x\}\right.$
$=\left[(30-10)^{2}+4(5)(30-10)\right]$
$=400+400$
$=800 \mathrm{~cm}^{2}$
3. Let O be the origin and the position vector of the point P be $-\hat{i}-2 \hat{j}+3 \hat{k}$. If the position vectors of the A, B and C are $-2 \hat{i}+\hat{j}-3 \hat{k}, 2 \hat{i}+4 \hat{j}-2 \hat{k}$ and $-4 \hat{i}+2 \hat{j}-\hat{k}$ respectively, then the projection of vector $\overrightarrow{O P}$ on a vector perpendicular to the vectors $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ is :
(1) $\frac{10}{3}$
(2) $\frac{8}{3}$
(3) $\frac{7}{3}$
(4) 3

Sol. (4)

Position vector of the point $P(-1,-2,3), A(-2,1,-3) B(2,4,-2)$, and $C(-4,2,-1)$
Then $\overrightarrow{\mathrm{OP}} \cdot \frac{\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}}{|(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}})|}$
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 4 & 3 & 1 \\ -2 & 1 & 2\end{array}\right|$
$=\hat{\mathrm{i}}(5)-\hat{\mathrm{j}}(8+2)+\hat{\mathrm{k}}(4+6)$
$=5 \hat{i}-10 \hat{j}+10 \hat{k}$
Now

$$
\begin{aligned}
& \overrightarrow{\mathrm{OP}} \cdot \frac{\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}}{\mid(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC})} \mid}=(-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \cdot \frac{(5 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}+10 \hat{k})}{\sqrt{(5)^{2}+(-10)^{2}+(10)^{2}}} \\
& =\frac{-5+20+30}{\sqrt{25+100+100}} \\
& =\frac{45}{\sqrt{225}}=\frac{45}{15}=3
\end{aligned}
$$

4. If A is a 3×3 matrix and $|\mathrm{A}|=2$, then $\left|\operatorname{3adj}\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)\right|$ is equal to :
(1) $3^{12} \cdot 6^{10}$
(2) $3^{11} \cdot 6^{10}$
(3) $3^{12} \cdot 6^{11}$
(4) $3^{10} \cdot 6^{11}$

Sol. (2)
Given $|\mathrm{A}|=2$
Now, $\left|3 \operatorname{adj}\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)\right|$
$|3 \mathrm{~A}|=3^{3} .|\mathrm{A}|$
$=3^{3}$. (2)
Adj. $\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)=\operatorname{adj}\left\{\left(3^{3} .2\right) \mathrm{A}^{2}\right\}$
$=\left(2.3^{3}\right)^{2}(\operatorname{adj} \mathrm{~A})^{2}$
$=2^{2} \cdot 3^{6} .(\operatorname{adj} \mathrm{A})^{2}$
$\left|3 \operatorname{adj}\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)\right|=\left|2^{2} \cdot 3 \cdot 3^{6}(\operatorname{adj} \mathrm{~A})^{2}\right|$

$$
\begin{aligned}
& =\left(2^{2} \cdot 3^{7}\right)^{3}|\operatorname{adj} \mathrm{~A}|^{2} \\
& =2^{6} \cdot 3^{21}\left(|\mathrm{~A}|^{2}\right)^{2} \\
& =2^{6} \cdot 3^{21}\left(2^{2}\right)^{2} \\
& =2^{10} \cdot 3^{21} \\
& =2^{10} \cdot 3^{10} \cdot 3^{11}
\end{aligned}
$$

$\left|3 \operatorname{adj}\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)\right|=6^{10} .3^{11}$
5. Let two vertices of a triangle ABC be $(2,4,6)$ and $(0,-2,-5)$, and its centroid be $(2,1,-1)$. If the image of the third vertex in the plane $x+2 y+4 z=11$ is (α, β, γ), then $\alpha \beta+\beta \gamma+\gamma \alpha$ is equal to :
(1) 76
(2) 74
(3) 70
(4) 72

Sol. (2)

Given Two vertices of Triangle $\mathrm{A}(2,4,6)$ and $\mathrm{B}(0,-2,-5)$ and if centroid $\mathrm{G}(2,1,-1)$
Let Third vertices be ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Now $\frac{2+0+x}{3}=2, \frac{4-2+y}{3}=1, \frac{6-5+z}{3}=-1$
$\mathrm{x}=4, \mathrm{y}=1, \mathrm{z}=-1$
Third vertices $\mathrm{C}(4,1,-4)$

Now, Image of vertices $C(4,1,-4)$ in the given plane is $D(\alpha, \beta, \gamma)$

Now
$\frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=-2 \frac{(4+2-16-11)}{1+4+16}$
$\frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=\frac{42}{21} \Rightarrow 2$
$\alpha=6, \beta=5, \gamma=4$
Then $\alpha \beta+\beta \gamma+\gamma \alpha$
$=(6 \times 5)+(5 \times 4)+(4 \times 6)$
$=30+20+24$
$=74$
6. The negation of the statement :
$(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \vee(\sim \mathrm{r}))$ is
(1) $((\sim \mathrm{p}) \vee \mathrm{r})) \wedge(\sim \mathrm{q})$
(2) $((\sim p) \vee(\sim q)) \wedge(\sim r)$
(3) $((\sim p) \vee(\sim q)) \vee(\sim r)$
(4) $(p \vee r) \wedge(\sim q)$

Sol. (1)

$(p \vee q) \wedge(q \vee(\sim r))$
$\sim[(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \vee(\sim \mathrm{r}))]$
$=\sim(p \vee q) \wedge(\sim q \wedge r)$
$=(\sim \mathrm{p} \wedge \sim \mathrm{q}) \vee(\sim \mathrm{q} \wedge \mathrm{r})$
$=(\sim \mathrm{p} \vee \mathrm{r}) \wedge(\sim \mathrm{q})$
7. The shortest distance between the lines $\frac{x+2}{1}=\frac{y}{-2}=\frac{z-5}{2}$ and $\frac{x-4}{1}=\frac{y-1}{2}=\frac{z+3}{0}$ is :
(1) 8
(2) 7
(3) 6
(4) 9

Sol. (4)
$\frac{x+2}{1}=\frac{y}{-2}=\frac{z-5}{2}$ and $\frac{x-4}{1}=\frac{y-1}{2}=\frac{z+3}{0}$

$$
\begin{aligned}
& \text { Shortest distance }(d)=\frac{\left\|\begin{array}{ccc}
a_{2}-a_{1} & b_{2}-b_{1} & c_{2}-c_{1} \\
1_{1} & m_{1} & n_{1} \\
l_{2} & m_{2} & n_{2}
\end{array}\right\|}{\left\|\begin{array}{ccc}
\hat{i} & \hat{j} & k \\
l_{1} & m_{1} & n_{1} \\
l_{2} & m_{2} & n_{2}
\end{array}\right\|} \\
& =\frac{\left\|\begin{array}{ccc}
4+2 & 1-0 & -3-5 \\
1 & -2 & 2 \\
1 & 2 & 0
\end{array}\right\|}{\left\|\begin{array}{cc}
\hat{i} & \hat{j} \\
k
\end{array}\right\|} \\
& =\frac{\left|\begin{array}{ccc}
6 & 1 & -8 \\
1 & -2 & 2 \\
1 & 2 & 0
\end{array}\right|}{|\hat{\mathrm{i}}(-4)-\hat{\mathrm{j}}(-2)+\mathrm{k}(2+2)|} \\
& =\frac{|-54|}{|-4 \hat{i}+2 \hat{\mathrm{j}}+4 \mathrm{k}|} \\
& =\frac{54}{\sqrt{16+4+16}} \\
& =\frac{54}{6} \\
& =9
\end{aligned}
$$

8. If the coefficient of x^{7} in $\left(a x-\frac{1}{b x^{2}}\right)^{13}$ and the coefficient of x^{-5} in $\left(a x+\frac{1}{b x^{2}}\right)^{13}$ are equal, then $a^{4} b^{4}$ is equal to :
(1) 22
(2) 44
(3) 11
(4) 33

Sol. (1)
$\left(\mathrm{ax}-\frac{1}{\mathrm{bx}^{2}}\right)^{13}$
We have,
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}(\mathrm{p})^{\mathrm{n}-\mathrm{r}}(\mathrm{q})^{\mathrm{r}}$
$\mathrm{T}_{\mathrm{r}+1}={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{ax})^{13-\mathrm{r}}\left(-\frac{1}{\mathrm{bx}^{2}}\right)^{\mathrm{r}}$
$={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{a})^{13-\mathrm{r}}\left(-\frac{1}{\mathrm{~b}}\right)^{\mathrm{r}}(\mathrm{x})^{13-\mathrm{r}} \cdot(\mathrm{x})^{-2 \mathrm{r}}$
$={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{a})^{13-\mathrm{r}}\left(-\frac{1}{\mathrm{~b}}\right)^{\mathrm{r}}(\mathrm{x})^{13-3 \mathrm{r}}$

Coefficient of x^{\prime}
$\Rightarrow 13-3 \mathrm{r}=7$
$\mathrm{r}=2$
r in equation (1)
$\mathrm{T}_{3}={ }^{13} \mathrm{C}_{2}(\mathrm{a})^{13-2}\left(-\frac{1}{\mathrm{~b}}\right)^{2}(\mathrm{x})^{13-6}$
$={ }^{13} \mathrm{C}_{2}(\mathrm{a})^{11}\left(\frac{1}{\mathrm{~b}}\right)^{2}(\mathrm{x})^{7}$
Coefficient of x^{7} is ${ }^{13} \mathrm{C}_{2} \frac{(\mathrm{a})^{11}}{\mathrm{~b}^{2}}$
Now, $\left(\mathrm{ax}+\frac{1}{\mathrm{bx}^{2}}\right)^{13}$
$\mathrm{T}_{\mathrm{r}+1}={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{ax})^{13-\mathrm{r}}\left(\frac{1}{\mathrm{bx}^{2}}\right)^{\mathrm{r}}$
$={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{a})^{13-\mathrm{r}}\left(\frac{1}{\mathrm{~b}}\right)^{\mathrm{r}}(\mathrm{x})^{13-\mathrm{r}}(\mathrm{x})^{-2 \mathrm{r}}$
$={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{a})^{13-\mathrm{r}}\left(\frac{1}{\mathrm{~b}}\right)^{\mathrm{r}}(\mathrm{x})^{13-3 \mathrm{r}}$
Coefficient of x^{-5}
$\Rightarrow 13-3 \mathrm{r}=-5$
$r=6$
r in equation
${ }^{\mathrm{T}}{ }_{7}={ }^{13} \mathrm{C}_{6}(\mathrm{a})^{13-6}\left(\frac{1}{\mathrm{~b}}\right)^{6}(\mathrm{x})^{13-18}$
$\mathrm{T}_{7}={ }^{13} \mathrm{C}_{6}(\mathrm{a})^{7}\left(\frac{1}{\mathrm{~b}}\right)^{6}(\mathrm{x})^{-5}$
Coefficient of x^{-5} is ${ }^{13} \mathrm{C}_{6}(\mathrm{a})^{7}\left(\frac{1}{b}\right)^{6}$
ATQ
Coefficient of $x^{7}=$ coefficient of x^{-5}
$\mathrm{T}_{3}=\mathrm{T}_{7}$
${ }^{13} \mathrm{C}_{2}\left(\frac{\mathrm{a}^{11}}{\mathrm{~b}^{2}}\right)={ }^{13} \mathrm{C}_{6}(\mathrm{a})^{7}\left(\frac{1}{\mathrm{~b}}\right)^{6}$
$\mathrm{a}^{4} \cdot \mathrm{~b}^{4}=\frac{{ }^{13} \mathrm{C}_{6}}{{ }^{13} \mathrm{C}_{2}}$
$=\frac{13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 1}{13 \times 12 \times 6 \times 5 \times 4 \times 3}=22$
9. A line segment AB of length λ moves such that the points A and B remain on the periphery of a circle of radius λ. Then the locus of the point, that divides the line segment $A B$ in the ratio $2: 3$, is a circle of radius :
(1) $\frac{2}{3} \lambda$
(2) $\frac{\sqrt{19}}{7} \lambda$
(3) $\frac{3}{5} \lambda$
(4) $\frac{\sqrt{19}}{5} \lambda$

Sol. (4)

Since OAB form equilateral Δ
$\therefore \angle \mathrm{OAP}=60^{\circ}$
$\mathrm{AP}=\frac{2 \lambda}{5}$
$\cos 60^{\circ}=\frac{\mathrm{OA}^{2}+\mathrm{AP}^{2}-\mathrm{OP}^{2}}{2 \mathrm{OA} \cdot \mathrm{AP}}$
$\Rightarrow \frac{1}{2}=\frac{\lambda^{2}+\frac{4 \lambda^{2}}{25}-\mathrm{OP}^{2}}{2 \lambda\left(\frac{2 \lambda}{5}\right)}$
$\Rightarrow \frac{2 \lambda^{2}}{5}=\lambda^{2}+\frac{4 \lambda^{2}}{25}-\mathrm{OP}^{2}$
$\Rightarrow \mathrm{OP}^{2}=\frac{19 \lambda^{2}}{25}$
$\Rightarrow \mathrm{OP}=\frac{\sqrt{19}}{5} \lambda$
Therefore, locus of point P is $\frac{\sqrt{19}}{5} \lambda$
10. For the system of linear equations
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y+\alpha z=\beta$,
which of the following is NOT correct?
(1) The system in inconsistent for $\alpha=-5$ and $\beta=8$
(2) The system has infinitely many solutions for $\alpha=-6$ and $\beta=9$
(3) The system has a unique solution for $\alpha \neq-5$ and $\beta=8$
(4) The system has infinitely many solutions for $\alpha=-5$ and $\beta=9$

Sol. (2)

Given
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y+\alpha z=\beta$
$\Delta=\left|\begin{array}{ccc}2 & -1 & 3 \\ 3 & 2 & -1 \\ 4 & 5 & \alpha\end{array}\right|=7 \alpha+35$
$\Delta=7(\alpha+5)$
For unique solution $\Delta \neq 0$
$\alpha \neq-5$
For inconsistent \& Infinite solution
$\Delta=0$
$\alpha+5=0 \Rightarrow \alpha=-5$
$\Delta_{1}=\left|\begin{array}{ccc}5 & -1 & 3 \\ 7 & 2 & -1 \\ \beta & 5 & -5\end{array}\right|=-5(\beta-9)$
$\Delta_{2}=\left|\begin{array}{ccc}2 & 5 & 3 \\ 3 & 7 & -1 \\ 4 & \beta & -5\end{array}\right|=11(\beta-9)$
$\Delta_{3}=\left|\begin{array}{ccc}2 & -1 & 5 \\ 3 & 2 & 7 \\ 4 & 5 & \beta\end{array}\right|$
$\Delta_{3}=7(\beta-9)$
For Inconsistent system :-
At least one $\Delta_{1}, \Delta_{2} \& \Delta_{3}$ is not zero $\alpha=-5, \beta=8$ option (A) True
Infinite solution:
$\Delta_{1}=\Delta_{2}=\Delta_{3}=0$
From here $\beta-9=0 \Rightarrow \beta=9$
$\alpha=-5 \&$ option (D) True
$\beta=9$
Unique solution
$\alpha \neq-5, \beta=8 \rightarrow$ option (C) True
Option (B) False
For Infinitely many solution α must be -5 .
11. Let the first term a and the common ratio r of a geometric progression be positive integers. If the sum of squares of its first three is 33033 , then the sum of these terms is equal to :
(1) 210
(2) 220
(3) 231
(4) 241

Sol. (3)

Let a , $\mathrm{ar}, \mathrm{ar}^{2}$ be three terms of GP
Given : $\mathrm{a}^{2}+(\mathrm{ar})^{2}+\left(\mathrm{ar}^{2}\right)^{2}=33033$
$\mathrm{a}^{2}\left(1+\mathrm{r}^{2}+\mathrm{r}^{4}\right)=11^{2} \cdot 3 \cdot 7 \cdot 13$
$\Rightarrow \mathrm{a}=11$ and $1+\mathrm{r}^{2}+\mathrm{r}^{4}=3.7 .13$
$\Rightarrow r^{2}\left(1+r^{2}\right)=273-1$
$\Rightarrow \mathrm{r}^{2}\left(\mathrm{r}^{2}+1\right)=272=16 \times 17$
$\Rightarrow r^{2}=16$
$\therefore r=4 \quad[\because r>0]$
Sum of three terms $=a+a r+a r^{2}=a\left(1+r+r^{2}\right)$
$=11(1+4+16)$
$=11 \times 21=231$
12. Let P be the point of intersection of the line $\frac{x+3}{3}=\frac{y+2}{1}=\frac{1-z}{2}$ and the plane $x+y+z=2$. If the distance of the point P from the plane $3 x-4 y+12 z=32$ is q, then q and $2 q$ are the roots of the equation:
(1) $x^{2}+18 x-72=0$
(2) $x^{2}+18 x+72=0$
(3) $x^{2}-18 x-72=0$
(4) $x^{2}-18 x+72=0$

Sol. (4)

$\frac{x+3}{3}=\frac{y+2}{1}=\frac{1-z}{2}=\lambda$
$\mathrm{x}=3 \lambda-3, \mathrm{y}=\lambda-2, \mathrm{z}=1-2 \lambda$
$\mathrm{P}(3 \lambda-3, \lambda-2,1-2 \lambda)$ will satisfy the equation of plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=2$.
$3 \lambda-3+\lambda-2+1-2 \lambda=2$
$2 \lambda-4=2$
$\lambda=3$
$\mathrm{P}(6,1,-5)$
Perpendicular distance of P from plane $3 x-4 y+12 z-32=0$ is
$\mathrm{q}=\left|\frac{3(6)-4(1)+12(-5)-32}{\sqrt{9+16+144}}\right|$
$\mathrm{q}=6$.
$2 \mathrm{q}=12$
Sum of roots $=6+12=18$
Product of roots $=6(12)=72$
\therefore Quadratic equation having q and 2 q as roots is $\mathrm{x}^{2}-18 \mathrm{x}+72$.
13. Let f be a differentiable function such that $\mathrm{x}^{2} \mathrm{f}(\mathrm{x})-\mathrm{x}=4 \int_{0}^{\mathrm{x}} \mathrm{tf}(\mathrm{t}) \mathrm{dt}, \mathrm{f}(1)=\frac{2}{3}$. Then $18 \mathrm{f}(3)$ is equal to :
(1) 180
(2) 150
(3) 210
(4) 160

Sol. (4)
$x^{2} f(x)-x=4 \int_{0}^{x} t f(t) d t$
Differentiate w.r.t. x
$x^{2} f^{\prime}(x)+2 x f(x)-1=4 x f(x)$
Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$
$\Rightarrow x^{2} \frac{d y}{d x}-2 x y-1=0$
$\frac{d y}{d x}-\frac{2}{x} y=\frac{1}{x^{2}}$
I.F. $=\mathrm{e}^{\frac{\int-2}{\mathrm{~d}} \mathrm{dx}}=\frac{1}{\mathrm{x}^{2}}$

Its solution is
$\frac{y}{x^{2}}=\int \frac{1}{x^{4}} d x+C$
$\frac{y}{x^{2}}=\frac{-1}{3 x^{3}}+C$
$\because f(1)=\frac{2}{3} \Rightarrow y(1)=\frac{2}{3}$
$\Rightarrow \frac{2}{3}=-\frac{1}{3}+\mathrm{C}$
$\Rightarrow \mathrm{C}=1$
$\because y=-\frac{1}{3 x}+x^{2}$
$f(x)=-\frac{1}{3 x}+x^{2}$
$f(3)=-\frac{1}{9}+9=\frac{80}{9} \Rightarrow 18 f(3)=160$
14. Let N denote the sum of the numbers obtained when two dice are rolled. If the probability that $2^{\mathrm{N}}<\mathrm{N}$! is $\frac{\mathrm{m}}{\mathrm{n}}$, where m and n are coprime, then $4 m-3 n$ equal to :
(1) 12
(2) 8
(3) 10
(4) 6

Sol. (2)
$2^{\mathrm{N}}<\mathrm{N}$! is satisfied for $\mathrm{N} \geq 4$
Required probability $\mathrm{P}(\mathrm{N} \geq 4)=1-\mathrm{P}(\mathrm{N}<4)$
$\mathrm{N}=1$ (Not possible)
$\mathrm{N}=2(1,1)$
$\Rightarrow \mathrm{P}(\mathrm{N}=2)=\frac{1}{36}$
$\mathrm{N}=3(1,2),(2,1)$
$\Rightarrow \mathrm{P}(\mathrm{N}=3)=\frac{2}{36}$
$\mathrm{P}(\mathrm{N}<4)=\frac{1}{36}+\frac{2}{36}=\frac{3}{36}$
$\therefore \mathrm{P}(\mathrm{N} \geq 4)=1-\frac{3}{36}=\frac{33}{36}=\frac{11}{12}=\frac{\mathrm{m}}{\mathrm{n}}$
$\Rightarrow \mathrm{m}=11, \mathrm{n}=12$
$\therefore 4 m-3 n=4(11)-3(12)=8$
15. If $I(x)=\int e^{\sin ^{2} x}(\cos x \sin 2 x-\sin x) d x$ and $I(0)=1$, then $I\left(\frac{\pi}{3}\right)$ is equal to :
(1) $e^{\frac{3}{4}}$
(2) $-\mathrm{e}^{\frac{3}{4}}$
(3) $\frac{1}{2} e^{\frac{3}{4}}$
(4) $-\frac{1}{2} e^{\frac{3}{4}}$

Sol. (3)
$I=\int \underbrace{e^{\sin ^{2} x} \sin 2 x}_{\text {II }} \underbrace{\cos x d x}_{I}-\int e^{\sin ^{2} x} \sin x d x$
$=\cos x \int e^{\sin ^{2} x} \sin 2 x d x-\int\left((-\sin x) \int e^{\sin ^{2} x} \sin 2 x d x\right) d x-\int e^{\sin ^{2} x} \sin x d x$
$\sin ^{2} \mathrm{x}=\mathrm{t}$
$\sin 2 \mathrm{xdx}=\mathrm{dt}$
$=\cos x \int e^{t} d t+\int\left(\sin x \int e^{t} d t\right) d x-\int e^{\sin ^{2} x} \sin x d x$
$=e^{\sin ^{2} x} \cos x+\int e^{\sin ^{2} x} \sin x d x-\int e^{\sin ^{2} x} \sin x d x$
$I=e^{\sin ^{2} x} \cos x+C$
I $(0)=1$
$\Rightarrow 1=1+\mathrm{C}$
$\Rightarrow \mathrm{C}=0$
$\therefore I=\mathrm{e}^{\sin ^{2} \mathrm{x}} \cos \mathrm{x}$
I $\left(\frac{\pi}{3}\right)=\mathrm{e}^{\sin ^{2} \frac{\pi}{3}} \cos \frac{\pi}{3}$
$=\frac{\mathrm{e}^{\frac{3}{4}}}{2}$
16. $96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ is equal to :
(1) 4
(2) 2
(3) 3
(4) 1

Sol. (3)
$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{2^{2} \pi}{33} \cos \frac{2^{3} \pi}{33} \cos \frac{2^{4} \pi}{33}$
$\because \cos A \cos 2 A \cos 2^{2} A \ldots C \operatorname{Cos} 2^{n-1} A=\frac{\sin \left(2^{n} A\right)}{2^{n} \sin A}$
Here $\mathrm{A}=\frac{\pi}{33}, \mathrm{n}=5$
$=\frac{96 \sin \left(2^{5} \frac{\pi}{33}\right)}{2^{5} \sin \left(\frac{\pi}{33}\right)}$
$=\frac{96 \sin \left(\frac{32 \pi}{33}\right)}{32 \sin \left(\frac{\pi}{33}\right)}$
$=\frac{3 \sin \left(\pi-\frac{\pi}{33}\right)}{\sin \left(\frac{\pi}{33}\right)}=3$
17. Let the complex number $z=x+$ iy be such that $\frac{2 z-3 i}{2 z+i}$ is purely imaginary. If $x+y^{2}=0$, then $y^{4}+y^{2}-y$ is equal to :
(1) $\frac{3}{2}$
(2) $\frac{2}{3}$
(3) $\frac{4}{3}$
(4) $\frac{3}{4}$

Sol. (4)
$\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$\frac{(2 z-3 i)}{2 z+i}=$ purely imaginary
Means $\operatorname{Re}\left(\frac{2 z-3 i}{2 z+i}\right)=0$
$\Rightarrow \frac{(2 \mathrm{z}-3 \mathrm{i})}{(2 \mathrm{z}+\mathrm{i})}=\frac{2(\mathrm{x}+\mathrm{iy})-3 \mathrm{i}}{2(\mathrm{x}+\mathrm{iy})+\mathrm{i}}$
$=\frac{2 x+2 y i-3 i}{2 x+i 2 y+i}$
$=\frac{2 \mathrm{x}+\mathrm{i}(2 \mathrm{y}-3)}{2 \mathrm{x}+\mathrm{i}(2 \mathrm{y}+1)} \times \frac{2 \mathrm{x}-\mathrm{i}(2 \mathrm{y}+1)}{2 \mathrm{x}-\mathrm{i}(2 \mathrm{y}+1)}$
$\operatorname{Re}\left[\frac{2 z-3 i}{2 z+i}\right]=\frac{4 x^{2}+(2 y-3)(2 y+1)}{4 x^{2}+(2 y+1)^{2}}=0$
$\Rightarrow 4 x^{2}+(2 y-3)(2 y+1)=0$
$\Rightarrow 4 x^{2}+\left[4 y^{2}+2 y-6 y-3\right]=0$
$\because x+y^{2}=0 \Rightarrow x=-y^{2}$
$\Rightarrow 4\left(-y^{2}\right)^{2}+4 y^{2}-4 y-3=0$
$\Rightarrow 4 \mathrm{y}^{4}+4 \mathrm{y}^{2}-4 \mathrm{y}=3$
$\Rightarrow y^{4}+y^{2}-\mathrm{y}=\frac{3}{4}$
Therefore, correct answer is option (4).
18. If $f(x)=\frac{\left(\tan ^{\circ}\right) x+\log _{e}(123)}{x \log _{e}(1234)-\left(\tan 1^{\circ}\right)}, x>0$, then the least value of $f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)$ is :
(1) 2
(2) 4
(3) 8
(4) 0

Sol. (2)
$\mathrm{f}(\mathrm{x})=\frac{(\tan 1) \mathrm{x}+\log 123}{\mathrm{x} \log 1234-\tan 1}$
Let $\mathrm{A}=\tan 1, \mathrm{~B}=\log 123, \mathrm{C}=\log 1234$
$f(x)=\frac{A x+B}{x C-A}$
$f(f(x))=\frac{A\left(\frac{A x+B}{x C-A}\right)+B}{C\left(\frac{A x+B}{C X}\right)-A}$
$=\frac{A^{2} x+A B+x B C-A B}{A C x+B C-A C x+A^{2}}$
$=\frac{x\left(A^{2}+B C\right)}{\left(A^{2}+B C\right)}=x$
$\mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$
$\mathrm{f}\left(\mathrm{f}\left(\frac{4}{\mathrm{x}}\right)\right)=\frac{4}{\mathrm{x}}$
$\mathrm{f}(\mathrm{f}(\mathrm{x}))+\mathrm{f}\left(\mathrm{f}\left(\frac{4}{\mathrm{x}}\right)\right)$
$\mathrm{AM} \geq \mathrm{GM}$
$x+\frac{4}{x} \geq 4$
19. The slope of tangent at any point (x, y) on a curve $y=y(x)$ is $\frac{x^{2}+y^{2}}{2 x y}, x>0$. If $y(2)=0$, then a value of y (8) is :
(1) $4 \sqrt{3}$
(2) $-4 \sqrt{2}$
(3) $-2 \sqrt{3}$
(4) $2 \sqrt{3}$

Sol. (1)
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$
$y=v x$
$y(2)=0$
$y(8)=$?
$\frac{d v}{d x}=v+x \frac{d v}{d x}$
$v+\frac{x d v}{d x}=\frac{x^{2}+v^{2} x^{2}}{2 v x^{2}}$
x. $\frac{d v}{d x}=\left(\frac{v^{2}+1}{2 v}-v\right)$
$\frac{2 v d v}{\left(1-v^{2}\right)}=\frac{d x}{x}$
$-\ln \left(1-v^{2}\right)=\ln x+C$
$\ln x+\ln \left(1-v^{2}\right)=C$
$\ln \left[x\left(1-\frac{y^{2}}{x^{2}}\right)\right]=C$
$\ln \left[\left(\frac{x^{2}-y^{2}}{x}\right)\right]=C$
$\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{cx}$
$\mathrm{y}(2)=0$ at $\mathrm{x}=2, \mathrm{y}=0$
$4=2 C \Rightarrow C=2$
$x^{2}-y^{2}=2 x$
Hence, at $\mathrm{x}=8$
$64-y^{2}=16$
$\mathrm{y}=\sqrt{48}=4 \sqrt{3}$
$y(8)=4 \sqrt{3}$
Option (1)
20. Let the ellipse $E: x^{2}+9 y^{2}=9$ intersect the positive x-and y-axes at the points A and B respectively. Let the major axis of E be a diameter of the circle C . Let the line passing through A and B meet the circle C at the point P. If the area of the triangle with vertices A, P and the origin O is $\frac{m}{n}$, where m and n are coprime, then $\mathrm{m}-\mathrm{n}$ is equal to :
(1) 16
(2) 15
(3) 18
(4) 17

Sol. (4)

Equation of line AB or AP is
$\frac{x}{3}+\frac{y}{1}=1$
$x+3 y=3$
$x=(3-3 y)$
Intersection point of line AP \& circle is $\mathrm{P}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
$x^{2}+y^{2}=9 \Rightarrow(3-3 y)^{2}+y^{2}=9$
$\Rightarrow 3^{2}\left(1+y^{2}-2 y\right)+y^{2}=9$
$\Rightarrow 5 y^{2}-9 y=0 \Rightarrow y(5 y-9)=0$
$\Rightarrow y=9 / 5$
Hence $x=3(1-y)=3\left(1-\frac{9}{5}\right)=3\left(\frac{-4}{5}\right)$
$x=\frac{-12}{5}$
$\mathrm{P}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\left(\frac{-12}{5}, \frac{9}{5}\right)$
Area of $\triangle \mathrm{AOP}$ is $=\frac{1}{2} \times \mathrm{OA} \times$ height
Height $=9 / 5, \quad \mathrm{OA}=3$
$=\frac{1}{2} \times 3 \times \frac{9}{5}=\frac{27}{10}=\frac{\mathrm{m}}{\mathrm{n}}$
Compare both side $\mathrm{m}=27, \mathrm{n}=10 \Rightarrow \mathrm{~m}-\mathrm{n}=17$
Therefore, correct answer is option-D

SECTION-B

21. Some couples participated in a mixed doubles badminton tournament. If the number of matches played, so that no couple in a match, is 840 , then the total numbers of persons, who participated in the tournament, is
\qquad
Sol. 16
Let number of couples $=\mathrm{n}$
$\therefore{ }^{\mathrm{n}} \mathrm{C}_{2} \times{ }^{\mathrm{n}-2} \mathrm{C}_{2} \times 2=840$
$\Rightarrow \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)=840 \times 2$
$=21 \times 40 \times 2$
$=7 \times 3 \times 8 \times 5 \times 2$
$\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)=8 \times 7 \times 6 \times 5$
$\therefore \mathrm{n}=8$
Hence, number of persons $=16$.
22. The number of elements in the set $\left\{n \in Z:\left|n^{2}-10 n+19\right|<6\right\}$ is \qquad .
Sol. 6
$-6<\mathrm{n}^{2}-10 \mathrm{n}+19<6$
$\Rightarrow \mathrm{n}^{2}-10 \mathrm{n}+25>0$ and

$$
n^{2}-10 n+13<0
$$

$(\mathrm{n}-5)^{2}>0$
$5-3 \sqrt{2}<\mathrm{n}<5+3 \sqrt{2}$
$N \in Z-\{5\}$
$\mathrm{n}=\{2,3,4,5,6,7,8\}$
...(i)
...(ii)
From (i) \cap (ii)
$\mathrm{N}=\{2,3,4,5,6,8$,
Number of values of $n=6$
23. The number of permutations of the digits $1,2,3, \ldots, 7$ without repetition, which neither contain the string 153 nor the string 2467, is \qquad .
Sol. 4898
Numbers are 1, 2, 3, 4, 5, 6, 7
Numbers having string (154) $=(154), 2,3,6,7=5$!
Numbers having string $(2467)=(2467), 1,3,5=4$!
Number having string (154) and (2467)
$=(154),(2467)=2$!
Now $n(154 \cup 2467)=5!+4!-2$!
$=120+24-2=142$
Again total numbers $=7!=5040$
Now required numbers $=\mathrm{n}$ (neither 154 nor 2467)
= $5040-142$
$=4898$
24. Let $\mathrm{f}:(-2,2) \rightarrow \mathbb{R}$ be defined by
$f(x)=\left\{\begin{array}{l}x[x],-2<x<0 \\ (x-1)[x], 0 \leq x<2\end{array}\right.$
where $[\mathrm{x}]$ denotes the greatest integer function. If m and n respectively are the number of points in $(-2,2)$ at which $\mathrm{y}=|\mathrm{f}(\mathrm{x})|$ is not continuous and not differentiable, then $\mathrm{m}+\mathrm{n}$ is equal to \qquad .

Sol. 4
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}-2 \mathrm{x}, & -2<\mathrm{x}<-1 \\ -\mathrm{x}, & -1 \leq \mathrm{x}<0 \\ 0, & 0 \leq \mathrm{x}<1 \\ \mathrm{x}-1, & 1 \leq \mathrm{x}<2\end{array}\right.$
Clearly $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=-1$ also non differentiable.
$\therefore \mathrm{m}=1$
Now for differentiability
$\mathrm{f}^{\prime}(\mathrm{x})=\left\{\begin{array}{cc}-2 & -2<\mathrm{x}<-1 \\ -1 & -1<\mathrm{x}<0 \\ 0 & 0<\mathrm{x}<1 \\ -1 & 1<\mathrm{x}<2\end{array}\right.$
Clearly $f(x)$ is non-differentiable at $x=-1,0,1$
Also, $|f(x)|$ remains same.
$\therefore \mathrm{n}=3$
$\therefore \mathrm{m}+\mathrm{n}=4$
25. Let a common tangent to the curves $y^{2}=4 x$ and $(x-4)^{2}+y^{2}=16$ touch the curves at the points P and Q. Then (PQ) $)^{2}$ is equal to \qquad :
Sol. 32

$y^{2}=4 x$
$(x-4)^{2}+y^{2}=16$
Let equation of tangent of parabola
$y=m x+1 / m$
Now equation 1 also touches the circle

$$
\begin{aligned}
& \therefore\left|\frac{4 \mathrm{~m}+1 / \mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}}\right|=4 \\
& (4 \mathrm{~m}+1 / \mathrm{m})^{2}=16+16 \mathrm{~m}^{2} \\
& 16 \mathrm{~m}^{4}+8 \mathrm{~m}^{2}+1=16 \mathrm{~m}^{2}+16 \mathrm{~m}^{4} \\
& 8 \mathrm{~m}^{2}=1 \\
& \mathrm{~m}^{2}=1 / 8 \quad\left\{\mathrm{~m}^{4}=0\right\}(\mathrm{m} \rightarrow \infty)
\end{aligned}
$$

For distinet points consider only $\mathrm{m}^{2}=1 / 8$.
Point of contact of parabola
$\mathrm{P}(8,4 \sqrt{2})$
$\therefore \mathrm{PQ}=\sqrt{\mathrm{S}_{1}} \Rightarrow(\mathrm{PQ})^{2}=\mathrm{S}_{1}$
$=16+32-16=32$
26. If the mean of the frequency distribution

Class :	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency :	2	3	x	5	4

is 28 , then its variance is \qquad .
Sol. 151

C.I.	f	x	$\mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$	$\mathrm{x}^{2}{ }_{i}$
$0-10$	2	5	10	25
$10-20$	3	15	45	225
$20-30$	x	25	25 x	625
$30-40$	5	35	175	1225
$40-50$	4	45	180	2025

$\overline{\mathrm{x}}=\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\mathrm{N}}$
$28=\frac{10+45+25 \mathrm{x}+175+130}{14+\mathrm{x}}$
$28 \times 14+28 \mathrm{x}=410+25 \mathrm{x}$
$\Rightarrow 3 \mathrm{x}=410-392$
$\Rightarrow \mathrm{x}=\frac{18}{3}=6$
\therefore Variance $=\frac{1}{\mathrm{~N}} \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}{ }^{2}-(\overline{\mathrm{x}})^{2}$
$=\frac{1}{20} 18700-(28)^{2}$
$=935-784=151$
27. The coefficient of x^{7} in $\left(1-x+2 x^{3}\right)^{10}$ is \qquad .
Sol. 960
$\left(1-x+2 x^{3}\right)^{10}$

a	b	c
3	7	0
5	4	1
7	1	2

$\mathrm{T}_{\mathrm{n}}=\frac{10!}{\mathrm{a}!\mathrm{b}!\mathrm{c}!}(-2 \mathrm{x})^{\mathrm{b}}\left(\mathrm{x}^{3}\right)^{\mathrm{c}}$
$=\frac{10!}{a!b!c!}(-2)^{b} x^{b+3 c}$
$\Rightarrow b+3 c=7, a+b+c=10$
\therefore Coefficient of $\mathrm{x}^{7}=\frac{10!}{3!7!0!}(-1)^{7}+\frac{10!}{5!4!1!}(-1)^{4}(\mathbf{2})$
$+\frac{10!}{7!1!2!}(-1)^{1}(2)^{2}$
$=-120+2520-1440=960$
28. Let $y=p(x)$ be the parabola passing through the points $(-1,0),(0,1)$ and $(1,0)$. If the area of the region $\left\{(\mathrm{x}, \mathrm{y}):(\mathrm{x}+1)^{2}+(\mathrm{y}-1)^{2} \leq 1, \mathrm{y} \leq \mathrm{p}(\mathrm{x})\right\}$ is A , then $12(\pi-4 \mathrm{~A})$ is equal to \qquad -:
Sol. 16
There can be infinitely many parabolas through given points.
Let parabola $x^{2}=-4 a(y-1)$

Passes through $(1,0)$
$\therefore \mathrm{b}=-4 \mathrm{a}(-1) \Rightarrow \mathrm{a}=\frac{1}{4}$
$\therefore \mathrm{x}^{2}=-(\mathrm{y}-1)$
Now area covered by parabola $=\int_{-1}^{0}\left(1-x^{2}\right) d x$
$=\left(x-\frac{x^{3}}{3}\right)_{1}^{\mathrm{b}}=(0-0)-\left\{-1+\frac{1}{3}\right\}$
$=\frac{2}{3}$
Required Area $=$ Area of sector $-\{$ Area of square - Area covered by Parabola $\}$
$=\frac{\pi}{4}-\left\{1-\frac{2}{3}\right\}$
$=\frac{\pi}{4}-\frac{1}{3}$
$\therefore 12(\pi-4 \mathrm{~A})=12\left[\pi-4\left(\frac{\pi}{4}-\frac{1}{3}\right)\right]$
$=12\left[\pi-\pi+\frac{4}{3}\right]$
$=16$
29. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three distinct positive real numbers such that $(2 \mathrm{a})^{\log _{\mathrm{c}} \mathrm{a}}=(\mathrm{bc})^{\log _{\mathrm{c}} \mathrm{b}}$ and $\mathrm{b}^{\log _{\mathrm{c}} 2}=\mathrm{a}^{\log _{\mathrm{c}} \mathrm{c}}$. Then $6 \mathrm{a}+$ $5 b c$ is equal to \qquad .

Sol. Bouns

$$
\begin{aligned}
& (2 a)^{\ln a}=(b c)^{\ln b} \quad 2 a>0, b c>0 \\
& \ln a(\ln 2+\ln a)=\ln b(\ln b+\ln c) \\
& \ln 2 \cdot \ln b=\ln c \cdot \ln a \\
& \ln 2=\alpha, \ln a=x, \ln b=y, \ln c=z \\
& \alpha y=x z \\
& x(\alpha+x)=y(y+z) \\
& \alpha=\frac{x z}{y} \\
& x\left(\frac{x z}{y}+x\right)=y(y+z) \\
& x^{2}(z+y)=y^{2}(y+z) \\
& y+z=0 \text { or } x^{2}=y^{2} \Rightarrow x=-y \\
& b c=1 \text { or } a b=1 \\
& b c=1 \text { or } a b=1
\end{aligned}
$$

$$
(1) \text { if } \mathrm{bc}=1 \Rightarrow(2 \mathrm{a})^{\ln \mathrm{a}}=1 \xrightarrow{\mathrm{a}=1}
$$

$$
(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\left(\frac{1}{2}, \lambda, \frac{1}{\lambda}\right), \lambda \neq 1,2, \frac{1}{2}
$$

then
$6 a+5 b c=3+5=8$
(II) $(\mathrm{a}, \mathrm{b}, \mathrm{c})=\left(\lambda, \frac{1}{\lambda}, \frac{1}{2}\right), \lambda \neq 1,2, \frac{1}{2}$

In this situation infinite answer are possible
So, Bonus.
30. The sum of all those terms, of the arithmetic progression $3,8,13, \ldots, 373$, which are not divisible by 3 , is equal to \qquad .

Sol. 9525
A.P: 3, 8, 13..... 373
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$373=3+(n-1) 5$
$\Rightarrow \mathrm{n}=\frac{370}{5}$
$\Rightarrow \mathrm{n}=75$

Now Sum $=\frac{\mathrm{n}}{2}[\mathrm{a}+1]$
$=\frac{75}{2}[3+373]=14100$
Now numbers divisible by 3 are,
3,18,33........ 363
$363=3+(k-1) 15$
$\Rightarrow \mathrm{k}-1=\frac{360}{15}=24 \Rightarrow \mathrm{k}=25$
Now, sum $=\frac{25}{2}(3+363)=4575 \mathrm{~s}$
\therefore req. sum $=14100-4575$
$=9525$

SECTION - A

31. The equivalent capacitance of the combination shown is

(1) 4C
(2) $\frac{5}{3} \mathrm{C}$
(3) $\frac{C}{2}$
(4) 2 C

Sol. (4)
Capacitor (3) \& (4) are short ckt
$\therefore \mathrm{C}_{1} \& \mathrm{C}_{2}$ are in parallel
$\mathrm{C}_{\mathrm{eq} .}=\mathrm{C}+\mathrm{C}=2 \mathrm{C}$

32. Match List I with List II :

List I

(A) 3 Translational degrees of freedom
(B) 3 Translational, 2 rotational degrees
of freedoms
(C) 3 Translational, 2 rotational and 1 vibrational degrees of freedom
(D) 3 Translational, 3 rotational and more than one vibrational degrees of freedom
Choose the correct answer from the options given below :
(1) (A)-(I), (B)-(III), (C)-(IV), (D)-(II)
(2) (A)-(I), (B)-(IV), (C)-(III), (D)-(II)
(3) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)
(4) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)

Sol. (1)
Fact Based

Type of gas	No of degree of freedom
1 Monoatomic	3 (Translational)
2. Diatomic + rigid	3 (Translational +2 Rotational $=5)$
3. Diatomic + non - rigid	3 (Trans) $+2($ Rotational $)+1$ (vibrational $)$
4. Polyatomic	3 (Trans) + 2(Rotational) + more than 1 (vibrational)

33. Given below are two statements :

Statements I : If the number of turns in the coil of a moving coil galvanometer is doubled then the current sensitivity becomes double.
Statements II : Increasing current sensitivity of a moving coil galvanometer by only increasing the number of turns in the coil will also increase its voltage sensitivity in the same ratio
In the light of the above statements, choose the correct answer from the options given below :
(1) Both Statement I and Statement II are true
(2) Both Statement I and Statement II are false
(3) Statement I is true but Statement II is false
(4) Statement I is false but Statement II is true

Sol. (3)
$\mathrm{I}=\frac{\mathrm{k} \theta}{\mathrm{NBA}}$
$C \cdot S=\frac{\theta}{I}=\frac{N B A}{K}$
$\mathrm{N} \rightarrow 2 \mathrm{~N} \quad \mathrm{C} \cdot \mathrm{S} \rightarrow 2 \mathrm{CS}$
But V.S. $=\frac{\theta}{\mathrm{V}}=\frac{\mathrm{NBA}}{\mathrm{KR}}$
$\mathrm{N} \rightarrow 2 \mathrm{NC} \cdot \mathrm{S} \rightarrow 2 \mathrm{CS}$
But V.S. $=\frac{\theta}{v}=\frac{\theta}{\mathrm{IR}}=\frac{\mathrm{NBA}}{\mathrm{RK}}$
As $\mathrm{N} \rightarrow 2 \mathrm{~N}, \mathrm{R} \rightarrow 2 \mathrm{R}$ So V.S = constant
34. Given below are two statements :

Statement I : Maximum power is dissipated in a circuit containing an inductor, a capacitor and a resistor connected in series with an AC source, when resonance occurs
Statement II : Maximum power is dissipated in a circuit containing pure resistor due to zero phase difference between current and voltage.
In the light of the above statements, choose the correct answer from the options given below :
(1) Statement I is true but Statement II is false
(2) Both Statement I and Statement II are false
(3) Statement I is false but Statement II is true
(4) Both Statement I and Statement II are true

Sol. (4)
Power is more when total impendence of ckt in minimum
$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$
$\because \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ (conductor of resonance)
$\therefore \mathrm{Z}_{\text {min }}=\mathrm{R} \quad \therefore \mathrm{V} \& \mathrm{I}$ in same phase
35. The range of the projectile projected at an angle of 15° with horizontal is 50 m . If the projectile is projected with same velocity at an angle of 45° with horizontal, then its range will be
(1) $100 \sqrt{2} \mathrm{~m}$
(2) 50 m
(3) 100 m
(4) $50 \sqrt{2} \mathrm{~m}$

Sol. (3)

So $R=\frac{u^{2} \sin (2 \times 15)}{\mathrm{g}}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}=$ So $\Rightarrow \frac{\mathrm{u}^{2}}{\mathrm{~g}}=100$
$R^{\prime}=\frac{u^{2} \sin (2 \times 45)}{\mathrm{g}}=\frac{\mathrm{u}^{2}}{\mathrm{~g}}=100 \mathrm{~m}$
36. A particle of mass m moving with velocity v collides with a stationary particle of mass 2 m . After collision, they stick together and continue to move together with velocity
(1) $\frac{v}{2}$
(2) $\frac{v}{3}$
(3) $\frac{v}{4}$
(4) v

Sol. (2)

37. Two satellites of masses m and 3 m revolve around the earth in circular orbits of radii r \& 3 r respectively. The ratio of orbital speeds of the satellites respectively is
(1) $3: 1$
(2) $1: 1$
(3) $\sqrt{3}: 1$
(4) $9: 1$

Sol. (3)
$v=\sqrt{\frac{G M}{r}} \Rightarrow v \times \frac{1}{\sqrt{r}} ; M=$ mass of earth, $r=$ radius of earth
$\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\sqrt{\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}}=\sqrt{\frac{3 \mathrm{r}}{\mathrm{r}}}=\sqrt{3}$
38. Assuming the earth to be a sphere of uniform mass density, the weight of a body at a depth $\mathrm{d}=\frac{\mathrm{R}}{2}$ from the surface of earth, if its weight on the surface of earth is 200 N , will be :
(1) 500 N
(2) 400 N
(3) 100 N
(4) 300 N

Sol. (3)

$\mathrm{mg}=200 \mathrm{~N}$
$g^{\prime}=g\left(1-\frac{d}{R}\right)=g\left(1-\frac{R}{2 \times R}\right)=\frac{g}{2}$
weight $=\mathrm{mg}^{\prime}=\frac{\mathrm{mg}}{2}=\frac{200}{2}=100 \mathrm{~N}$
39. The de Broglie wavelength of a molecule in a gas at room temperature (300 K) is λ_{1}. If the temperature of the gas is increased to 600 K , then the de Broglie wavelength of the same gas molecule becomes
(1) $2 \lambda_{1}$
(2) $\frac{1}{\sqrt{2}} \lambda_{1}$
(3) $\sqrt{2} \lambda_{1}$
(4) $\frac{1}{2} \lambda_{1}$

Sol. (2)
$\lambda=\frac{\mathrm{h}}{\sqrt{3 \mathrm{mK}(\mathrm{T})}}$
$\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}}$
$\lambda_{2}=\lambda_{1} \sqrt{\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}}$
$=\lambda_{1} \sqrt{\frac{300}{600}}=\frac{\lambda_{2}}{\sqrt{2}}$
40. A physical quantity P is given as
$P=\frac{a^{2} b^{3}}{c \sqrt{d}}$
The percentage error in the measurement of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are $1 \%, 2 \%, 3 \%$ and 4% respectively. The percentage error in the measurement of quantity P will be
(1) 14%
(2) 13%
(3) 16%
(4) 12%

Sol. (2)

$\frac{\mathrm{dP}}{\mathrm{P}} \times 100=\left(2 \frac{\mathrm{da}}{\mathrm{a}}+3 \frac{\mathrm{db}}{\mathrm{b}}+\frac{\mathrm{dc}}{\mathrm{c}}+\frac{1}{2} \frac{\mathrm{~d}(\mathrm{~d})}{\mathrm{d}}\right) \times 100$
$=2 \times 1+3 \times 2+3+\frac{1}{2} \times 4$
$=2+6+3+2$
$=13 \%$
41. Consider two containers A and B containing monoatomic gases at the same Pressure (P), Volume (V) and Temperature (T). The gas in A is compressed isothermally to $\frac{1}{8}$ of its original volume while the gas in B is compressed adiabatically to $\frac{1}{8}$ of its original volume. The ratio of final pressure of gas in B to that of gas in A is
(1) 8
(2) 4
(3) $\frac{1}{8}$
(4) $8^{\frac{3}{2}}$

Sol. (2)
By Isothermal Process for (A)
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$\mathrm{PV}=\mathrm{P}_{2} \frac{\mathrm{~V}}{8}$
$\mathrm{P}_{2}=8 \mathrm{P}$
For B adiabatically $\gamma_{\text {mono }}=\frac{5}{3}$
$P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$
$\mathrm{PV}^{5 / 3}=\mathrm{P}_{2}\left(\frac{\mathrm{~V}}{8}\right)^{5 / 3}$
$\mathrm{P}_{2}=(8)^{5 / 3} \mathrm{P}$
$\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{8^{5 / 3}}{8 \mathrm{P}}=(8)^{\frac{2}{3}}=4$
42. Given below are two statements :

Statements I : Pressure in a reservoir of water is same at all points at the same level of water.
Statements II : The pressure applied to enclosed water is transmitted in all directions equally.
In the light of the above statements, choose the correct answer from the options given below :
(1) Both Statements I and Statements II are false
(2) Both Statements I and Statements II are true
(3) Statements I is true but Statements II is false
(4) Statements I is false but Statements II is true

Sol. (2)
Both Statements I and Statements II are true

By Theory

By Pascal law, pressure is equally transmitted to in enclosed water in all direction.
43. The positon-time graphs for two students A and B returning from the school to their homes are shown in figure.

(A) A lives closer to the school
(B) B lives closer to the school
(C) A takes lesser time to reach home
(D) A travels faster than B
(E) B travels faster than A

Choose the correct answer from the options given below :
(1) (A) and (E) only
(2) (A), (C) and (E) only
(3) (B) and (E) only
(4) (A), (C) and (D) only

Sol. (1)
(A) and (E) only

Slope of $A=V_{A}$
Slope of $B=V_{B}$
$(\text { slope })_{\mathrm{B}}>(\text { slope })_{\mathrm{A}}$
$\mathrm{V}_{\mathrm{B}}>\mathrm{V}_{\mathrm{A}}$
$\therefore \mathrm{t}_{\mathrm{B}}<\mathrm{t}_{\mathrm{A}}$
44. The energy of an electromagnetic wave contained in a small volume oscillates with
(1) double the frequency of the wave
(2) the frequency of the wave
(3) zero frequency
(4) half the frequency of the wave

Sol. (1)
double the frequency of the wave
$\mathrm{E}=\mathrm{E}_{0} \sin (\mathrm{wt}-\mathrm{kx})$
Energy density $=\frac{1}{2} \varepsilon_{0} \mathrm{E}_{\text {net }}$
$=\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2} \sin ^{2}(\mathrm{wt}-\mathrm{kx})$
$=\frac{1}{4} \varepsilon_{0} \mathrm{E}_{0}^{2}(1-\cos (2 \mathrm{wt}-2 \mathrm{kx}))$
45. The equivalent resistance of the circuit shown below between points a and b is :

(1) 20Ω
(2) 16Ω
(3) 24Ω
(4) 3.2Ω

Sol. (4)

$$
\begin{aligned}
& \frac{1}{\mathrm{R}_{\mathrm{ab}}}=\frac{1}{16}+\frac{1}{8}+\frac{1}{8} \\
& =\frac{1}{\mathrm{R}_{\mathrm{ab}}}=\frac{1+2+2}{16}=\frac{5}{16} \\
& \mathrm{R}_{\mathrm{ab}}=\frac{16}{5}=3.2
\end{aligned}
$$

46. A carrier wave of amplitude 15 V modulated by a sinusoidal base band signal of amplitude 3 V . The ratio of maximum amplitude to minimum amplitude in an amplitude modulated wave is
(1) 2
(2) 1
(3) 5
(4) $\frac{3}{2}$

Sol. (4)
$\mathrm{V}_{\mathrm{C}}=15$
$\mathrm{V}_{\mathrm{m}}=3$
$\mathrm{V}_{\text {max }}=15+3=18$
Vmin $=15-3=12$
$\operatorname{Vmax}=\frac{18}{12}=\frac{3}{2}=3: 2$
47. A particle executes S.H.M. of amplitude A along x-axis. At $t=0$, the position of the particle is $x=\frac{A}{2}$ and it moves along positives x-axis. The displacement of particle in time t is $x=A \sin (\omega t+\delta)$, then the value δ will be
(1) $\frac{\pi}{4}$
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{6}$

Sol. (4)

$\operatorname{Cos} \theta=\frac{\mathrm{A}}{2 \times \mathrm{A}}=\frac{1}{2}$
$\theta=\frac{\pi}{3}$
$\delta=\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6}$

48. The angular momentum for the electron in Bohr's orbit is L. If the electron is assumed to revolve in second orbit of hydrogen atom, them the change in angular momentum will be
(1) $\frac{L}{2}$
(2) zero
(3) L
(4) 2 L

Sol. (3)
Angular momentum $=\frac{n h}{2 \pi}$
$\mathrm{n}=1, \mathrm{~L}_{1}=\frac{\mathrm{h}}{2 \pi}=\mathrm{L}$
$\mathrm{n}=2, \mathrm{~L}_{2}=\frac{2 \mathrm{~h}}{2 \pi}=2 \mathrm{~L}$
$\Delta \mathrm{L}=2 \mathrm{~L}-\mathrm{L}=\mathrm{L}$
49. An object is placed at a distance of 12 cm in front of a plane mirror. The virtual and erect image is formed by the mirror. Now the mirror is moved by 4 cm towards the stationary object. The distance by which the position of image would be shifted, will be
(1) 4 cm towards mirror
(2) 8 cm away from mirror
(3) 2 cm towards mirror
(4) 8 cm towards mirror

Sol. (4)

8 cm towards mirror
Image will be shifted 8 cm towards mirror.
50. A zener diode of power rating 1.6 W is be used as voltage regulator. If the zener diode has a breakdown of 8 V and it has to regulate voltage fluctuating between 3 V and 10 V . The value of resistance R_{8} for safe operation of diode will be

(1) 13.3Ω
(2) 13Ω
(3) 10Ω
(4) 12Ω

Sol. (3)
$\mathrm{I}_{\mathrm{t}}=\frac{\mathrm{P}_{\mathrm{t}}}{\mathrm{V}_{\mathrm{t}}}=\frac{1.6}{8}=0.2 \mathrm{~A}$
$\mathrm{R}_{\mathrm{s}}=\frac{10-8}{\mathrm{I}}$
$\mathrm{R}_{\mathrm{s}}=\frac{2}{0.2}=10 \Omega$

51. Unpolarised light of intensity $32 \mathrm{Wm}^{-2}$ passes through the combination of three polaroids such that the pass axis of the last polaroid is perpendicular to that of the pass axis of first polaroid. If intensity of emerging light is 3 Wm^{-2}, then the angle between pass axis of first two polaroids is \qquad ${ }^{\circ}$.

Sol. ($\mathbf{3 0} \& 60$)

52. If the earth suddenly shrinks to $\frac{1}{64}$ th of its original volume with its mass remaining the same, the period of rotation of earth becomes $\frac{24}{x} h$. The value of x is \qquad .
Sol. (16)
By AMC
$\frac{2}{5} \mathrm{MR}^{2} \omega_{1}{ }^{2}=\frac{2}{5} \mathrm{M}\left(\frac{\mathrm{R}}{4}\right)^{2} \omega_{2}$
$\frac{\omega_{1}}{\omega_{2}}=\frac{1}{16}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{\mathrm{T}_{2}}{24}$
$\mathrm{T}_{2}=\frac{24}{16} \quad \therefore \mathrm{x}=16$ Ans.
53. Three concentric spherical metallic shells X, Y and Z of radius a, b and c respectively $[a<b<c]$ have surface charge densities $\sigma,-\sigma$ and σ, respectively. The shells X and Z are at same potential. If the radii of $\mathrm{X} \& \mathrm{Y}$ are 2 cm and 3 cm , respectively. The radius of shell Z is \qquad cm .

Sol. (5)

$\mathrm{q}_{\mathrm{x}}=\sigma 4 \pi \mathrm{a}^{2}$
$\mathrm{q}_{\mathrm{y}}=-\sigma 4 \pi \mathrm{~b}^{2}$
$\mathrm{q}_{\mathrm{z}}=\sigma 4 \pi \mathrm{c}^{2}$
Potential of y
$\frac{\mathrm{q}_{\mathrm{x}}}{4 \pi \varepsilon_{0} \mathrm{a}}+\frac{\mathrm{q}_{\mathrm{y}}}{4 \pi \varepsilon_{0} \mathrm{~b}}+\frac{\mathrm{q}_{\mathrm{z}}}{4 \pi \varepsilon_{0} \mathrm{c}}=\frac{\mathrm{q}_{\mathrm{x}}}{4 \pi \varepsilon_{0} \mathrm{c}}+\frac{\mathrm{q}_{\mathrm{y}}}{4 \pi \varepsilon_{0} \mathrm{c}}+\frac{\mathrm{q}_{\mathrm{z}}}{4 \pi \varepsilon_{0} \mathrm{c}}$
$\frac{\sigma 4 \pi \mathrm{a}^{2}}{\mathrm{a}}-\frac{\sigma 4 \pi \mathrm{~b}^{2}}{\mathrm{~b}}+\frac{\sigma 4 \pi \mathrm{c}^{2}}{\mathrm{c}}=4 \pi \sigma \frac{\left(\mathrm{a}^{2}-\mathrm{b}^{2}+\mathrm{c}^{2}\right)}{\mathrm{C}}$
$c(a-b+c)=a^{2}-b^{2}+c^{2}$
$c(a-b)+c^{2}=(a+b)(a-b)$
$c(a-b)=(a+b)(a-b)$
$\mathrm{c}=\mathrm{a}+\mathrm{b}=2+3$
$\mathrm{c}=5 \mathrm{~cm}$ Ans.
54. A transverse harmonic wave on a string is given by $y(x, t)=5 \sin (6 t+0.003 x)$
where x and y are in cm and t in sec. The wave velocity is \qquad ms^{-1}.

Sol. (20)

$v=\frac{\mathrm{w}}{\mathrm{k}}=\frac{6}{.003 \times 10^{2}}=\frac{6}{.3}=\frac{60}{3}=20 \mathrm{~m} / \mathrm{s}$.
55. 10 resistors each of resistance 10Ω can be connected in such as to get maximum and minimum equivalent resistance. The ratio of maximum and minimum equivalent resistance will be \qquad -.
Sol. (100)
$\mathrm{R}_{\max } \Rightarrow$ in series $\Rightarrow 10 \mathrm{R}=10 \times 10=100 \Omega$
$\mathrm{R}_{\max } \Rightarrow$ in parallel $=\frac{\mathrm{R}}{10}=\frac{10}{10}=1 \Omega$
$\frac{R_{\max }}{R_{\min }}=\frac{100}{1}=100$ Ans.
$\mathrm{R}_{\min } \Rightarrow \frac{100}{1}=100$ Ans.
56. The decay constant for a radioactive nuclide is $1.5 \times 10^{-5} \mathrm{~s}^{-1}$. Atomic weight of the substance is 60 g mole ${ }^{-1}$, $\left(\mathrm{N}_{\mathrm{A}}=6 \times 10^{23}\right)$. The activity of $1.0 \mu \mathrm{~g}$ of the substance is \qquad $\times 10^{10} \mathrm{~Bq}$.

Sol. (15)

No. of moles $=\frac{1 \times 10^{-6}}{60}=\frac{10^{-7}}{6}$
No. of atom $=n(N A)=\frac{10^{-7}}{6} \times 6 \times 10^{23}=10^{16}$
at $(\mathrm{t}=0) \mathrm{A}_{0}=\mathrm{No} \lambda=10^{16} \times 1.5 \times 10^{-5}=15 \times 10^{10} \mathrm{~Bq}$
57. Two wires each of radius 0.2 cm and negligible mass, one made of steel and the other made of brass are loaded as shown in the figure. The elongation of the steel wire is \qquad $\times 10^{-6} \mathrm{~m}$. [Young's modulus for steel $=2 \times$ $10^{11} \mathrm{Nm}^{-2}$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$

Sol. (20)

$1.14=11.4$
$\mathrm{T}_{2}=\mathrm{T}_{1}+20=20+11.4$
$\mathrm{T}_{2}=31.4$
\therefore Elongation in steel wire
$\Delta L=\frac{T_{2} L}{A Y}$
$=\frac{31.4 \times 1.6}{\pi\left(0.2 \times 10^{-2}\right)^{2} \times 2 \times 10^{11}}$
$=2 \times 10^{-5}$
$\Delta \mathrm{L}=20 \times 10^{-6} \mathrm{~m}$
58. A closed circular tube of average radius 15 cm , whose inner walls are rough, is kept in vertical plane. A block of mass 1 kg just fit inside the tube. The speed of block is $22 \mathrm{~m} / \mathrm{s}$, when it is introduced at the top of tube. After completing five oscillations, the block stops at the bottom region of tube. The work done by the tube on the block is \qquad J. (Given : $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

Sol. (245)

$\mathrm{R}_{\text {arg }}=15 \mathrm{~cm}=.15 \mathrm{~m}$
By WET
$\mathrm{W}_{\mathrm{f}}+\mathrm{W}_{\text {gravity }}=\Delta \mathrm{K}=\mathrm{Kf}-\mathrm{Ki}$
$\mathrm{W}_{\mathrm{f}}+10 \times .3=0-\frac{1}{2} \times 1 \times(22)^{2}$
$\mathrm{W}_{\mathrm{f}}=-3-\frac{484}{2}=3-242=-245$
Work by friction $=-245$
By NTA (+245)
59. A 1 m long metal rod $X Y$ completes the circuit as shown in figure. The plane of the circuit is perpendicular to the magnetic field of flux density 0.15 T . If the resistance of the circuit is 5Ω, the force needed to move the rod in direction, as indicated, with a constant speed of $4 \mathrm{~m} / \mathrm{s}$ will be \qquad $10^{-3} \mathrm{~N}$.

Sol. (18)
$\mathrm{F}=\mathrm{I} \ell \mathrm{B}=\left(\frac{\mathrm{e}}{\mathrm{R}}\right) \ell \mathrm{B}=\frac{(\mathrm{B} v \ell) \mathrm{B} \ell}{\mathrm{R}}=\frac{\mathrm{B}^{2} \ell^{2} v}{\mathrm{R}}$
$=\frac{(\cdot 15)^{2} \times(1)^{2} \times 4}{5}=180 \times 10^{-4}$
$=18 \times 10^{-3}=18$ Ans.
60. The current required to be passed through a solenoid of 15 cm length and 60 turns in order to demagnetize a bar magnet of magnetic intensity $2.4 \times 10^{3} \mathrm{Am}^{-1}$ is \qquad A.

Sol. (6)
$\mathrm{H}=2.4 \times 10^{3} \mathrm{~A} / \mathrm{m}$
$\mathrm{H}=\mathrm{nI}=\frac{\mathrm{N}}{\ell} \mathrm{I}$
$\mathrm{I}=\frac{\mathrm{H} \ell}{\mathrm{N}}=\frac{2.4 \times 10^{3} \times 15 \times 10^{-2}}{60}$
$\mathrm{I}=6 \mathrm{~A}$

SECTION - A

Q. 61 The major product ' P ' formed in the given reaction is

(1)

(2)

(3)

(4)

Sol. (1)

Q. 62 Prolonged heating is avoided during the preparation of ferrous ammonium sulphate to
(1) prevent hydrolysis
(2) prevent reduction
(3) prevent breaking
(4) prevent oxidation

Sol. (4)
It may oxidise ferrous ion to ferric ions.
Q. 63 Identify the correct order of reactivity for the following pairs towards the respective mechanism
(A)

(B) $\mathrm{S}_{\mathrm{N}} 1$

Electrophilic substitution
(C)

Nucleophilic substitution (D)

Choose the correct answer from the options given below:
(1) (A), (C) and (D) only
(2) (A), (B) and (D) only
(3) (B), (C) and (D) only
(4) (A), (B), (C) and (D)

Sol. (4)

(A) $\mathrm{S}_{\mathrm{N}} 2 \rightarrow$ for $\mathrm{S}_{\mathrm{N}} 2$ Reaction $1^{\mathrm{o}}>2^{\circ}>3^{\circ}$

(B) $\mathrm{S}_{\mathrm{N}} 1 \rightarrow$ reactivity \times Stability of Carbocation formed

So,

(C) Electrophilic Substitution reaction

$$
\text { rate } \times \frac{1}{\mathrm{EWG}}
$$

(D) Nucleophilic substitution :- rate \times no. of EWG atloched at benzons

Q. 64 Given
(A) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}_{1}^{\mathrm{o}}=-\mathrm{x} \mathrm{KJ} \mathrm{mol}{ }^{-1}$
(B) C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}_{2}^{\mathrm{o}}=-\mathrm{y} \mathrm{KJ} \mathrm{mol}{ }^{-1}$

The ΔH° for the reaction
$\mathrm{C}($ graphite $)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$ is
(1) $\frac{x-2 y}{2}$
(2) $\frac{x+2 y}{2}$
(3) $\frac{2 x-y}{2}$
(4) $2 y-x$

Sol. (1)
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{1}^{\mathrm{o}}=\mathrm{y} \mathrm{kJ} / \mathrm{mol}$
$\mathrm{C}($ graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{2}^{\mathrm{o}}=-\mathrm{y} \quad \mathrm{kJ} / \mathrm{mol}$
C (graphite) $+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \quad \Delta \mathrm{H}_{3}^{\mathrm{o}}=$?
$\Delta H_{3}^{\mathrm{o}}=\mathrm{H}_{2}^{\mathrm{o}}-\frac{\mathrm{H}_{1}^{\mathrm{o}}}{2}=-\mathrm{y}-\frac{-\mathrm{x}}{2}$
$\Delta H_{3}^{\mathrm{o}}=\frac{\mathrm{x}}{2}-\mathrm{y}=\frac{\mathrm{x}-2 \mathrm{y}}{2}$
Q. 65 Using column chromatography mixture of two compounds ' A ' and ' B ' was separated. ' A ' eluted first, this indicates ' B ' has
(1) high R_{f}, weaker adsorption
(2) high R_{f}, stronger adsorption
(3) low R_{f}, stronger adsorption
(4) low R_{f}, weaker adsorption

Sol. (3)

More Polar the compound, the more it will adhere to the adsorbent and the smaller the distance it will travel from baseline, and Lower its R_{f} value.
B has Low R_{f} value and strong Adsoption
$R_{f}=\frac{\text { distance covered by substance from base line }}{\text { total distance covered by solvent form base line }}$
Q. 66 Lime reacts exothermally with water to give ' A ' which has low solubility in water. Aqueous solution of ' A ' is often used for the test of CO_{2}. a test in which insoluble B is formed. If B is further reacted with CO_{2} then soluble compound is formed. ' A ' is
(1) Quick lime
(2) Slaked lime
(3) White lime
(4) Lime water

Sol. (2)

$$
\begin{gathered}
\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2} \\
\mathrm{~A}(\text { less soluble }) \\
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{~B}(\text { insoluble }) \\
\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \underset{\text { Soluble }}{\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}}
\end{gathered}
$$

Q. 67 Match list I with list II

List I Industry		List II Waste Generated	
(A)	Steel plants	(I)	Gypsum
(B)	Thermal power plants	(II)	Fly ash
(C)	Fertilizer industries	(III)	Slag
(D)	Paper mills	(IV)	Bio-degradable wastes

Choose the correct answer from the options given below
(1) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
(2) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
(3) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
(4) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)

Sol. (4)

Steel plant produces slag from blast furnace. Thermal power plant produces fly ash, Fertilizer industries produces gypsum. Paper mills produces bio degradable waste
Q. 68 Suitable reaction condition for preparation of Methyl phenyl ether is
(1) Benzene, MeBr
(2) $\mathrm{PhO}^{\ominus} \mathrm{Na}^{\oplus}, \mathrm{MeOH}$
(3) $\mathrm{Ph}-\mathrm{Br}, \mathrm{MeO}^{\ominus} \mathrm{Na}^{\oplus}$
(4) $\mathrm{PhO}^{\ominus} \mathrm{Na}^{\oplus}, \mathrm{MeBr}$

Sol. (4)

Williamson;s synthasis :-

Q. 69 The one that does not stabilize 2° and 3° structures of proteins is
(1) H-bonding
(2) -S-S-linkage
(3) van der waals forces
(4) -O-O-linkage

Sol. (4)
Fact
The main forces which stabilize the secondary and tertiary structure of proteins are
\rightarrow Hydrogen bonds
\rightarrow S - S Linkages
\rightarrow vanderwaals force
\rightarrow electrostatic force of attraction
Q. 70 The compound which does not exist is
(1) PbEt_{4}
(2) BeH_{2}
(3) NaO_{2}
(4) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4}$

Sol. (3)
Sodium superoxide is not stable
Q. 71 Given below are two reactions, involved in the commercial production of dihydrogen $\left(\mathrm{H}_{2}\right)$. The two reactions are carried out at temperature " T_{1} " and " T_{2} ", respectively
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow{\mathrm{T}_{1}} \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow[\text { catalyst }]{\mathrm{T}_{2}} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
The temperatures T_{1} and T_{2} are correctly related as
(1) $\mathrm{T}_{1}=\mathrm{T}_{2}$
(2) $T_{1}<T_{2}$
(3) $T_{1}>T_{2}$
(4) $\mathrm{T}_{1}=100 \mathrm{~K}, \mathrm{~T}_{2}=1270 \mathrm{~K}$

Sol. (3)
$\mathrm{T}_{1}=1270 \mathrm{~K} \mathrm{~T}_{2}=673 \mathrm{~K}$
$\mathrm{T}_{1}>\mathrm{T}_{2}$ on the basis of data
Q. 72 The enthalpy change for the adsorption process and micelle formation respectively are
(1) $\Delta \mathrm{H}_{\text {ads }}<0$ and $\Delta \mathrm{H}_{\text {mic }}<0$
(2) $\Delta \mathrm{H}_{\text {ads }}>0$ and $\Delta \mathrm{H}_{\text {mic }}<0$
(3) $\Delta \mathrm{H}_{\text {ads }}<0$ and $\Delta \mathrm{H}_{\text {mic }}>0$
(4) $\Delta \mathrm{H}_{\text {ads }}>0$ and $\Delta \mathrm{H}_{\text {mic }}>0$

Sol. (3)
Adsorption \rightarrow Exothermic $\left(\Delta \mathrm{H}_{\mathrm{ads}}=-\mathrm{ve}\right)$
Micelle formation \rightarrow Endothermic $\left(\Delta \mathrm{H}_{\text {mic }}=+\mathrm{ve}\right)$
$\Delta \mathrm{H}_{\text {ads }}<\mathrm{O}$ and $\Delta \mathrm{H}_{\text {mic }}>\mathrm{O}$
Q. 73 The pair from the following pairs having both compounds with net non-zero dipole moment is
(1) cis-butene, trans-butene
(2) Benzene, anisidine
(3) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$
(4) 1,4-Dichlorohenzene, 1,3-Dichlorobenzene

Sol. (3)
(1)

(2)

$\mu \neq 0$
(3)

$\underset{\mu \neq 0}{\mathrm{CHCl}_{3}}$

$\mu \neq 0$
Q. 74 Which of the following is used as a stabilizer during the concentration of sulphide ores?
(1) Xanthates
(2) Fatty acids
(3) Pine oils
(4) Cresols

Sol. 4
Cresol is used as stabilizer
Q. 75 Which of the following statements are correct ?
(A) The $\mathrm{M}^{3+} / \mathrm{M}^{2+}$ reduction potential for iron is greater than manganese
(B) The higher oxidation states of first row d-block elements get stabilized by oxide ion.
(C) Aqueous solution of Cr^{2+} can liberate hydrogen from dilute acid.
(D) Magnetic moment of V^{2+} is observed between 4.4-5.2 BM.

Choose the correct answer from the options given below:
(1) (C), (D) only
(B) (B), (C) only
(C) (A), (B), (D) only
(D) (A), (B) only

Sol. 2
(A) The $\mathrm{M}^{3+} / \mathrm{M}^{2+}$ reduction potential for manganese is greater than iron
(B) $\mathrm{E}_{\mathrm{Fe}^{+3} / \mathrm{Fe}^{+2}}^{0}=+0.77$
$\mathrm{E}_{\mathrm{Mn}^{+3} / \mathrm{Mn}^{+2}}^{0}=+1.57$
(C) $\mathrm{E}_{\mathrm{Cr}^{+3} / \mathrm{Cr}^{+2}}^{0}=-0.26$
$\therefore \mathrm{Cr}^{2 \oplus}+\mathrm{H}^{\oplus} \longrightarrow \mathrm{Cr}^{3 \oplus}+\frac{1}{2} \mathrm{H}_{2}$
(D) $\mathrm{V}^{2 \oplus}=3$ unpaired electron

Magnetic Moment $=3.87$ B.M
Q. 76 Given below are two statements :

Statement I : Aqueous solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is preferred as a primary standard in volumetric analysis over $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ aqueous solution.
Statement II : $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ has a higher solubility in water than $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is false but Statement II is true
(2) Statement I is true but Statement II is false
(3) Both Statement I and Statement II are true
(4) Both Statement I and Statement II are false

Sol. (2)
(1) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is used as primary standard. The concentration $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ changes in aq. solution.
(2) It is less soluble than $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Q. 77 The octahedral diamagnetic low spin complex among the following is
(1) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(2) $\left[\mathrm{CoCl}_{6}\right]^{3-}$
(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(4) $\left[\mathrm{NiCl}_{4}\right]^{2-}$

Sol. (3)
(1) Paramagnetic, High Spin \& Tetrahedral
(2) Paramagnetic, High Spin \& Octahedral
(3) Paramagnetic, High Spin \& Octahedral
(4) Diamagnetic, Low Spin \& Octahedral
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}, \mathrm{CN}=6 \mathrm{CN}=6$ (Octahedral)
$\mathrm{NH}_{3}=\mathrm{SFL}$
$\mathrm{Co}^{+3}=[\mathrm{Ar}] 3 \mathrm{~d}^{6}$

Diamagnetic \& Low spin complex
Q. 78 Isomeric amines with molecular formula $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}$ given the following tests

Isomer $(\mathrm{P}) \Rightarrow$ Can be prepared by Gabriel phthalimide synthesis
Isomer $(\mathrm{Q}) \Rightarrow$ Reacts with Hinsberg's reagent to give solid insoluble in NaOH
Isomer $(\mathrm{R}) \Rightarrow$ Reacts with HONO followed by β-naphthol in NaOH to given red dye.
Isomer $(\mathrm{P}),(\mathrm{Q})$ and (R) respectively are
(P)
(Q)
(R)

(1)

(3)

(4)

Sol. (2)
$\mathrm{P}=$ Can be prepased by Gabriel phthalimide synthesis it should be i -amine
$\mathrm{Q}=$ React with Hinsberg's reagent and insoluble in NaOH it should be $2^{\circ}-$ amine
$\mathrm{R}=$ React with HNO_{2} followed by $\mathrm{B}-\mathrm{Napthol}$ in NaOH it give red dye it must be Aromatic Amine

Q. 79 The number of molecules and moles in 2.8375 litres of O_{2} at STP are respectively
(1) 7.527×10^{22} and 0.125 mol
(2) 1.505×10^{23} and 0.250 mol
(3) 7.527×10^{23} and 0.125 mol
(4) 7.527×10^{22} and 0.250 mol

Sol. (1)
Moles of $\mathrm{O}_{2}\left(\mathrm{n}_{\mathrm{O}_{2}}\right)=\frac{\text { Volume of } \mathrm{O}_{2}}{22.7}=0.125$ moles
Molecules of $\mathrm{O}_{2}=$ moles $\times \mathrm{N}_{\mathrm{A}}$
$=0.125 \times 6.022 \times 10^{23}$
$=7.527 \times 10^{22}$ molecules
Ans (1) 7.527×10^{22} and 0.125 mole
Q. 80 Match list I with List II

	List I polymer	List II Type/Class	
(A)	Nylon-2-Nylon-6	(I)	Thermosetting polymer
(B)	Buna-N	(II)	Biodegradable polymer
(C)	Urea-Formaldehyde resin	(III)	Synthetic rubber
(D)	Dacron	(IV)	Polyester

Choose the correct answer from the options given below:
(1) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
(2) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
(3) (A)-(IV), (B)-(I), (C)-(III), (D)-(II)
(4) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)

Sol. (4)
Fact Base
(A) Nylon-2-Nylon-6 \rightarrow It is α Biodegradable polymer
(B) Buna $-\mathrm{N} \rightarrow$

(C) Urea - formaldehyde resin

It is a thermos setting polymer
(D) Dacron

SECTION - B

Q. 81 If the degree of dissociation of aqueous solution of weak monobasic acid is determined to be 0.3 , then the observed freezing point will be \qquad \% higher than the expected/theoretical freezing point. (Nearest integer)
Sol. 30
For mono basic acid $\rightarrow \mathrm{n}=2$
$\mathrm{i}=1+(\mathrm{n}-1) \alpha=1+(2-1) 0.3$
$\mathrm{i}=1.3$
$\%$ increase $=\frac{\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\text {obs }}-\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\mathrm{cal}}}{\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\mathrm{cal}}} \times 100$
$=\frac{\mathrm{K}_{\mathrm{f}} \times \mathrm{i} \times \mathrm{m}-\mathrm{K}_{\mathrm{f}} \times \mathrm{m}}{\mathrm{K}_{\mathrm{f}} \times \mathrm{m}} \times 100$
$=\frac{i-1}{1} \times 100=30 \%$
Q. 82 In the following reactions, the total number of oxygen atoms in X and Y is \qquad
$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{X}$
$\mathrm{Cl}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Y}$

Sol. 5

$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$
$\mathrm{Cl}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HClO}_{4}$
$1+4=5$
Q. 83 The sum of lone pairs present on the central atom of the interhalogen IF_{5} and IF_{7} is \qquad
Sol. 1
$\mathrm{IF}_{5}=1$ lone pair
$\mathrm{IF}_{7}=0$ lone pair
$1+0=1$
Q. 84 The number of bent-shaped molecule/s from the following is \qquad

$$
\mathrm{N}_{3}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{I}_{3}^{-}, \mathrm{O}_{3}, \mathrm{SO}_{2}
$$

Sol. 3
N_{3}^{-}linear
NO_{2}^{-}bent
I_{3}^{-}linear
O_{3} bent
SO_{2} bent
Q. 85 The number of correct statement/s involving equilibria in physical from the following is \qquad
(1) Equilibrium is possible only in a closed system at a given temperature.
(2) Both the opposing processes occur at the same rate.
(3) When equilibrium is attained at a given temperature, the value of all its parameters
(4) For dissolution of solids in liquids, the solubility is constant at a given temperature.

Sol. 3

(A) is correct
(B) for equilibrium $r_{f}=r_{b}$

$$
\Rightarrow(\mathrm{B}) \text { is correct }
$$

(C) at equilibrium the value of parameters become constant of a given temperature and not equal
$\Rightarrow(C)$ is incorrect
(D) for a given solid solute and a liquid solvent solubility depends upon temperature only $\Rightarrow(D)$ is correct
Q. 86 At constant temperature, a gas is at pressure of 940.3 mm Hg . The pressure at which its volume decreases by 40\% is \qquad mm Hg . (Nearest integer)

Sol. 1567

$P_{\text {initial }}=940.3 \mathrm{~mm} \mathrm{Hg} \quad$ Vinitial $=100$ (Assume)
$\mathrm{P}_{\text {final }}=$?
$\mathrm{P}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}=\mathrm{P}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}$
$940.3 \times 100=\mathrm{P}_{\mathrm{f}} \times 60$
$\mathrm{P}_{\mathrm{f}}=1567.16 \mathrm{~mm}$ of Hg
$P_{f}=1567$
Q. $87 \mathrm{FeO}_{4}^{2-} \xrightarrow{+2.2 \mathrm{~V}} \mathrm{Fe}^{3+} \xrightarrow{+0.70 \mathrm{~V}} \mathrm{Fe}^{2+} \xrightarrow{-0.45 \mathrm{~V}} \mathrm{Fe}^{\circ}$
$\mathrm{E}_{\mathrm{FeO}_{4}^{2-} / \mathrm{Fe}^{2+}}^{\mathrm{o}}$ is $\mathrm{x} \times 10^{-3} \mathrm{~V}$. The value of x is \qquad
Sol. 1825
$\mathrm{FeO}_{4}{ }^{2-}+3 \mathrm{e}^{\Theta} \rightarrow \mathrm{Fe}^{+3} \quad \Delta \mathrm{G}_{1}$
$\mathrm{Fe}^{+3}+\mathrm{e}^{\Theta} \rightarrow \mathrm{Fe}^{+2} \quad \Delta \mathrm{G}_{2}$
$\mathrm{FeO}_{4}^{-2}+4 \mathrm{e}^{\Theta} \rightarrow \mathrm{Fo}^{+2} \Delta \mathrm{G}_{3}$
$\Delta \mathrm{G}_{3}=\Delta \mathrm{G}_{1}+\Delta \mathrm{G}_{2}$
$(-) 4 \mathrm{E}_{3}^{0} \mathrm{~F}=(-) 3 \times 2.2 \times \mathrm{F}+(-) 1 \times 0.7 \times \mathrm{f}$
$4 \mathrm{E}_{3}^{\mathrm{o}}=6.6+0.7=7.3$
$\mathrm{E}_{3}^{\mathrm{o}}=\frac{7.3}{4}=1.825=1825 \times 10^{-3}$
Q. 88 A molecule undergoes two independent first order reactions whose respective half lives are 12 min and 3 min . If both the reactions are occurring then the time taken for the 50% consumption of the reactant is \qquad min. (Nearest integer)

Sol. 2
$\mathrm{k}_{\text {eff }}=\mathrm{k}_{1}+\mathrm{k}_{2}$
$\frac{\ell \mathrm{n}^{2}}{\mathrm{t}_{\text {eff }}}=\frac{\ell \mathrm{n}^{2}}{\mathrm{t}_{1}}+\frac{\ell \mathrm{n}^{2}}{\mathrm{t}_{2}}$
$\frac{1}{t_{\text {eff }}}=\frac{1}{12}+\frac{1}{3}=\frac{1+4}{12}=5 / 12$
$\mathrm{t}_{\mathrm{eff}}=\frac{12}{5}=2.4=2$
Q. 89 The number of incorrect statement/s about the black body from the following is \qquad
(1) Emit or absorb energy in the form of electromagnetic radiation.
(2) Frequency distribution of the emitted radiation depends on temperature.
(3) At a given temperature, intensity vs frequency curve passes through a maximum value.
(4) The maximum of the intensity vs frequency curve is at a higher frequency at higher temperature compared to that at lower temperature.
Sol. 0

Q. 90 In potassium ferrocyanide, there are \qquad pairs of electrons in the $t_{2 g}$ set of orbitals.
Sol. 3

$$
\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]
$$

$\mathrm{Fe}^{+2}=[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
$\mathrm{CN}^{-}=\mathrm{SFL}$
$t_{2 g}$ contain 6 electron so it become 3 pairs

