MODEL ANSWERS
TERM - JUNE 2023

STRATEGIC FINANCIAL MANAGEMNT

Time Allowed: 3 Hours
Full Marks: 100
The figures in the margin on the right side indicate full marks.
Where considered necessary, suitable assumptions may be made and clearly indicated in the answer.

Question No. 1 and 8 are compulsory; Answer any four from Question No. 2, 3, 4, 5, 6 \& 7.

SECTION - A

1. (a)

$\begin{gathered} \text { Sl. } \\ \text { No. } \end{gathered}$	Answer	Justification			
(i)	(b)	When share price reaches to ₹ 20 per share, the profit will be $\begin{aligned} & =(20-15) \times 100-150 \\ & =₹ 350 \end{aligned}$ So, the correct option is (b)			
(ii)	(d)	The bear market phenomenon is thought to get its name from the way in which a bear attacks its prey-swiping its paws downward. This is why markets with declining stock prices are called bear markets. So, the correct option is (d)			
(iii)	(c)	The Co-efficient of Variation is the ratio of standard deviation to mean.			
		Alternative	Expected Return (\%)	Standard Deviation of Return (\%)	Co-efficient of Variation
		I	23	8	0.35
		II	20	9.5	0.48
		III	18	5	0.28
		Alternative III is the best as its co-efficient of variation is the lowest. So, the correct option is (c)			
(iv)	(a)	$\begin{aligned} & \text { Theoretical minimum price } \\ & =[\text { Present Value of Strike Price - Current Stock Price }] \\ & =\left[1,000 \times \mathrm{e}^{-\mathrm{rt}} \mathrm{t}\right)-925 \\ & =\left[1,000 / \mathrm{e}^{0.05 \times 0.5}\right]-925 \\ & =\left[1,000 / \mathrm{e}^{0.025}\right]-925 \\ & =[1000 / 1.02532]-925 \\ & =975.3053-925 \\ & =50.3053 \end{aligned}$ So, the correct option is (a)			

STRATEGIC FINANCIAL MANAGEMNT

$\left.\left.\begin{array}{|c|c|l|}\hline \text { (v) } & \text { (b) } & \begin{array}{l}\text { ROE = ROA x Leverage factor }=0.20 \mathrm{x} 1.5=0.30 \\ \text { So, the correct option is (b) }\end{array} \\ \hline \text { (vi) } & \text { (b) } & \begin{array}{l}\text { Financial history is replete with boom-bust cycles and } \\ \text { repetition of these cycles makes one believe that history repeats } \\ \text { itself. } \\ \text { So, the correct option is (b) }\end{array} \\ \hline \text { (vii) } & \text { (c) } & \begin{array}{l}\text { Securitization is an act of conversion of loans into debt } \\ \text { instruments The process of taking an illiquid group of assets or } \\ \text { an individual asset through financial engineering and changing }\end{array} \\ \text { it into a security is called securitization. } \\ \text { So, the correct option is (c) }\end{array}\right] \begin{array}{l}\text { (viii) } \\ \text { (a) } \\ \text { The club loan is a private arrangement between lending banks } \\ \text { and a borrower. Conventionally, the entry into Euromarkets for } \\ \text { a funding deal is well-publicized. When the loan amounts are } \\ \text { small and parties familiar with each other, lending banks form } \\ \text { a club and advance a loan. } \\ \text { So, the correct option is (a) }\end{array}\right\}$

MODEL ANSWERS
TERM - JUNE 2023

STRATEGIC FINANCIAL MANAGEMNT

SECTION - B

2. (a) (i) If the projects are divisible

Projects are ranked according to PI and arranged in descending order.

Proposal	Investment $(₹)$	NPV $(₹)$	PV of Inflows $(₹)$	PI	Rank
I	$85,00,000$	$50,00,000$	$1,35,00,000$	1.59	4
II	$35,00,000$	$26,00,000$	$61,00,000$	1.74	2
III	$60,00,000$	$20,00,000$	$80,00,000$	1.33	5
IV	$40,00,000$	$25,00,000$	$65,00,000$	1.63	3
V	$60,00,000$	$50,00,000$	$1,10,00,000$	1.83	1

Projects are selected based on their ranking up to the availability of fund.

Proposal	Investment (₹)	Cumulative Investment (₹)
V	$60,00,000$	$60,00,000$
II	$35,00,000$	$95,00,000$
IV	$40,00,000$	$1,35,00,000$
I	$85,00,000$	$2,20,00,000$
III	$60,00,000$	$2,80,00,000$

Only ₹ $65,00,000$ can be invested in project I.
NPV of the project $=65 / 85 \times 50,00,000=₹ 38,23,529$
So, the selected projects are V, II, IV and part of I.
(ii) If the projects are indivisible (by trial-and-error method)

Feasible Sets	Investments (₹)	NPV (₹)
V, II, I	$1,80,00,000$	$1,26,00,000$
V, IV, I	$1,85,00,000$	$1,25,00,000$
V, II, IV, III	$1,95,00,000$	$1,21,00,000$
I, II, IV	$1,60,00,000$	$1,01,00,000$
V, IV, III	$1,60,00,000$	$95,00,000$

The combination of projects V, II and I provides the maximum NPV and hence may be undertaken.

MODEL ANSWERS
TERM - JUNE 2023

STRATEGIC FINANCIAL MANAGEMNT

(b) Schedule of Debt Payment

Year end	Loan Instalment	Loan at the beginning of the year	$\begin{array}{\|c\|} \hline \text { Interest on } \\ \text { loan (Col. } 3 \mathrm{x} \\ 0.16) \end{array}$	Principal Repayment (Col. 2 - Col.4)	Principal Outstanding at the end of the year (Col. 3 - Col.5)
	₹	₹	₹	₹	₹
1	2	3	4	5	6
0	7,13,394	40,00,000	0	7,13,394	32,86,606
1	7,13,394	32,86,606	5,25,857	1,87,537	30,99,069
2	7,13,394	30,99,069	4,95,851	2,17,543	28,81,526
10	7,13,394	$\begin{array}{r} 6,14,994 \\ (7,13,394 / 1.16) \end{array}$	98,400	6,14,994	0

Annual instalment of Loan $=₹ 40,00,000 / 5.607$ (PV factor making payment in 0 year $=$ Factor for cash flow at time $0+$ Annuity factor for 9 years at $16 \%=1+$ 4.607) = ₹ $7,13,394$

PV of Cash Outflows under Buying Alternative
Depreciation $=40,00,000 / 10=4,00,000$

Year End	LoanInstalment	Tax Advantage		Net Cash Outflows	PV factor at after tax cost	Total PV
		On Interest (0.5)	On Depreciation (0.5)			
	₹	₹	₹	₹	₹	₹
1	2	3	4	5	6	7
0	7,13,394	0	-	7,13,394	1.000	7,13,394
1	7,13,394	2,62,928	2,00,000	2,50,465	0.926	2,31,931
2	7,13,394	2,47,926	2,00,000	2,65,468	0.857	2,27,506
10	0	0	2,00,000	(2,00,000)	0.463	$(92,600)$

Let x be the equal annual lease rental (L.R).
P.V. of L.R. $=$ PV for year $0+$ PV for yrs 1-9 - PV for year 10
$=(x) \times 1+(x-0.5 x) \times 6.247-(0.5 x) \times 0.463$
$=1 \mathrm{x}+3.1235 \mathrm{x}-0.2315 \mathrm{x}$
$=3.892 \mathrm{x}$
Lease will be preferred if $3.892 \mathrm{x}<26,57,029$, i.e., $\mathrm{x}<\boldsymbol{₹} 6,82,690$
So, the maximum lease rental should be ₹ $6,82,689$.

MODEL ANSWERS

STRATEGIC FINANCIAL MANAGEMNT

3. (a) Determination of NPV

Project-A

Year	Cash inflow $(₹)$	Certainty equivalent	Adjusted cash in flow (₹)	P.V. Factor $@ 5 \%$	Total P.V. $(₹)$
1	92,000	0.8	73,600	0.9524	70,097
2	$1,02,000$	0.7	71,400	0.9070	64,760
3	$1,12,000$	0.5	56,000	0.8638	48,373
NPV=₹ $(1,83,230-1,80,000)=₹ 3,230$					

Project B

Year	Cash inflow (₹)	Certainty equivalent	Adjusted cash in flow (₹)	P.V. Factor @ 5%	Total P.V. $(₹)$
1	92,000	0.9	82,800	0.9524	78,859
2	92,000	0.8	73,600	0.9070	66,755
3	$1,02,000$	0.6	61,200	0.8638	52,865
					$1,98,479$

NPV $=₹(1,98,479-1,60,000)=₹ 38,479$
(i) Project B should be preferred as its NPV is greater.
(ii) Project A is riskier because its certainty equivalent is lower.
(iii) Project A being riskier would be discounted with higher rate.
(b) The components of digital finance ecosystem include the following.

1. Digital Infrastructure: Digital infrastructure refers to the digital technologies that bring together and interconnect physical and virtual technologies such as computer, storage, network, applications etc. to provide the foundation for an organisation's digital operations. The components of digital infrastructure are as follows-
(i) Internet
(ii) Mobile telecom and digital communication suites, including applications
(iii) Data centers and networks
(iv) Enterprise portals, platforms, systems, and software
(v) Cloud services:
(vi) Operational security, user identity and data encryption
(vii) APIs and integrations
2. Digital Money: digital money is largely interpreted as digital currency issued by the central bank of a country and is essentially a digital version of cash that can be stored and transferred using an internet or mobile application. It is also known as Central Bank Digital Currency (CBDC)

MODEL ANSWERS

STRATEGIC FINANCIAL MANAGEMNT

3. Digital Assets: A digital asset is anything that is stored digitally and is uniquely identifiable that the owner can use to realize value. In other words, a digital asset is anything that exists only in digital form and comes with a distinct usage right. Data that do not possess that right are not considered. Types of digital assets include, but are not exclusive to: photography, logos, illustrations, animations, audio-visual media, presentations, spreadsheets, digital paintings, word documents, electronic mails, websites, and a multitude of other digital formats and their respective metadata. In addition to above, digital assets may also include Non-Fungible Tokens, Private Cryptocurrency, Stablecoins which are immensely popular in today's digital age.
4. Digital Financial Services: Digital Financial Services (DFS) are financial services (e.g., payments, remittances, and credit) accessed and delivered through digital channels, including via mobile devices. These encompass established instruments (e.g., debit and credit cards) offered primarily by banks, as well as new solutions built on cloud computing, digital platforms, and distributed ledger technologies (DLT), spanning mobile payments, and peer-to-peer (P2P) applications.
5. (a) (i) The P / E ratio can be derived from the dividend discount model which is the foundation of valuation for common stocks.
As per the constant growth version of dividend discount model. The value of a stock or

$$
\mathrm{P}=\mathrm{D}_{1} /(\mathrm{k}-\mathrm{g})
$$

Dividing both sides of the equation by expected earnings E_{1}, we get,

$$
\mathrm{P} / \mathrm{E}_{1}=\frac{D_{1} / E_{1}}{k-g}
$$

If the growth rate is assumed to depend on the return on equity (ROE), then $\mathrm{g}=\operatorname{ROE}\left(1-\mathrm{D}_{1} / \mathrm{E}_{1}\right)$
Then, $\mathrm{P} / \mathrm{E}_{1}=\frac{D_{1} / E_{1}}{k-\operatorname{ROE}\left(1-\frac{D_{1}}{E_{1}}\right)}$
Thus, P / E ratio depends on the dividend payout, discount rate and return on equity.
The following relationship should hold, other things being equal:

- The higher the expected payout ratio, the higher the P / E ratio.
- The higher the expected growth rate (g), the higher the P / E ratio.
- The higher the required rate of return (k), the lower the P/E ratio.

STRATEGIC FINANCIAL MANAGEMNT

(ii) EPS current year $=$ ₹ 4.00 ; expected growth rate $=2 \%$; required rate of return $=14 \%$

We know that, $\mathrm{P}_{0}=\frac{D_{0}(1+g)}{k-g}=\frac{4(1+0.02)}{0.14-0.02}=₹ 34$
P/E ratio $=$ Price $/ \mathrm{EPS}=34 / 10=3.4$
Again, $\mathrm{P}_{0}=\frac{D_{0}(1+g)}{k-g}$
$\mathrm{P}_{0} / \mathrm{E}=\frac{D_{0} / E \times(1+g)}{k-g}$
or, $7=\frac{4 / 10(1+g)}{0.14-g}$
Solving for ' g ' we get, $\mathrm{g}=0.078378=7.84 \%$
So, implied growth rate is 7.84%.
(b) Return for the year (all changes on a per unit basis)

Change in price $(13.40-12.50)$	₹ 0.90
Dividend received	₹ 1.55
Total Return	₹ 2.45

Holding Period Return $=2.45 / 12.50 \times 100=19.6 \%$
(ii) When all distributions are reinvested into additional units of the fund (at NAV of ₹12.80).
Dividend per unit $=₹ 1.55$
Total receipt from 240 units $=1.55 \times 240=₹ 372$
Additional unit acquired ₹ 372 / ₹ $12.80=29.06$ Units
Value of $(240+29.06)=269.06$ units held at end of year $=269.06 \times 13.40=₹ 3,605.40$
Price paid for 240 units at beginning of year $=240$ units $\times 12.50=₹ 3,000$
Holding period return would be $=(3605.40-3000) / 3000=20.18 \%$
5. (a) Characteristics line
$\mathrm{y}=\alpha+\beta \mathrm{x}$
$y=$ Mean return (stock PQ), $x=$ mean return (market)
$10=\alpha+0.73$ (6.75)
$\alpha=5.0725$
$\mathrm{y}=5.0725+0.73 \mathrm{x}$
So, the characteristic line is $\mathrm{y}=5.0725+0.73 \mathrm{x}$
Now, If $x=5$
$y=5.0725+3.65$
$\mathrm{y}=8.7225$
or, $\mathrm{y}=8.72 \%$
Similarly, If $x=(-) 8$
$\mathrm{y}=5.0725+0.73(-8)$

MODEL ANSWERS
TERM - JUNE 2023
PAPER - 14

STRATEGIC FINANCIAL MANAGEMNT

$\mathrm{y}=5.0725-5.84$
$y=(-) 0.767 \% \mathrm{y}=(-) 0.77 \%$
(b) Calculation for ranking based on Jensen's alpha

Particulars	Scheme A	Scheme B	Scheme C
Dividend Distributed	$₹ 1.60$	-	₹1.15
Add : Capital Appreciation	$₹ 2.77$	$₹ 3.33$	₹1.79
Total Return (A)	$₹ 4.37$	$₹ 3.33$	₹2.94
Opening NAV (B)	$₹ 30$	$₹ 25.15$	₹21.50
Actual Return (C)=(A) $\div(\mathrm{B}) \times 100$	14.57%	13.24%	13.67%
Beta (D)	1.40	1.10	1.35
Expected Return under CAPM	14.14%	12.54%	13.88%
$\left[\mathrm{E}=\left(\mathrm{R}_{\mathrm{P}}\right)\right][\mathrm{E}]=\mathrm{R}_{\mathrm{F}}+\mathrm{B}_{\mathrm{P}} \times\left(\mathrm{R}_{\mathrm{M}}-\right.$	$[6.64+1.40 \times(12$	$[6.64+1.10 \times(12-$	$[(6.64+1.35 \times(12$
$\left.\left.\mathrm{R}_{\mathrm{F}}\right)\right]$	$-6.64)]$	$6.64)]$	$-6.64)]$
Jensen's Alpha (C)-(E)	0.43%	0.70%	$=(0.21 \%)$
	$(14.57-14.14)$	$(13.24-12.54)$	$(13.67-13.88)$
Ranking	II	I	III

Schemes A and B have outperformed the market portfolio (Nifty) whereas scheme C has underperformed in comparison with the NIFTY.
6. (a) (i) Theoretical Future Price

Particulars	Value
6 months future price	$₹ 200$
Current Stock Price $\left(\mathrm{S}_{\mathrm{x}}\right)$	12% or 0.12
Borrowing Rate (r)	$6 / 12=0.5$ year
Time (in years)	$\mathrm{S}_{\mathrm{x}} \times \mathrm{e}^{\mathrm{rt}}$
Theoretical Future Price $\left(\mathrm{F}_{\mathrm{x}}\right)=$	$180 \times \mathrm{e}^{0.12 \times 0.5}$
	$180 \times \mathrm{e}^{0.06}$
	$180 \times 1.06184=₹ 191.13$

Since the Theoretical Future Price is less than the Expected Future Price, the recommended action would be to sell in the future market.
(ii) Cash flows to gain from Arbitrage opportunity:

Activity Flow: Enter into a future contract to sell shares at the rate of ₹ 200 on expiry date, sell the shares at the 6 months future rate of ₹ 200 , pay the amount of borrowing together with interest. ₹ $180 \times \mathrm{e}^{0.12 \times 0.5}=₹ 191.13$
Net gain $=200-191.13=₹ 8.87$

STRATEGIC FINANCIAL MANAGEMNT

(b) Net pay-off [call option]

Spot price on Expiry Date (SPE)	Exercise Price (EP)	Value of call [Maximum of (SPE-EP),0]	Action	Option premium	Net Pay off [call holder]
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6 = 3 - 5}$
200	220	$200-220=-20-------0$	Lapse	6	$0-6=-6$
210	220	$210-220=-10------0$	Lapse	6	$0-6=-6$
220	220	$220-220=0--------0$	Lapse	6	$0-6=-6$
230	220	$230-220=10------10$	Exercise	6	$10-6=4$
240	220	$240-220=20-----20$	Exercise	6	$20-6=14$

Net pay off [put option]

Spot price on Expiry Date(SPE)	Exercise price (EP)	Value of call [Maximum of (EP-SPE),0]	Action	Option premium	Net Pay off [call holder]
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6 = 3 - 5}$
200	220	$220-200=20$	Exercise	5	15
210	220	$220-210=10$	Exercise	5	5
220	220	$220-220=0$	Lapse	5	-5
230	220	$220-230=-10----0$	Lapse	5	-5
240	220	$220-240=-20----0$	Lapse	5	-5

Option is gainfully exercised by (or in the money)
(i) For call option holder, share price is more than ₹ 226
(ii) For put option holder, share price is less than ₹ 215
7. (a) An American Depositary Receipt (ADR) is a certificate that represent shares of a foreign stock owned and issued by a U.S. bank. The foreign shares are usually held in custody overseas, but the certificates trade in the U.S. Through this system, a large number of foreign-based companies are actively traded on one of the three major U.S. equity markets (the NYSE, AMEX or Nasdaq).
Advantages of ADRs: ADRs provide the following advantages -
(i) Access to Large Capital.
(ii) Access to Foreign Exchange.
(iii) No Change in the Shareholding / voting pattern.
(iv) Increased recognition for the Company internationally by bankers, customers, etc.
(v) No Exchange Rate risk since the Company pays interest and dividends in Indian Rupees.

STRATEGIC FINANCIAL MANAGEMNT

Limitations of ADRs:

(i) High cost of Issue.
(ii) Requirement as to large size of issue.
(iii) Stringent compliance requirements.
(b) (i) Payment to supplier in 60 days

If the payment is made to supplier in 60 Days, the applicable forward rate for 1 US\$	₹ 65.10
Payment due	US $\$ 1,00,00,000$
Outflow in rupees (US\$ 1,00,00,000 \times ₹ 65.10)	₹ $65,10,00,000$
Add: Interest on Loan for 30 days @ 10% p.a.	₹ $54,25,000$
Total Outflow	₹ $65,64,25,000$

(ii) Payment to supplier in 90 days

Amount Payable	US\$ $1,00,00,000$
Add: Interest on Credit Period for 30 days @ 8\% p.a.	US\$ 66,667
Total Outflow in US\$	US\$ $1,00,66,667$
Applicable forward for 1 US\$	₹ 65.50
Total Outflow (US\$ 1,00,66,667 \times ₹ 65.50)	₹ $65,93,66,689$

Comment: It is better to select alternative (i) as it entails lower cash flows.

SECTION - C

8.

Existing Machine	(Amount in ₹)
Cost	$20,00,000$
Depreciation 20\%, year 1	$4,00,000$
	$16,00,000$
Depreciation 20\%, year 2	$3,20,000$
WDV	$12,80,000$
Depreciation 20\%, year 3	$2,56,000$
WDV at Y0 $=$	$10,24,000$

Base for incremental depreciation
Cost of New Machine 30,00,000
Less: WDV of existing machine $\quad 10,24,000$
Difference
19,76,000

STRATEGIC FINANCIAL MANAGEMNT

Depreciation at end of the Year

		PV	Disc. Values
Year 1	$3,95,200$	0.909	$3,59,237$
Year 2	$3,16,160$	0.826	$2,61,148$
Year 3	$2,52,928$	0.751	$1,89,949$
Year 4	$2,02,342$	0.683	$1,38,200$
Year 5	$1,61,874$	0.621	$1,00,524$
			$10,49,058$
Tax Shield 40\%			$4,19,623$

	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Expenses				$(1,00,000)$	$(1,00,000)$	$(1,00,000)$
Revenue		$3,00,000$	$3,00,000$	$3,00,000$	$3,00,000$	$3,00,000$
Net Revenue		$3,00,000$	$3,00,000$	$2,00,000$	$2,00,000$	$2,00,000$
Net Revenue after Tax		$1,80,000$	$1,80,000$	$1,20,000$	$1,20,000$	$1,20,000$
Cost of New Machine	$(30,00,000)$					
Resale - old Machine	$12,00,000$					
Resale - New Machine						$18,00,000$
Cash Flows other than Depreciation	$(18,00,000)$	$1,80,000$	$1,80,000$	$1,20,000$	$1,20,000$	$19,20,000$
PV Factor		1	0.909	0.826	0.751	0.683
Discount Annual C/F	$(18,00,000)$	$1,63,620$	$1,48,680$	90,120	81,960	$11,92,320$
						$1,23,300)$

PV of Cash Flows (Other than Depreciation)	$(1,23,300)$
Depreciation Impact	$+4,19,623$
Net Impact	$+2,96,323$

Hence it is beneficial to go in for the new machine.

