PAPER - 8

COST ACCOUNTING

The figures in the margin on the right side indicate full marks. Where considered necessary, suitable assumptions may be made and clearly indicated in the answer.
Answer Question No. 1 and any five from Question No. 2, 3, 4, 5, 6, 7 and 8.

SECTION - A

(Compulsory)

1. (a)

(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)	(x)	(xi)	(xii)
c	b	b	c	c	d	a	d	a	c	a	c

(b)

(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)
False	False	True	True	True	True	True

(c)

(i)	(ii)	(iii)	(iv)	(v)	(vi)
Sunk Cost	Fixed Cost	Capacity	Master budget	Cost Control	Allocation

SECTION - B
 (Answer any five questions)

2. (a)

Cost Sheet
for the period of six months ending $31^{\text {st }}$ December, 2023

	₹		
Materials used	$1,50,000$		
Direct wages	$1,20,000$		
Prime Cost			
Factory overhead expenses	$2,70,000$		
Works or Factory Cost			24,000
Office expenses	$2,94,000$		
	17,640		

PAPER - 8

COST ACCOUNTING

$\%$ of factory overhead to direct wages $=\frac{\text { Factory overheads }}{\text { Direct Wages }} \times 100=\frac{24,000}{1,20,000} \times 100=20 \%$
$\%$ of factory overhead to factory cost $=\frac{\text { Office overheads }}{\text { Factory cost }} \times 100=\frac{17,640}{2,94,000} \times 100=6 \%$
Statement showing the Quotation of price of a Machine

	$₹$
Materials	$1,250.00$
Wages	750.00
Frime Cost	$2,000.00$
Factory overhead (20\% on wages)	150.00
Factory Cost	
Office Overhead (6\% on Factory Cost)	$2,150.00$
*Profit (25\% of total cost)	129.00
Selling Price	$2,279.00$

*Profit of 20% on selling price is equal to 25% of total cost.
(b) (i) All expenditures other than those incurred for procurement of material and labour are termed as 'expenses'. Expenses can be classified direct expense or indirect expense. This classification is based on whether the expense is traceable to cost centre or cost unit. Expenses or costs which can be allocated to a cost centre or cost unit are referred as direct expense.
(ii) Paragraph 4.4 of CAS 10 defines direct expenses as expenses relating to manufacture of a product or rendering a service, which can be identified or linked with the cost object other than direct material cost and direct employee cost. It is also important to note that Paragraph 5.1 of CAS 10 states that identification of Direct Expenses shall be based on traceability in an economically feasible manner.
(iii) Any four 'principles of measurement' as mentioned in Para 5 of CAS 10
3. (a)

| (i) | Re-order
 quantity | $=$ | $\sqrt{\frac{2 \mathrm{AO}}{\mathrm{C}}}=\sqrt{\frac{2 \times 7,500 \times 12 \times 500}{60 \times 10 \%}}=3,873$ units. |
| :--- | :--- | :--- | :--- |$|$| Maximum Re-order Period \times Maximum Usage 8 weeks |
| :--- |
| $\times 750$ unit per week $=6,000$ units |,

COST ACCOUNTING

(iii)	Minimum stock level	=	Re-order Level $-\{$ Normal Usage \times Normal Reorder Period\} $6,000-(500 \times 6.5)=2,750 \text { units }$
(iv)	Maximum stock level	$=$	$\begin{aligned} & \text { Re-order Level }+ \text { Re-order Quantity }-(\text { Minimum Usage } \\ & \times \text { Minimum Re-order Period) } 6,000+3,873-(250 \times 5) \\ & =8,623 \text { units. } \end{aligned}$
(v)	Average stock level	$=$	$\begin{aligned} & \frac{1}{2}(\text { Minimum Stock level }+ \text { Maximum Stock Level }) \\ & \frac{1}{2}(2,750+8,623)=5,687 \text { units. } \\ & \text { Or } \\ & \text { Minimum Level }+\frac{1}{2} \text { Re-order quantity }=2,750+1,937 \\ & =4,687 \text { units. } \end{aligned}$

(b) Standard production = 1000 units per

Actual production:
Worker A $=850$ units, efficiency level $=850 / 1000 \times 100=85 \%$
Worker $\mathrm{B}=750$ units, efficiency level $=750 / 1000 \times 100=75 \%$
Worker $\mathrm{C}=950$ units, efficiency level $=950 / 1000 \times 100=95 \%$

Statement showing total Remuneration of Workers

Particulars	Worker A (₹)	Worker B (₹)	Worker C (₹)
Normal piece rate wages [₹10 per unit]	$\begin{gathered} 850 \text { units } x \text { ₹ } 10 \\ \text { per unit } 8500 \end{gathered}$	$\begin{gathered} 750 \text { units x ₹ } 10 \\ \text { per unit } 7500 \end{gathered}$	$\begin{gathered} 950 \text { units x ₹ } 10 \\ \text { per unit } 9500 \end{gathered}$
Bonus	$₹ 10 \times 5=50$	--	$₹ 10 \times 15=150$
Dearness pay	50	50	50
Total	8600	7550	9700

*As per the example, bonus will be paid only if the efficiency exceeds 80%. For A and C the efficiency exceeds 80% and hence they will be entitled for a bonus of ₹ 10 per percentage exceeding 80%. B will not be entitled for any bonus as his production efficiency does not exceed 80%.

COST ACCOUNTING

4. (a) In case the service departments in addition to rendering services to the production departments, also render services to other service departments. In other words, the service department, S1 and S2 render services to each other besides rendering services to the production departments. For example, the Canteen Department which is a service department as it caters to the employees from various production departments but the staff of the Maintenance Department (which is also a service department) also enjoys the services of the Canteen. Thus there may be reciprocal arrangements between the service departments. Hence share of overhead expenses of S1 and S2 should be charged to each other along with the production departments. The following method are used under Reciprocal Methods.

- Repeated Distribution Method: - Under this method, services rendered by services departments to the production departments and other services departments are quantified in the form of percentages. The services departments costs are reapportioned to the production departments on the basis of these percentages. The process is repeated again and again till a negligible figure is reached. This method becomes complicated for calculation if the figures are too large.
- Simultaneous Equation Method: - This is an algebraic method in which simultaneous equations are formed and amount of overhead expenses of each service department are found out, by solving the equations. The total expenses thus obtained are then directly transferred to the production departments. This is a non-iterative method and is thus suitable and more accurate.

Solution on the basis of Simultaneous Equation Method (as asked for in the sum)
Let x be the expense of Department S and y be the expense of Department T
Then $x=₹ 8.000+\frac{1}{5}$ th of $y(20 \%$ of $y)$
$\mathrm{Y}=₹ 3.900+\frac{1}{10}$ th of x
Putting the value of x we get:
$y=₹ 13,900+\frac{1}{10}$ of $\left(8,000+\frac{1}{5}\right.$ of $\left.y\right)$
Or. $\mathrm{y}=₹ 13.900+₹ 800+\frac{1}{50} \mathrm{y}$
Or, $y=₹ 14.700+\frac{1}{50} y$, or $50 y=7,35,000+y$

Or, $50 \mathrm{y}-\mathrm{y}=₹ 7,35,000$ or, $\mathrm{y}=₹ \frac{7,35,000}{49}=15,000$
Putting the value of y we get
$x=$ Rs $8,000+\frac{1}{5}$ th of y, or, $x=₹ 8,000+\frac{1}{5}$ of ₹ 15,000
or $x=₹ 8,000+$ Rs, 3,000 , or $x=₹ 11,000$
Total expenses of Dept. $\mathrm{S}=₹ 11,000$
Total expenses of Dept. T = ₹ 15,000

Overhead Distribution Summary

Particulars	A (₹)	B (₹)	C (₹)	S (₹)	T (₹)
Total as per					
Primary Distribution	25,000	31,000	28,000	8,000	13,900
Distribution of Expenses of Dept. S in the ratio 3:2:4:1	3,300	2,200	4,400	$-11,000$	1,100
Distribution of Expenses of Dept. T in the ratio 8:3:5:4	6,000	2,250	3,750	3,000	$-15,000$
	34,300	35,450	36,150	---	---

(b) Reconciliation Statement

Particulars	Amount $(₹)$	Amount $(₹)$
Profit as per cost accounts		$2,91,000$
Add:		
Over-recovery of selling overheads	39,000	
Over-valuation of opening stock in cost accounts	30,000	
Interest earned not recorded in cost a/cs	7,500	
Rent received not recorded in cost a/cs	54,000	
Total		$1,30,500$
	19,000	$4,21,500$
Under recovery of work overheads	45,500	
Under recovery of administrative overheads	15,000	
Over-valuation of closing stock in cost a/cs	18,000	
Bad debts not recorded in cost a/cs	36,000	
Preliminary expenses written off not recorded in cost a/cs		$1,33,500$
Total		$2,88,000$
Profit as per Financial Accounts		

PAPER-8

COST ACCOUNTING

5. (a) (i) In order to draw up Job Cost Sheet, the factory overhead rates of different departments and percentage of selling cost will have to be determined first on the basis of previous year's figures as follows:

Factory Overhead Recovery Rates based on Labour Hours

Direct Wages
₹ 5.50
Labour Hours
22 hours $\left(\frac{₹ 5.50}{\text { ₹ } 0.25 \text { per hour }}\right)$

	Department A		Department B		Department C	
Direct Wages		₹ 5,000		₹ 6,000		₹ 4,000
\therefore Labour Hours	$\left(\frac{₹}{\text { ₹ } 0.25 ~} \mathrm{per}\right.$ hour $)$	20,000	$\left(\frac{₹}{₹} 6,000{ }^{\text {e }}\right.$ per hour $)$	24,000	$\left(\frac{₹}{₹} 4,000{ }^{\text {e }}\right.$ (25 er hour $)$	16,000
Factory Overheads		₹ 2,500		₹ 4,000		₹ 1,000
Factory Overhead Rate per Labour Hour	$\left(\frac{₹}{2,500}\right.$ 20,000 $)$	₹ 0.125	$\left(\frac{₹}{24,000}\right.$)	₹ 0.167	$\left(\frac{₹}{1,000}\right.$ 16,000 $)$	₹ 0.063

(ii) Cost Sheet of Previous Year

	Amount $(₹)$
Materials Used	77,500
Direct Wages (A = ₹ 5,000, B = ₹ $6,000, \mathrm{C}=₹ 4,000)$	15,000
Prime Cost	92,500
Factory Overhead (A = ₹ $2,500, \mathrm{~B}=₹ 4,000, \mathrm{C}=₹ 1,000)$	7,500
Factory Cost	$1,00,000$
Selling Overhead	30,000
Cost of Sales	$1,30,000$

Percentage of Selling Overhead on Works Cost $=\frac{₹ 30,000}{₹ 1,00,000} \times 100=30 \%$
(iii) Cost Sheet of the Current Year (Job No. 3286)

Particulars		Amount (₹)
Materials		12.08
Direct Wages		
- Department A	10 hours $\mathrm{x} ₹ 0.25$ = ₹ 2.50	
- Department B	4 hours $\mathrm{x} ₹ 0.25$ = ₹ 1.00	
- Department C	8 hours $\mathrm{x} ₹ 0.25$ = ₹ 2.00	5.50
Prime Cost		17.58
Factory Overhead		
- Department A	10 hours x ₹ $0.125=₹ 1.25$	
- Department B	4 hours x ₹ 0.167 = ₹ 0.67	
- Department C	8 hours x ₹ 0.063 = ₹ 0.50	2.42
Factory Cost		20.00
Selling Overhead	₹ $20 \times 30 \%$	6.00
Cost of Sales		26.00
Profit (10\% x ₹ 26.00)		2.60
Selling Price		28.60

(b) Calculation of Cost of Materials Issued to site

		$₹$
	Materials consumed	$1,65,000$
Add:	Materials stolen	10,000
	Materials returned to stores	5,000
	Materials in hand (31.12.2017)	15,000
		$1,95,000$

Contract Account
for the year ended 31 Dec. 2022
Dr.
Cr .

	$₹$		$₹$
To Materials issued to site	$1,95,000$	By Materials returned to stores	5,000
To Direct Expenses	5,000	By Insurance claim A/c (Loss of Stock)	6,000
To Wages	30,000	By Profit and Loss A/c	4,000

PAPER-8
COST ACCOUNTING

To Works Expenses 20\% of wages	6,000	By Materials in hand (Stolen $₹ 10,000-₹ 6.000)$	15,000
To Office Expenses 10\% of Works Cost (Note 1)	21,000	By Cost of Contract Balancing Figure)	$2,31,000$
To Depreciation on Plant (Note 2)	4,000		
	$2,61,000$		$2,61,000$
To Cost of Contract b/d	$2,31,000$	By Work in Progress:	
To Notional Profit	80,000	Work certified	$3,00,000$
	$3,11,000$		11,000
	48,000	By Notional Profit	$8,11,000$
To Profit \& Loss A/c (Note 3)	32,000		80.000
To Profit Reserve	80,000		80.000

Working Notes:

1. Calculation of works cost

	$₹$
Materials consumed	$1,65,000$
Add: Direct Wages	30,000
Direct Expenses	5,000
Prime Cost	$2,00,000$
Add: Works expenses	6,000
Deprecation	4,000
	$2,10,000$

MODEL ANSWERS
TERM - JUNE 2023
PAPER-8
COST ACCOUNTING
6. (a)

Crushing Process Account

Particulars	Tons	Amount $₹$	Particulars	Tons $₹$	
To Copra	2000	$1,00,000$	By Copra Sacks	-	2,000
To Labour		10,000	By Copra Residue	250	5,000
To Sundry Materials		4,000	By Loss in Crushing (Balancing Figure)	50	-
To Electric Power		3,000	By Transfer to Refining $@$ ₹ 70 per ton	1,700	$1,19,000$
To Steam		2,000			
To Repairs of Machines		2,000			
To Factory Expenses		5,000		$\underline{\mathbf{2 0 0 0}}$	$\underline{\mathbf{1 , 2 6 , 0 0 0}}$
	$\underline{\mathbf{1 , 2 6 0 0 0 0}}$				

Refining Process Account

Particulars	Tons	Amount ₹	Particulars	Tons	Amount ₹
To Crushing Process A/c	1700	1,19,000	By Sale of by Products	120	5,100
To Labour		6,000	By Loss in Refining Process (Balancing Figure)	40	-
To Sundry Materials		3,000			-
To Electric Power		2,000	By Transfer to Finishing @ ₹ 85 per ton	1,540	1,30,900
To Steam		2,000			
To Repairs of Machines		1,000			
To Factory Expenses		3,000			
	1700	1,36,000		1700	1,36,000

PAPER-8

COST ACCOUNTING

Finishing Process Account

Particulars	Tons	Amount ₹	Particulars	Tons	Amount ₹
To Refining Process A/c	1540	1,30,900	By Loss in Finishing (Balancing Figure)	40	-
To Labour		4,000	By Cost of Production Transferred to Finished Oil A/c ₹ 95 per ton	1,500	1,42,500
To Sundry Materials		2,000			
To Electric Power		1,600			
To Steam		1,500			
To Repairs of Machines		500			
To Factory Expenses		2,000			
	1540	1,42,500		1,540	1,42,500
To Cost of Production of Finished Oil	1,500	$\underline{1,42,500}$	$\begin{aligned} & \text { By Total Cost @ ₹ } 100 \\ & \text { per Ton } \end{aligned}$	1,500	1,50,000
To Cost of Casks		7,500			
	1,500	1,50,000		1,500	1,50,000

Working Notes: *Factory overhead of ₹ 10,000 is apportioned in the ratio of labour cost i.e., 5:3:2.
(b) (i) Calculation of cost per tonne km

Statement showing computation of total cost per tonne kilometer for
carrying finished goods to warehouses

Particulars
Time for travelling
Time for loading
Time for unloading

A	B
40 Min	60 Min
40 Min	40 Min
30 Min	20 Min
110 Min	120 Min

	₹	₹
Cost of Insurance, wages, tax, etc. $[(110 / 60) \times 18]$	33	
$[(120 / 60) \times 18]$		36
Fuel \& oil etc. $(20 \times 2.4)(30 \times 2.4)$	48	72
Total Cost	81	108
Tonne Kilometers $(5 \times 10) / /(5 \times 15)$	50	75
Cost per tonne KM	₹ $\mathbf{1 . 6 2}$	$₹ \mathbf{1 . 4 4}$

(ii) Composite unit can be calculated in two ways; 'Absolute (weighted average)' basis and 'Commercial (simple average)' basis. - Sometime two measurement units are combined together to know the cost of service or operation. These are called composite cost units. For example, a public transportation undertaking would measure the operating cost per passenger per kilometer.

Examples of Composite units are Ton- km., Quintal- km, Passenger-km., Patient- day etc. Composite unit may be computed in two ways.

- Absolute (Weighted Average) basis
- Commercial (Simple Average) basis.

In both bases of computation of service cost unit, weightage is also given to qualitative factors rather quantitative (which are directly related with variable cost elements) factors alone.

- Weighted Average or Absolute basis - It is summation of the products of qualitative and quantitative factors.
- Simple Average or Commercial basis - It is the product of average qualitative and total quantitative factors. For example, in case of goods transport, Commercial Ton-Km is arrived at by multiplying total distance km ., by average load quantity.

In both the example, variable cost is dependent of distance and is a quantitative factor. Since, the weight carried does not affect the variable cost hence and is a qualitative factor.

PAPER-8

COST ACCOUNTING

7. (a)

Particulars	₹	$₹$
Revenues		$6,00,000$
Deduct variable costs:		
Cost of goods sold	$3,00,000$	
Sales commissions	60,000	
Other operating costs	30,000	$3,90,000$
Contribution margin		$2,10,000$
Contribution margin percentage $=$	$210000 / 600000$	$=0.35$

| Incremental revenue | $(15 \% \times 600,000)=90000$ | |
| :--- | :---: | :---: | :---: |
| Incremental contribution margin | $(35 \% \times 90,000)$ | 31,500 |
| Incremental fixed costs (advertising) | | 13,000 |
| Incremental operating income | | 18,500 |

If Mr. Lurvey spends ₹ 13,000 more on advertising, the operating income will increase by $₹ 18,500$, decreasing the operating loss from ₹ 49,000 to an operating loss of ₹ 30,500 .

Check (optional)

Particulars	₹	₹
(115\% \times		
Revenues 600,000)		6,90,000
Cost of goods sold (50\% of sales)		3,45,000
Gross margin		3,45,000
Operating costs:		
Salaries and wages	1,70,000	
Sales commissions (10\% of sales)	69,000	
Depreciation of equipment and fixtures	20,000	
Store rent	54,000	
Advertising	13,000	
Other operating costs:		
Variable $(30000 \times 690000) \div 600000$	34,500	
Fixed	15,000	3,75,500
Operating income		30,500

COST ACCOUNTING

(b) (i) Production Budget

Product	A	B
Sales	2000	1500
Opening Stock	(100)	(200)
Closing Stock (10\% x Sales level)	200	150
	$\underline{2100}$	$\underline{1450}$

(ii) Material Usage Budget

Material Type	X	Y
$(2100 \times 2)+(1450 \times 3)$	8550	
$2100 \times 1)+(1450 \times 4)$		7900

(iii) Material Purchases Budget

Product	X	Y
Material Usage Budget	8550	7900
Opening Stock	(300)	(1000)
Closing Stock $^{\mathrm{a}}$	850	800
	9100 x ₹ $10=$ ₹ 91000	1450 x ₹ $=₹ 53900$

(iv) Labour Budget

Material Type	X	Y
$(2100 \times 4)+(1450 \times 2)$	11,300	
$2100 \times 2)+(1450 \times 5)$		11,450
$11,300 \times ₹ 12$	$₹ 1,35,600$	
$11,450 \times ₹ 8$		$₹ 91,600$

Note:
${ }^{a}$ Material Closing Stock
Material X $(2000 \times 2+1500 \times 3) \times 10 \%=850$
Material Y $(2000 \times 1+1500 \times 4) \times 10 \%=850$

COST ACCOUNTING

8. (a) The following calculation are required for a submitting a comprehensive report to Mr Hardik which covers the analysis of the variances calculated.
Working note
A. Actual hours worked (in actual mix) \times Actual rate

Skilled -13 workers $\times 40$ hrs $\times ₹ 4.80$ per hour $=2496$
Semi-skilled -4 workers $\times 40$ hrs $\times 3.40$ per hour $=544$
Unskilled -3 workers $\times 40$ hrs $\times 2.60$ per hour $=312$
B. Actual hours worked (in actual mix) \times Standard rate

Skilled -13 workers $\times 40 \mathrm{hrs} \times ₹ 5.00$ per hour $=2600$
Semi-skilled -4 workers $\times 40 \mathrm{hrs} \times 3.20$ per hour $=512$
Unskilled -3 workers $\times 40 \mathrm{hrs} \times 2.80$ per hour $=336$
C. Actual hours worked (in standard mix) \times Standard rate

Skilled - 10 workers $\times 40$ hrs $\times ₹ 5.00$ per hour $=2000$
Semi-skilled -5 workers $\times 40$ hrs $\times 3.20$ per hour $=640$
Unskilled -5 workers $\times 40$ hrs $\times 2.80$ per hour $=560$
D. Actual hours paid (in actual mix) \times Standard rate

Skilled -10 workers $\times 38$ hrs $\times ₹ 5.00$ per hour $=1900$
Semi-skilled -5 workers $\times 38$ hrs $\times 3.20$ per hour $=608$
Unskilled -5 workers $\times 38 \mathrm{hrs} \times 2.80$ per hour $=532$
E. Standard labour cost for actual yield
$\frac{40 \mathrm{hrs} \times(10 \times 5.00 \mathrm{per} h r+4 \times 3.20 \text { per hr }+3 \times 2.60 \mathrm{per} h r)}{1000 \text { units }} \times 960$ units $=\underline{\mathbf{3 0 7 2}}$
And
Labour cost variance
$=($ Actual hours worked \times Actual rate $)$

- Standard labour cost for actual yield
$=A-E=280(A)$
Labour rate variance

$$
\begin{aligned}
& =(\text { Actual hours worked } \times \text { Actual rate }) \\
& -(\text { Actual hours worked } \times \text { Standard rate } \\
& =A-B=\mathbf{9 6}(\boldsymbol{F})
\end{aligned}
$$

Labour idle time variance
$=((h o u r s$ paid - hours worked $)$
\times standard direct labour rate per hour)
$=C-D=160(A)$

PAPER-8

COST ACCOUNTING

Labour efficiency variance

$$
\begin{aligned}
& =(\text { Actual hours worked } \times \text { Standard rate }) \\
& - \text { Standard labour cost for actual yield } \\
& =B-E=376(A)
\end{aligned}
$$

But idle time variance is to be calculated separately which is recommend.
Thus labour efficiency variance adjusted for idle time variance $=376(\mathrm{~A})-160$
(A) $=\mathbf{2 1 6 (A)}{ }^{1}$

Labour mix variance
$=\quad(($ actual hours for grade - hours for grade based on total labour hours split in standard proportions) \times (weighted average cost per hour - standard cost per hour))
$=\quad$ Standard Cost of Standard Mix of Labourers - Standard Cost of Actual Mix of Labourer
$=B-C=248(A)$
Labour yield variance
$=($ Actual yield or output - Standard yield or output for actual input $)$
\times Standard cost per unit
= $D-E=32(F)$

Reconciliation

[^0]
COST ACCOUNTING

(b)

TRINITY ENGINEERING LTD.
Production Budget for the Quarter ended March 2022 and for the month April, 2022
(Figures in Units)

Particulars	January	February	March	April
Budgeted Sales	10,800	15,600	12,200	10,400
Add: Opening Inventory	3,900	3,050	2,600	2,450
	14,700	18,650	14,800	12,850
Less: Opening Inventory	2,700	3,900	3,050	2,600
Required Monthly Production	12,000	14,750	11,750	10,250

TRINITY ENGINEERING LTD.
Direct Material Usage and Purchase Budget for the Quarter ended March 2022
Material A

Particulars	January (Units)	February (Units)	March (Units)
Production Requirement - 4 units of Material A for each of Finished Product	48,000	59,000	47,000
Add: Closing Inventory	29,500	23,500	20,500
	77,500	82,500	67,500
Less: Opening Inventory	24,000	29,500	23,500
	53,500	53,000	44,000

Material B

Particulars	January (Units)	February (Units)	March (Units)
Production Requirement - 54 units of Material B for each of Finished Product	60,000	73,750	58,750
Add: Closing Inventory	36,875	29,375	25,625
	96,875	$1,03,125$	84,375
Less: Opening Inventory	30,000	36,785	29,375
	66,875	66,250	55,000

[^0]: ${ }^{1}$ Labour idle time variance is shown separately from efficiency variance as discussed in previous section.

