5. APPLICATION OF DEFINITE INTEGRATION

I. MCQ (2 marks each)

Ex.1: The area of the region bounded by the curve $y = \sin x$, X-axis and the lines x = 0, $x = 4\pi$ is sq. units. **(B)** 4 (A) 2 (C) 8 (D) 16 Ex.2: The area of the region bounded by the ellipse $x^2/64 + y^2/100 = 1$, is sq. units. (D) 100π (A)64 π (B) 80π (C) $\pi/80$ Ex.3: The area bounded by the parabola $y^2 = x$ along the X- axis & the lines x = 0, x = 2 is sq. units. (D) $(2\sqrt{2})/3$ (A) 4/3(B) $(4\sqrt{2})/3$ (C) 2/3 Ex.4: The area bounded by the curve $y^2 = x^2$, and the line x = 8 is (A)16 sq. units (B) <u>64 sq. units</u> (C) 32 sq. units (D) 4 sq. units Ex.5: The area of the region included between the parabolas $y^2 = 16x$ and $x^2 = 16y$, is given by sq.units (A) 256 (B) 16/3 (C) 256/3 (D) 64/3Ex.6: The area enclosed between the two parabolas $y^2 = 20x$ and y = 2x is sq. units. (B) 40/3 20/3(C) 10/3 (A) (D) 50/3 Ex.7: The area bounded by the parabola $y^2 = 32x$ the X-axis and the latus rectum is sq. units (B) 512/5 (C) 512 (A) 512/3(D) 64/3 Ex.8: The area bounded by the ellipse $x^2/4 + y^2/25 = 1$ & and the line x/2 + y/5 = 1 is sq. units (A) $5(\pi - 2)$ (B) $(5/2) (\pi - 2)$ (C) $(5/3)(\pi-2)$ (D) $(5/4)(\pi-2)$ Ex.9: The area of triangle $\triangle ABC$ whose vertices are A(1,1), B(2,1) & C(3,3) issq. units. (D) 4 (A) (C) 3 1 (B) 2 Ex.10: The area enclosed by the line 2x + 3y = 6 along X-axis & the lines x = 0, x = 3 is sq. units. A) 1 (B) 2 (C) 3 (D) 4

II. Very Short Answers (1 mark)

- Ex. 1 : Find the area bounded by the curve $y^2 = 36x$, the line x = 2in first quadrant .
- Ex.2: Find the area bounded by the curve $y = \sin x$, the lines x = 0 and $x = \pi/2$.
- Ex.3: Find the area enclosed between $y = \cos x$ and X-axis between the lines $x = \pi/2$ & $x \le 3\pi/2$
- Ex.4: Find the area of the region bounded by the parabola $y^2 = 32x$ and its Latus rectum in first quadrant.

Ex.5: Find the area of the region bounded by the curve $y = x^2$, the X-axis and the given lines x = 0, x = 3

- Ex.6: Find the area of the region bounded by the curve $y^2 = 8x$, the X-axis and the given lines $x = 1, x = 3, y \ge 0$
- Ex.7: Find the area of the region bounded by the curve $x^2 = 12y$, the Y-axis and the given lines $y = 2, y = 4, x \ge 0$

Ex.8: Find the area of the ellipse $x^2/1 + y^2/4 = 1$, in first quadrant

- Ex.9: Find the area of sector bounded by the circle $x^2 + y^2 = 25$, in the first quadrant.
- Ex.10: Using integration, find the area of the region bounded by the line 2y + x = 8, X-axis and the lines x=2 & x = 4.

III. Short Answers (3 marks)

- Ex.1: Find the area enclosed between the X-axis and the curve $y = \sin x$ for values of x between 0 to 2π .
- Ex.2: Find the area of the region bounded by the parabola $x^2 = 4y$ and The X-axis & the line x = 1, x = 4.
- Ex.3: Find the area of the region bounded by the parabola $y^2 = 16x$ and the line x = 4.
- Ex.4: Find the area of the region bounded by the curves

 $x^2 = 8y$, y = 2, y = 4 and the Y-axis, lying in the first quadrant.

Ex.5: Find the area of the region bounded by the curve $y = \sin x$,

the X-axis and the given lines $x = -\pi$, $x = \pi$

Ex.6: Find the area of the ellipse $x^2/36 + y^2/64 = 1$, using integration.

IV. Long answers (4 Marks)

- Ex.1 : Find the area of the region bounded by the curves $y^2 = 4ax$ and $x^2 = 4ay$.
- Ex.2: Find the area of the region lying between the parabolas

 $4y^2 = 9x$ and $3x^2 = 16y$

- Ex.3: Find the area of the sector bounded by the circle $x^2 + y^2 = 16$, & the line y = x in the first quadrant.
- Ex.4: Find the area of the region included between $y = x^2 + 5$ and the line y = x + 7
- Ex.5: Find the area enclosed between the circle $x^2 + y^2 = 9$,

along X – axis and the line x = y, lying in the first quadrant.

Ex.6: Find the area enclosed between the circle $x^2 + y^2 = 1$ and

the line x + y = 1, lying in the first quadrant.

Ex.7: Find the area of the region bounded by the curve

 $(y-1)^2 = 4(x+1)$ and the line y = (x-1).