CCE PF
 UNREVISED FULL SYLLABUS NSR \& NSPR

 KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU - 560003

S. S. L. C. EXAMINATION, MARCH/APRIL, 2023

యూదర లుత్తరగళృ
MODEL ANSWERS

దినాంఫ : 03. 04. 2023]
Date: 03.04.2023]

Code no. : 81-E

ఎిజ్ఞయ : గణిత్ర

Subject : MATHEMATICS

 (Private Fresh / NSR \& NSPR)
(ఇంగ్లిషీ యూధ్యయు / English Medium)

[Max. Marks : 100

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I. 1.		Multiple choice questions : $8 \times 1=8$ The number of zeroes of the polynomial $y=p(x)$ in the given graph is	

CCE PF/NSR \& NSPR

Qn. Nos.	Ans. Key	Value Points	Marks allotted	
In the figure, if $D E \\| B C$, then the correct relation				
among the following is				

II. Answer the following questions : allotted
9.
10.

If the pair of lines represented by the linear equations $x+2 y-4=0$ and $a x+b y-12=0$ are coincident lines, then find the values of ' a ' and ' b '.

Ans. :
$x+2 y-4=0$
$a x+b y-12=0$
coincident lines

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
& \frac{1}{a}=\frac{2}{b}=\frac{-4}{-12} \\
& \frac{1}{a}=\frac{1}{3} \quad \frac{2}{b}=\frac{1}{3} \\
\therefore \quad & a=3 \quad b=6
\end{aligned}
$$

$$
1 / 2
$$

$\triangle A B C \sim \triangle P Q R$. Area of the $\triangle A B C$ is $64 \mathrm{~cm}^{2}$ and the area of the $\triangle P Q R$ is $100 \mathrm{~cm}^{2}$. If $A B=8 \mathrm{~cm}$, then find the length of $P Q$.

Ans. :

$$
\left.\begin{array}{l}
\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\frac{A B^{2}}{P Q^{2}} \\
\frac{\sigma 4}{100}=\frac{\not 8^{2}}{P Q^{2}}
\end{array}\right\}
$$

$$
1 / 2
$$

Qn.

Value Points
$\left.\begin{array}{l}P Q^{2}=100 \\ P Q=\sqrt{100} \\ P Q=10 \mathrm{~cm}\end{array}\right\}$
$\left.\left.\begin{array}{l}\text { Express the equation } x(2+x)=3 \text { in the standard form of } \\ \text { a quadratic equation. }\end{array}\right\} \begin{array}{l}1 / 2 \\ \text { A }\end{array}\right\}$

Ans. :

$$
\begin{array}{r}
x(2+x)=3 \\
2 x+x^{2}=3
\end{array}
$$

Standard form : $x^{2}+2 x-3=0$
Find the discriminant of the quadratic equation $2 x^{2}-4 x+3=0$.

Ans. :
$2 x^{2}-4 x+3=0$
$\Delta=b^{2}-4 a c$
$\Delta=(-4)^{2}-4 \times 2 \times 3$
$=16-24$
$\Delta=-8$
\therefore Discriminant $=-8$
14. Find the coordinates of the mid-point of the line segment joining the points $(6,3)$ and (4, 7).

Ans. :
$(6,3) \quad(4,7)$
$\left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right)$
Co-ordinates of Mid-point $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{6+4}{2}, \frac{3+7}{2}\right) \\
& =(5,5)
\end{aligned}
$$

Ans. :
$\left.\begin{array}{c}\text { Volume of the frustum } \\ \text { of the cone }\end{array}\right\} \quad(V)=\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$
III. Answer the following questions :

OR

Find the H.C.F. of 72 and 120 by using Euclid's division algorithm.

Ans. :
Let us assume $5+\sqrt{3}$ is rational that is, we can find coprime a and $b(b \neq 0)$

Such that $5+\sqrt{3}=\frac{a}{b}$
$\therefore \frac{a}{b}-5=\sqrt{3}$
Rearranging this equation $\sqrt{3}=\frac{a}{b}-5$

$$
\sqrt{3}=\frac{a-5 b}{b}
$$

Qn. Nos.	Value Points
	Since a and b are integers we get
	$\frac{a}{b}-5$ is rational and so $\sqrt{3}$ is rational

But this contradicts the fact that $\sqrt{3}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $5+\sqrt{3}$ is rational.

So, we conclude $5+\sqrt{3}$ is irrational.

OR

$$
a=b q+r, \quad 0 \leq r<b
$$

(1) $120=72 \times 1+48$

$$
\text { 72) } \begin{gathered}
120 \\
\frac{72}{48}
\end{gathered}
$$

(2) $72=48 \times 1+24$
48) $\begin{aligned} & 72(1 \\ & \frac{48}{24}\end{aligned}$
(3) $48=24 \times 2+0$
24) $48(2$ $\frac{48}{0}$
\therefore H.C.F. $=24$
18.

Solve the given pair of linear equations :

$$
\begin{aligned}
& 3 x+y=12 \\
& x+y=6
\end{aligned}
$$

Ans. :

$$
\begin{gathered}
3 x+y=12 \\
x+y=6 \\
(-)(-) \quad(-) \quad \text { subtracting } \\
\hline 2 x=6 \\
x=\frac{6}{2} \\
x=3 \\
x+y=6 \\
3+y=6 \\
y=6-3 \\
y=3
\end{gathered}
$$

2
$1 / 2$

Turn over

Qn. Nos.	Value Points	Marks allotted
21.	$5 x^{2}-6 x-2=0$ Multiplying the equation throughout by ' 5 ' we get $\begin{aligned} & \left(5 x^{2}-6 x-2=0\right) \times 5 \\ & 25 x^{2}-30 x-10=0 \\ & 25 x^{2}-30 x+3^{2}-3^{2}-10=0 \\ & (5 x-3)^{2}-19=0 \\ & 5 x-3=\sqrt{19} \\ & 5 x=3 \pm \sqrt{19} \\ & x=\frac{3 \pm \sqrt{19}}{5} \\ & \frac{9}{9} \quad x=\frac{3-\sqrt{19}}{5} \end{aligned}$ $\therefore x=\frac{3+\sqrt{19}}{5}$ Note : Alternate method is used to solve give marks In the given figure, if $\left\lfloor A B C=90^{\circ}\right.$, then find the values of $\sin \theta$ and $\cos \alpha$. Ans. :	2

Qn. Nos.	Value Points	Marks allotted
24.	Ans. : Draw $A E \perp D C$ $\therefore A B C E$ is a rectangle $\begin{aligned} \therefore E C & =\mathrm{A} B=6 \mathrm{~cm} \\ D C & =D E+E C \\ 10 & =D E+E C \\ 10 & =D E+6 \\ D E & =10-6=4 \mathrm{~cm} \end{aligned}$ In $\triangle A D E$ $\begin{aligned} & A D^{2}=A E^{2}+D E^{2} \\ & 5^{2}=A E^{2}+4^{2} \\ & 25=A E^{2}+16 \\ & A E^{2}=25-16 \\ & A E^{2}=9 \\ & A E=\sqrt{9} \\ & A E=3 \mathrm{~cm} \end{aligned}$ \therefore Distance between the parallel lines $=3 \mathrm{~cm}$. Draw a circle of radius 4 cm and construct a pair of tangents to the circle such that the angle between them is 60°. Ans. :	2

Qn. Nos.	Value Points	Marks allotted
	Angle between the Radii $=180^{\circ}-60^{\circ}=120^{\circ}$	
	Drawing a circle of radius 4 cm Drawing 2 arcs	
	Drawing a pair of tangents to circle $1 / 2$	2
25.	Find the LCM of 6 and 20 by prime factorisation method. Ans. :	
	Prime factors of $6=2 \times 3$	
	Prime factors of $20=2 \times 2 \times 5$	
	\therefore L. C. M. of 6 and $20=2 \times 2 \times 3 \times 5=60 \quad 1$	2
26.	The sum of the first three terms in an arithmetic progression is 180 and the common difference is 5 . Find these three terms of the progression. Ans. :	
	Let the three terms of A.P. are $a-d, \quad a, \quad a+d$	
	Sum of three terms $=180$	
	$a-\not \subset+a+a+\not \subset=180$	

Qn. Nos.		Value Point
	$3 a=180$	
	$a=\frac{180}{3}$	
	$a=60$	
$c . d \boxed{(d)=5}$		
\therefore The three terms of A.P. are		
$a-d, \quad a$	$a+d$	
$60-5, \quad 60$,	$60+5$	
55,	60,	65

27. Show that $\cot \theta \times \cos \theta+\sin \theta=\operatorname{cosec} \theta$.

Ans. :

$$
\cot \theta \times \cos \theta+\sin \theta=\operatorname{cosec} \theta
$$

L.H.S. $=\cot \theta \times \cos \theta+\sin \theta$

$$
\begin{aligned}
& =\frac{\cos \theta}{\sin \theta} \times \cos \theta+\sin \theta \\
& =\frac{\cos ^{2} \theta}{\sin \theta}+\frac{\sin \theta}{1} \\
& =\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta} \\
& =\frac{1}{\sin \theta} \\
& =\operatorname{cosec} \theta \text { (R. H. S.) }
\end{aligned}
$$

28. Find the distance between the points $A(4,3)$ and $B(10,11)$ by using 'distance formula'.
Ans. :

$$
\begin{aligned}
& A(4,3) \quad B(10,11) \\
& \left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right) \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{(10-4)^{2}+(11-3)^{2}} \\
& d=\sqrt{6^{2}+8^{2}}
\end{aligned}
$$

$$
1 / 2
$$

Qn. Nos.	Value Points	Marks allotted
	$\begin{aligned} & d=\sqrt{36+64} \\ & d=\sqrt{100} \\ & d=10 \text { units } \end{aligned}$	2
29.	The median value of a set of scores is 38 and their mean value is 26 . Find the mode of the scores. Ans. : $\begin{aligned} & \text { Median }=38 \\ & \text { Mean }=26 \\ & \text { Mode }=? \end{aligned}$ $3 \times \text { Median }=\text { Mode }+2 \times \text { Mean }$ $3 \times 38=\text { Mode }+2 \times 26$ $\text { Mode }=3 \text { Median }-2 \text { Mean }$ $\text { Mode }=3 \times 38-2 \times 26$ $\text { Mode }=114-52$ $\text { Mode }=62$	2
30.	Draw a line segment of length 10 cm and divide it in the ratio 3:2 by geometric construction. Ans. :	
	$A C: C B=3: 2$	
	Drawing line segment (10 cm) 1 ²	
	Constructing acute angle at $A \quad 11 / 2$	
	Marking 5 arcs $1 / 2$	
	Constructing $A_{3} C\| \| A_{5} B$ Note : Any other suitable method is followed, full marks should be given.	2

[^0]

Drawing a circle of radius 3.5 cm
Drawing $O P=8 \mathrm{~cm}$ and constructing
perpendicular bisector
Drawing C_{2} circle
Joining $P A$ and $P B$
In the given figure, $A B C D$ is a square of side 14 cm , whose sides are touching the circle. Find the area of the shaded region.

Qn.

Area of the square $=$ side \times side

$$
\begin{aligned}
& =14 \times 14 \\
& =196 \mathrm{sq} \cdot \mathrm{~cm}
\end{aligned}
$$

Diameter of the circle $=14 \mathrm{~cm}$
Radius of the circle $=\frac{14}{2}=7 \mathrm{~cm}$
\therefore Area of the circle $=\pi r^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times 7^{2} \\
& =\frac{22}{7} \times 7 \times Z^{7} \\
& =154 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of the shaded region $=$
Area of the square $A B C D$ - Area of the circle

$$
\begin{aligned}
& =196-154 \\
& =42 \mathrm{~cm}^{2}
\end{aligned}
$$

Find the surface area of a sphere whose radius is 7 cm .
Ans. :

$$
r=7 \mathrm{~cm}
$$

S. A. of sphere $=4 \pi r^{2}$

$$
\begin{aligned}
A & =4 \times \frac{22}{7} \times 7^{2} \\
& =4 \times \frac{22}{7} \times 7 \times 7 \\
& =616 \mathrm{~cm}^{2}
\end{aligned}
$$

$\begin{aligned} & \text { Qn. } \\ & \text { Nos. } \end{aligned}$	Value Points	Marks allotted
34.	Write the linear equation $3 x-4 y=5$ in the form of $a x+b y+c=0$ and write the values of a, b and c. Ans.: $\begin{aligned} & 3 x-4 y=5 \\ & 3 x-4 y-5=0 \\ & a x+b y+c=0 \end{aligned}$	
	$\cdots=3 \quad c=-5 \quad 11 / 2$	2
IV. 35.	Answer the following questions : Divide $p(x)=3 x^{3}+x^{2}+2 x+5$ by $g(x)=x^{2}+2 x+1$ and find the quotient $[q(x)]$ and remainder $[r(x)]$. OR Find the zeroes of the quadratic polynomial $p(x)=x^{2}+7 x+10$, and verify the relationship between zeroes and the coefficients. Ans. : $\begin{aligned} & p(x)=3 x^{3}+x^{2}+2 x+5 \\ & g(x)=x^{2}+2 x+1 \\ & q(x)=? \\ & r(x)=? \end{aligned}$ $\begin{array}{r} x ^ { 2 } + 2 x + 1 \longdiv { 3 x - 5 } \begin{array} { r } { 3 / x ^ { 3 } + x ^ { 2 } + 2 x + 5 (} \\ { 3 / x ^ { 3 } + 6 x ^ { 2 } + 3 x } \\ { (-) (-) } \end{array} \\ \begin{array}{r} -5 / x^{2}-x+5 \\ -5 / x^{2}-10 x-5 \\ (+)(+) \quad(+) \end{array} \\ \hline \end{array}$ \therefore Quotient $q(x)=3 x-5$ Remainder $r(x)=9 x+10$	3

Qn. Nos.	Value Points	Marks allotted
	$\begin{aligned} & p(x)=x^{2}+7 x+10 \\ & 0=x^{2}+5 x+2 x+10 \\ & 0=x(x+5)+2(x+5) \\ & 0=(x+2)(x+5) \\ & x+2=0 \quad x+5=0 \\ & x=-2 \quad x=-5 \end{aligned}$ Therefore zeroes of $p(x)=x^{2}+7 x+10$ are -2 and -5 . $\quad 1 / 2$ Sum of zeroes $=-2+(-5)=-7=\frac{-7}{1}=\frac{- \text { coefficient of } x}{\text { coefficient of } x^{2}}$ Products of zeroes $=(-2) \times(-5)=10=\frac{10}{1}=\frac{\text { const. term }}{\text { coefficient of } x^{2}}$	3
36.	Prove that $\sqrt{\frac{1+\cos A}{1-\cos A}}=\operatorname{cosec} A+\cot A$ OR Prove that $\frac{\sin A}{1+\cos A}+\frac{1+\cos A}{\sin A}=2 \operatorname{cosec} A .$ Ans. : $\begin{aligned} & \begin{aligned} \sqrt{\frac{1+\cos A}{1-\cos A}} & =\operatorname{cosec} A+\cot A \\ \text { L.H.S. }= & \sqrt{\frac{(1+\cos A)(1+\cos A)}{(1-\cos A)(1+\cos A)}} \\ & =\sqrt{\frac{(1+\cos A)^{2}}{1^{2}-\cos ^{2} A}} \\ & =\sqrt{\frac{(1+\cos A)^{2}}{1-\cos ^{2} A}} \\ & =\sqrt{\frac{(1+\cos A)^{2}}{\sin ^{2} A}} \end{aligned} \end{aligned}$	

Qn. Nos.	Value Points		Marks allotted
		1/2	$3{ }^{3}$

Qn.

Value Points	
Find the mean for the following data :	
Class-interval Frequency $1-5$ 4 $6-10$ 3 $11-15$ 2 $16-20$ 1 $21-25$ 5	

OR
Find the mode for the following data :

Class-interval	Frequency
$1-3$	6
$3-5$	9
$5-7$	15
$7-9$	9
$9-11$	1

Ans. :

C.I.	frequency f_{i}	Mid point x_{i}	$x_{i} f_{i}$
$1-5$	4	3	12
$6-10$	3	8	24
$11-15$	2	13	26
$16-20$	1	18	18
$21-25$	5	23	115
	$\sum f_{i} 15$		$\sum f_{i} x_{i}=195$

\therefore mean $\bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{195}{15}$
$\operatorname{Mean}(\bar{x})=13$
37.

2	
$1 / 2$	
$1 / 2$	3

$\begin{aligned} & \text { Qn. } \\ & \text { Nos. } \end{aligned}$	Value Points	Marks allotted
	From the frequency distribution table, we find that $\begin{aligned} f_{0} & =9, \quad f_{1}=15, \quad f_{2}=9, \quad h=2, \quad l=5 \\ \text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\ & =5+\left(\frac{15-9}{2 \times 15-9-9}\right) \times 2 \\ & =5+\left(\frac{6}{30-18}\right) \times 2 \\ & =5+\left(\frac{b^{1}}{122_{2}}\right) \times \not 2 \\ & =5+1 \end{aligned}$	
		3
38.	Find the ratio in which the line segment joining the points $A(-6,10)$ and $B(3,-8)$ is divided by the point $(-4,6)$. OR Find the area of a triangle whose vertices are $A(1,-1)$, $B(-4,6)$ and $C(-3,-5)$ Ans. : $\begin{array}{lll} A(-6,10) & B(3,-8) & P=(-4,6) \\ \left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right) & (x, y) \\ & m_{1}: m_{2}=? & \\ \frac{m_{1}}{m_{2}}=\frac{x-x_{1}}{x_{2}-x} & \text { or } \quad \frac{y-y_{1}}{y_{2}-y} & \end{array}$	

Qn.

Data: ' O ' is the centre of the circle $P Q$ and $P R$ are tangents drawn from external point P.

To prove : $P Q=P R$

Construction ; Join $O P, O Q$ and $O R$

Proof : In the firgure
$\angle O Q P=\angle O R P=90^{\circ} \quad\left[\begin{array}{c} \\ O Q \perp P Q\end{array}\right]$
$\therefore P Q=P R$ (C.P.CT) $1 / 2$

Note : If the theorem is proved as given in the test-book, give full marks.
Construction ; Join $O P, O Q$ and $O R$
$1 / 2$

$$
\begin{aligned}
& O Q=O R(\text { radii of same circle }) \\
& O P=O P(\text { common side }) \\
& \triangle O Q P \cong \triangle O R P[\text { RHS }]
\end{aligned}
$$

In the given figure, ' O ' is the centre of a circle and $O A B$ is an equilateral triangle. P and Q are the mid-points of $O A$ and $O B$ respectively. If the area of $\triangle O A B$ is $36 \sqrt{3} \mathrm{~cm}^{2}$, then find the area of the shaded region.

Ans. :

Area of equilateral triangle $O A B=\frac{\sqrt{3} a^{2}}{4}$

$$
\begin{align*}
& 36 \sqrt{3}=\frac{\sqrt{\beta} a^{2}}{4} \\
& a^{2}=36 \times 4 \\
& a^{2}=144 \\
& a= \sqrt{144}=12 \mathrm{~cm} \\
& \therefore \text { Radius of the circle }=\frac{a}{2}=\frac{12}{2}=6 \mathrm{~cm} \tag{2}\\
& \text { Area of shaded region }=\text { Area of circle }- \text { Area of sector } O P Q \\
&=\pi r^{2}-\frac{\theta}{360^{\circ}} \times \pi r^{2} \\
&=\pi r^{2}\left(1-\frac{60^{\circ}}{360^{\circ}}\right) \\
&=\pi r^{2}\left(1-\frac{1}{6}\right)
\end{align*}
$$

	Value Points
	$=\frac{22}{7} \times 6^{2}\left(\frac{6-1}{6}\right)$
	$=\frac{22}{7} \times 6 \times \varnothing \times \frac{5}{6}$
	$=\frac{660}{7}$
Area of shaded region $A=94.2 \mathrm{~cm}^{2}$	
Note $:$ area of shaded region $=\frac{300}{360} \times \pi r^{2}$ can also be used.	

Ans. :

> Construction of given triangle

Construction of acute angle with division
Drawing parallel lines
Obtaining of required triangle

.
The distance between two cities ' A ' and ' B ' is 132 km . Flyovers are built to avoid the traffic in the intermediate towns between these cities. Because of this, the average speed of a car travelling in this route through flyovers increases by $11 \mathrm{~km} / \mathrm{h}$ and hence, the car takes 1 hour less time to travel the same distance than earlier. Find the current average speed of the car.
Ans. :
Let the average speed of the car $=x \mathrm{~km} / \mathrm{hr}$
Distance between two cities $=132 \mathrm{~km}$
Time taken $=\left(\frac{D}{S}\right)=\frac{132}{x}$ Hours
If the speed increases by $11 \mathrm{~km} / \mathrm{hr}$
Then the speed of the Car $=(x+11) \mathrm{km} / \mathrm{hr}$
Time taken $=\frac{132}{x+11}$ Hours
According to the data

$$
\begin{aligned}
& \frac{132}{x}-\frac{132}{x+11}=1 \\
& \frac{132(x+11)-132 x}{x(x+11)}=1
\end{aligned}
$$

$132 x+1452-13 \not 2 x=1 x(x+11)$

$$
1452=x^{2}+11 x
$$

$$
\begin{array}{ll}
x-33=0 & x+44=0 \\
x=33 & x=-44
\end{array}
$$

$$
x^{2}+11 x-1452=0
$$

$$
x^{2}+44 x-33 x-1452=0
$$

$$
x(x+44)-33(x+44)=0
$$

$$
(x-33)(x+44)=0
$$

\therefore Average speed of the $\operatorname{car}(x)=33 \mathrm{~km} / \mathrm{hr}$
\therefore Current Average speed is $(x+11) \mathrm{km} / \mathrm{hr}$

$$
\begin{aligned}
& =33+11 \\
& =44 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Qn. Nos.	Value Points	
43.	A life insurance agent found the following data distribution of ages of 100 policy holders. Draw a "L than type ogive" for the given data:	
	Age (in years)	Number of policy holders (cumulative frequency)
	Below 20	2
	Below 25	6
	Below 30	24
	Below 35	45
	Below 40	78
	Below 45	89
	Below 50	100

Ans. :

Drawing axes and writing scale $\quad(1 / 2+1 / 2)=1$
Marking points
Drawing ogive

Value Points	
Answer the following questions :	$4 \times 4=16$

The sum of 2 nd and 4 th terms of an arithmetic progression is 54 and the sum of its first 11 terms is 693. Find the arithmetic progression. Which term of this progression is 132 more than its 54th term ?

OR

The first and the last terms of an arithmetic progression are 3 and 253 respectively. If the 20 th term of the progression is 98 , then find the arithmetic progression. Also find the sum of the last 10 terms of this progression.

Ans. :

$$
\begin{align*}
& a_{2}+a_{4}=54 \\
& a+d+a+3 d=54 \\
& 2 a+4 d=54 \div 2 \\
& a+2 d=27 \ldots \ldots \ldots \ldots \text { (i) } \tag{i}\\
& S_{11}=693 \\
& 693=\frac{11}{2}[2 a+(11-1) d] \\
& 693=\frac{11}{2}[2 a+10 \mathrm{~d}] \\
& 693=\frac{11}{2} \times \not 2[a+5 d] \\
& a+5 d=\frac{693}{11} \\
& a+5 d=63 \ldots \ldots \ldots \ldots . \text { ii }) \tag{ii}
\end{align*}
$$

(ii) - (i)
$\not q+5 d=63$
$\not q+2 d=27$

$(-) \quad(-) \quad(-)$
$3 d=36$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Qn. \\
Nos.
\end{tabular} \& \multicolumn{5}{|l|}{Value Points} \& Marks allotted \\
\hline \& A.P. which starts from last term is
\[
\begin{aligned}
\& \begin{array}{lll}
a_{n}, \& a_{n}-d \& a_{n}-2 d \ldots \ldots \\
253, \& 253-5 \& 253-2 \times 5 \\
253, \& 248, \& 243 \ldots \ldots \ldots . \\
a=253, \& d=-5, \& n=10 \\
S_{n} \& =\frac{n}{2}[2 a+(n-1) d] \\
S_{10} \& =\frac{10^{5}}{22}[2 \times 253+(10-1) \times(-5)] \\
\& =5[506+(-45)] \\
\& =5[506-45] \\
\& =5 \times 461 \\
S_{10} \& =2305 \\
\hline
\end{array} \\
\& \hline
\end{aligned}
\] \& \& \& \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 4

\hline 45. \& \multicolumn{5}{|l|}{| Find the solution of the given pair of linear equations by graphical method : $\begin{aligned} & 2 x+y=8 \\ & x-y=1 \end{aligned}$ |
| :--- |
| Ans. : $2 x+y=8$ $x-y=1$ |} \&

\hline \& | x | 0 | 4 |
| :---: | :---: | :---: |
| y | 8 | 0 | \& x

y \& 0
-1 \& 0 \& \&

\hline
\end{tabular}

| Qn.
 Nos. | Value Points | |
| :---: | :---: | :---: | :---: |
| allotted | | |$|$

Ans. :

In $\triangle O A B$

$$
\begin{aligned}
& \sin 30^{\circ}=\frac{A B}{A O} \\
& \frac{1}{2}=\frac{A B}{20}
\end{aligned}
$$

$\begin{aligned} & \text { Qn. } \\ & \text { Nos. } \end{aligned}$	Value Points	Marks allotted
	$\begin{aligned} & =\pi r[l+2 r] \\ & =\frac{22}{\gamma_{1}} \times 3 \cdot 5^{0.5}(125+2 \times 3 \cdot 5) \\ & =11(12 \cdot 5+7) \\ & =11 \times 19 \cdot 5 \end{aligned}$ T.S.A of the toy $=214.5 \mathrm{~cm}^{2}$ Volume of the toy = Volume of cone + volume of hemisphere $\begin{aligned} & =\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3} \\ & =\frac{1}{3} \pi r(h+2 r) \\ & =\frac{1}{3} \times \frac{22}{8} \times 3 \cdot 5^{0.5} \times 3 \cdot 5(12+2 \times 3.5) \\ & =\frac{38 \cdot 5}{3}(12+7) \\ & =\frac{38 \cdot 5 \times 19}{3} \\ & =\frac{731.5}{3} \\ & =243.8 \end{aligned}$	
	Volume of the toy $=243.8 \mathrm{~cm}^{3} \quad 11 / 2$	5

[^0]: \triangle CCE PF/NSR \& NSPR(C)/500/6650 (MA)

