Question 1. The equation of the tangent to the curve $y = \sqrt{9-2x^2}$, at the point where the ordinates and abscissa are equal, is?

Answer. y > 0

Question 2. The minimum value of function $(1 - x + x^2) / (1 + x + x^2)$

A. ⅓ B. 0 C. 3 D. 1

Answer. A

Question 3. $\int \sin(\log x) dx$

A. (x/2)[sin(logx) - cos(logx)]B. cos(logx) - xC. $\int (x-1)e^x / (x+1)^3$ D. - cos logx

Answer. A

Question 4. The value of $\int (1 - \cos x) \cdot \csc^2 dx$ is?

Answer. cos(x) + sin(x) + cot(cos(x)) + C**Solution.** To evaluate the integral $\int (1 - cosx) cosec^2(x) dx$, we can simplify the integrand using trigonometric identities. Recall that $cosec^2(x)$ is equal to $1 + cot^2(x)$, where cot(x) is the cotangent of x.

 $\int (1 - \cos x) \csc^2(x) dx = \int (1 - \cos x) (1 + \cot^2(x)) dx$

Expanding the expression:

 $= \int (1 - \cos x + \cot^2(x) - \cos x + \cot^2(x)) dx$

Now, let's evaluate each term separately:

 $\int (1 - \cos x) \, dx = x - \sin(x) + C_1$

 $\int \cot^2(x) dx \ can be integrated by using the formula <math>\int \cot^2(x) dx = -x - \cot(x) + C_2$

 $\int \cos x \cdot \cot^2(x) dx can be integrated by substitution. Let's denote cos(x) as u:$

u = cos(x) du = -sin(x) dx

Replacing dx and cos(x) with du and u, respectively, we have:

 $\int u^{*} \cot^{2}(x) (-du/\sin(x)) = -\int u \cot^{2}(x) du = -\int \cot^{2}(x) du$

Using the formula mentioned earlier, we know that $\int \cot^2(x) dx = -x - \cot(x) + C_2$. Hence, the integral of $-\int \cot^2(x) du$ will be $-(-u - \cot(u) + C_2) = u + \cot(u) - C_2$.

Putting it all together, the integral becomes:

 $x - sin(x) + C_1 + (-x - cot(x) + C_2) + (cos(x) + cot(cos(x)) - C_2)$

Simplifying:

 $= x - x + \cos(x) + \sin(x) + \cot(\cos(x)) + C_1 - C_2$

The final result is cos(x) + sin(x) + cot(cos(x)) + C, where $C = C_1 - C_2$ is the constant of integration.

Question 5. The function of $f(x)= 2x^3-9x^2+ 12x+29$ is monotonically increasing in the interval

Answer. B

Solution. To determine whether the function $f(x) = 2x^3 - 9x^2 + 12x + 29$ is monotonically increasing in an interval, we need to analyze the first derivative of the function, which is given by:

 $f'(x) = 6x^2 - 18x + 12$

To find the critical points of the function (where the derivative is equal to zero), we need to solve the equation f'(x) = 0:

 $6x^2 - 18x + 12 = 0$

Dividing both sides by 6, we get:

 $x^2 - 3x + 2 = 0$

Factoring the left-hand side, we get:

(x - 1)(x - 2) = 0

So the critical points are x = 1 and x = 2.

Now we need to analyze the sign of the derivative in the different intervals:

Interval $(-\infty, 1)$:

For x < 1, we can choose x = 0 as a test point. Plugging this into the derivative, we get:

 $f'(0) = 6(0)^2 - 18(0) + 12 = 12$

Since f'(0) > 0, the derivative is positive in the interval (- ∞ , 1). This means that the function is monotonically increasing in this interval.

Interval (1, 2):

For 1 < x < 2, we can choose x = 1.5 as a test point. Plugging this into the derivative, we get:

 $f'(1.5) = 6(1.5)^2 - 18(1.5) + 12 = -3$

Since f'(1.5) < 0, the derivative is negative in the interval (1, 2). This means that the function is not monotonically increasing in this interval.

Interval (2, ∞):

For x > 2, we can choose x = 3 as a test point. Plugging this into the derivative, we get:

 $f'(3) = 6(3)^2 - 18(3) + 12 = 30$

Since f'(3) > 0, the derivative is positive in the interval $(2, \infty)$. This means that the function is monotonically increasing in this interval.

Therefore, the function $f(x) = 2x^3 - 9x^2 + 12x + 29$ is monotonically increasing in the interval (- ∞ , 1) U (2, ∞), which corresponds to option B.

Question 6. For all real x, the minimum value of function $f(x)=1-x+x^2/1-x+x$

A. 1/3 B. 0

- C. 3
- C. 3
- D. 1

Answer.1/3

Question 7. If the line $(x - 1)/2 = (y+1)/3 = (z-2)/4 = \Box$ meets the plane, x+2y+3z = 15 at a point P, then the distance of P from the origin is?

A. 7/2 B. 9/2 C. √5/2 D. 2√5

Answer. B

Question 8. If cosx + cosy - cos(x+y) = 3/2 then,

A. x+y = 0 B. x = 2y C. x =y D. 2x =y

Answer. C

Question 9. If the vertices of a triangle are (-2,3), (6,-1) and (4,3), then the co-ordinates of the circumcentre of the triangle are?

A. (1,1) B. (-1,-1) C. (-1,1) D. (1,-1)

Answer. D

Question 10. If $\cos (1\sqrt{p} + \cos (1\sqrt{p}) + \cos (1\sqrt{1-a})) = 3 \square /4$, then q is?

A. 1/2 B. 1/√2 C. 1 D. 1/3

Answer. A

Question 11. In \triangle ABC b= $\sqrt{3}$, c=1 angle A = 30, then largest angle?

Answer. 120

Question 12. If the area of the parallelogram with a and b as two adjacent sites 16 sq, units, then the area of the Parallelogram having 3a+2b and a+3b as two adjacent sides in sq.units is

- A. 96
- B. 112
- **C. 144**
- D. 128

Answer. B

Question 13. dy/dx + y/x = sinn Answer. xy+cosy-sinx=c

Question 14. x=5/1-21, value of $x^3+x^2-x^122$ Answer. $x^2-2x+1=-4$

Question 15. Equation of tangent to the curve $y = \sqrt{(9-2x^2)}$ where x=y.