Section A: Q.1 - Q.10 Carry ONE mark each.	
Q.1	Which one of the following is a non-parametric test?
(A)	χ^{2} - test
(B)	t - test
(C)	F - test
(D)	z - test
Q.2	Let x and y be two consumption bundles, assumed to be non-negative and
perfectly divisible. Further, the assumptions of completeness, transitivity,	
reflexivity, non-satiation, continuity, and strict convexity are satisfied.	
Then, which of the following statements is NOT CORRECT?	

Q. 3	Consider a production function of the form: $Y=a \log L+(1-a) \log K, \quad a \in(0,1), \quad a \neq 0.5$ where, Y is output, L is labour, and K is capital. Then, the absolute value of elasticity of substitution is
(A)	1
(B)	a
(C)	$(1-a)$
(D)	∞
Q. 4	Consider a closed economy with consumption function $C=2+0.5 Y$, where Y is income. The government expenditure is 3 and investment function is $I=4-0.5 r$, where r is interest rate. Then, the slope of the IS curve will be
(A)	1
(B)	-0.5
(C)	1.5
(D)	-1

Q.5	
	Which of the following was announced in the Union Budget $2023-24$ to enhance the skills of lakhs of youth in the next 3 years?
(A)	Pradhan Mantri Kaushal Vikas Yojana (PMKVY) 1.0
(C)	Pradhan Mantri Kaushal Vikas Yojana (PMKVY) 2.0
(D)	Pradhan Mantri Kaushal Vikas Yojana (PMKVY) 4.0
Q.6	Suppose a random variable X follows an exponential distribution with mean 50.
Then, the value of the conditional probability $P(X>70 \mid X>60$) is	
(A)	$e^{-\frac{7}{5}}$
(D)	$e^{-\frac{6}{5}}$
(C)	$e^{-\frac{1}{5}}$

Q.7	Which of the following measures was NOT initiated by the Government of India as a part of economic reforms in 1991?
(A)	Announcement of new industrial policy
(B)	Full convertibility of rupee on the capital account
(C)	Removal of Quantitative Restrictions
(D)	Guidelines for investment by Foreign Institutional Investors (FIIs) in the capital market
Q.8	Suppose nominal GDP equals 1,000 units and money supply equals 250 units. Based on the quantity theory of money, the velocity of money equals
(A)	40
(B)	4
(C)	$2,50,000$
	500

Section A: Q.11 - Q.30 Carry TWO marks each.	
Q.11	Two distinct integers are chosen randomly from 5 consecutive integers. If the random variable X represents the absolute difference between them, then the mean and variance of X are, respectively,
(A)	1 and $\frac{3}{2}$
(B)	2 and 5
(C)	1 and 3
(D)	2 and 1
Q.12	Consider two independent random variables: $X \sim N(5,4)$ and $Y \sim N(3,2)$.
(D)	$\mu=8$ and $\sigma^{2}=34$
(A)	$\mu=19$ and $\sigma^{2}=34$
(C)	$\mu=8$ and $\sigma^{2}=14$

Q. 13	The optimal value of the linear programming problem $\begin{aligned} & \text { Maximise } Z=2 x+3 y \\ & \text { subject to } \\ & \qquad \begin{array}{c} 5 x+4 y \leq 20, \\ 3 x+5 y \leq 15 \\ 2 x+y \leq 4 \\ x, y \geq 0 \end{array} \end{aligned}$ is
(A)	4
(B)	$\frac{64}{7}$
(C)	9
(D)	$\frac{72}{7}$

Q.17	For a profit maximising monopolist, the ratio of the profit margin to price (also known as the Lerner Index or the relative mark-up) has a relationship with the price-elasticity of demand at the profit maximising price. Then, which of the following statements is CORRECT?
(A)	The larger the elasticity of demand at the profit maximising price, the greater is the relative mark-up
(B)	The power to sustain a price higher than the marginal cost depends only on the profit maximising price
At the profit maximising price, given costs are greater than zero, the price	
(D)	At the revenue maximising price, the price elasticity of demand is greater than unity

Q.19	Suppose high quality and low quality products are sold at the same price to the buyers. The buyers have less information to determine the quality of the product compared to the sellers at the time of purchase. Which of the following problems arises in this situation?
(A)	Moral hazard problem
(B)	Market signaling problem
(C)	Principal-agent problem
(D)	Adverse selection problem
Q.20	Individuals who were either unemployed or out of labour force but had worked for at least 30 days over the reference year were included in the labour force by the NSSO in its labour force surveys. Under which one of the following classifications does the above procedure appear?
(A)	Usual Principal Status
(B)	Usual Principal and Subsidiary Status
Current Weekly Status	

Q.21	Let the production function be given by where, at time t, Y_{t} is output, A_{t} is level of Total Factor Productivity, K_{t} is physical capital, H_{t} is human capital, and L_{t} is labour. $\alpha=\frac{1}{5}$ and $\beta=\frac{2}{5}$. If the growth rate of Y_{t} equals 10 percent, the growth rate of K_{t} equals 5 percent, the growth rate of H_{t} equals 5 percent, and the growth rate of L_{t} equals 10 percent, then the growth rate of A_{t} is
(A)	2 percent
(B)	3 percent
(D)	5 percent
10 percent	

Q.22	Consider an economy where technology is characterised by the production function: where, Y is output, K is capital, and L is labour. Assuming perfect competition in the product market and in the factor markets, the share of total income paid to labour is equal to			
(A)	0.2	\quad	(B)	0.3
:---	:---			
(D)	0.4			

Q24	The Rangarajan Panel on 4 ${ }^{\text {th }}$ June 1993 submitted recommendations related to Balance of Payment (BoP). Which one of the following was NOT a part of the Panel's recommendations?
(A)	Efforts should be made to replace debt flows with equity flows
(B)	The ratio of debt linked to equity should be limited to 1:4
(C)	The minimum targets for foreign reserves should be fixed in such a way that the reserves are generally in a position to accommodate imports of 3 months
No sovereign guarantee should be extended to private sector	

Q.25	According to the "State of Inequality in India Report" from the Institute for Competitiveness, released on $18^{\text {th }}$ May 2022, which of the following statements is CORRECT?
(A)	In India, the percentage of anaemic children under 5 years of age has decreased from 67.1 percent in 2015-16 to 58.6 percent in 2019-21
(B)	The female labour force participation rate in India has increased from 49.8 percent in 2017-18 to 53.5 percent in 2019-20
(C)	Using data from the Periodic Labour Force Survey (PLFS) 2019-20, the report shows that individuals with monthly salary of Rs. 25,000 are among the top 10 percent of total wage earners
(D)	By the end of 2019-20, 95 percent of all schools in India have functional toilets for girls

Q.26	Consider the production function:
	$Q(K, L)=(2 \sqrt{K}+3 \sqrt{L})^{2}$
where Q is the output, K is capital, and L is labour.	
If η_{K} and η_{L} denote the output elasticities with respect to capital and labour,	
respectively, then the value of $\left(\eta_{K}+\eta_{L}\right)$ is	
(A)	2
(B)	1
(C)	4
(D)	0.5
(D)	Aggregate price falls and unemployment rate falls
(B)	Aggregate price falls and unemployment rate rises
(A)	Aggregate price rises and unemployment rate falls
(Consider a short-run Phillips curve with a constant expected rate of inflation. If	
	Cone aggregate demand decreases unexpectedly and the labour force remains the the

Q.28	Suppose the price elasticity of demand $\left(e_{D}\right)$ is $-\frac{1}{5}$ and the price elasticity of supply $\left(e_{S}\right)$ is $\frac{2}{5}$. Then, the incidence of a specific (or unit) tax on the firms is equal to
(A)	$\frac{1}{3}$
(B)	$\frac{2}{3}$
(D)	$\frac{1}{2}$

Q.29	The differential equation satisfied by circles with radius 3 and center lying on the Y-axis is
(A)	$\left(\frac{d y}{d x}\right)^{2}=\frac{x^{2}}{9+x^{2}}$
(B)	$\left(\frac{d y}{d x}\right)^{2}=\frac{9+y^{2}}{y^{2}}$
(D)	$\left(\frac{d y}{d x}\right)^{2}=\frac{x^{2}}{9-x^{2}}$
$d x)^{2}=\frac{9-y^{2}}{y^{2}}$	

Qection B: Q.31 - Q.40 Carry TWO marks each.	
Q.31	In the case of a small open economy with fixed exchange rate regime and imperfect capital mobility, which of the following is/are CORRECT?
(A)	Fiscal contraction will lead to Balance of Payment deficit in the short-run if the slope of LM curve is greater than the slope of Balance of Payment curve
(B)	Fiscal contraction will lead to Balance of Payment deficit in the short-run if the slope of LM curve is less than the slope of Balance of Payment curve
(C)	Monetary expansion leads to Balance of Payment surplus in the short-run irrespective of the slopes of the LM curve and the Balance of Payment curve
(D)	Monetary expansion leads to Balance of Payment deficit in the short-run irrespective of the slopes of the LM curve and the Balance of Payment curve

Q.32	Consider the following three utility functions: where, x_{1} and x_{2} are two goods available at unit prices $p_{x_{1}}$ and $p_{x_{2}}$, respectively. Which of the following is/are CORRECT for the above utility functions?
(A)	The marginal rate of substitution is given by $-1,-2$, and $-0.5 \sqrt{x_{1}}$ for the utility functions F, G, and H, respectively
(C)	If $p_{x_{1}}=p_{x_{2}}$, then the utility maximisation problem with utility function F has a corner solution with utility function G, the sum of the optimal values of x_{1} and x_{2} is 50
(D)	If income is $100, p_{x_{1}}=5$, and $p_{x_{2}}=5000$, then in the utility maximisation problem with the utility function H, the optimal value of x_{2} is 20

Q.33	The characteristics of pure public good is/are
(A)	rival in consumption
(B)	excludable in consumption
(D)	non-rival in consumption

Q. 35	Let a random variable X has mean μ_{x} and non-zero variance σ_{x}^{2}, and another random variable Y has mean μ_{y} and non-zero variance σ_{y}^{2}. If the correlation coefficient between X and Y is ρ, then which of the following is/are CORRECT?
(A)	$\|\rho\| \leq 1$
(B)	The regression line of Y on X is $y=\mu_{y}+\frac{\rho \sigma_{x}}{\sigma_{y}}\left(x-\mu_{x}\right)$
(C)	The variance of $X-Y$ is $\sigma_{x}^{2}+\sigma_{y}^{2}-2 \rho \sigma_{x} \sigma_{y}$
(D)	$\rho=0$ implies X and Y are independent random variables

Q. 37	Let $M=\left(\begin{array}{rr}\alpha & -6 \\ -1 & 1\end{array}\right), \alpha \in R$ be a 2×2 matrix. If the eigenvalues of M are β and 4 , then which of the following is/are CORRECT?
(A)	$\alpha+\beta=1$
(B)	An eigenvector corresponding to β is $[2,1]^{T}$
(C)	The rank of the matrix M is 2
(D)	The matrix $M^{2}+M$ is invertible
Q. 38	Let $f: R^{2} \rightarrow R$ be a function defined as $f(x, y)=\left\{\begin{array}{cl} \frac{x^{2} y}{x^{4}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0) \end{array}\right.$ Then, which of the following is/are CORRECT?
(A)	$\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$
(B)	$f_{x}(0,0)=0$
(C)	$f(x, y)$ is not continuous at (0,0)
(D)	Both f_{x} and f_{y} do not exist at $(0,0)$

Q.39	Which of the following is/are NOT CORRECT?
(A)	Under the Reserve Bank of India Act, 1938, every scheduled bank has to keep certain minimum cash reserves with the RBI
(B)	CRR is the statutory reserve requirements to be kept by every scheduled bank with the RBI
(C)	A higher SLR increases the capacity of commercial banks to grant loans and advances
A high SLR can be considered as a tax on the banking system	

Q.40	According to the NITI Aayog's "National Multidimensional Poverty Index: A Progress Review 2023", which of the following is/are CORRECT?
(A)	The rural areas in India have experienced fastest decline in percentage of multidimensional poverty from 35.59 percent in 2015-16 to 21.28 percent in 2019-21
(B)	The incidence of poverty in urban areas in India increased from 5.27 percent in 2015-16 to 8.65 percent in 2019-21
(C)	A decline in India's Multidimensional Poverty Index in 2019-21 is due to improvement in all the 12 indicators
At the national level, there is a decline in the intensity of poverty between	
$2015-16$ and 2019-21	

Section C: Q. 41 - Q. 50 Carry ONE mark each.	
Q. 41	A firm has a production function that is homogenous of degree one given by $Q=2 \sqrt{L K}$, where Q is quantity, L is labour and K is capital. The unit price of L is Rs. 4 and the unit price of K is Rs. 16. Assuming that there is zero fixed cost, the total cost (long run) of producing 10 units of Q is Rs. \qquad (in integer).
Q. 42	Two students A and B are assigned to solve a problem separately. The (conditional) probability that A can solve the problem given that B cannot solve it, is $\frac{1}{5}$. The (conditional) probability that B can solve the problem given that A can solve the problem is $\frac{3}{5}$. The probability that A can solve the problem is $\frac{1}{10}$. Then, the probability that B can solve the problem is \qquad (rounded off to one decimal place).
Q. 43	Suppose the cash reserve ratio is 5 percent in a country. Assume that commercial banks keep zero excess reserve and the cash-to-deposit ratio is 5 percent. To increase the money supply by Rs. 10,500 crores, the central bank of the country should inject Rs. \qquad crores (in integer).

Q.44	Suppose an Indian company borrowed 300 dollars from a foreign bank at the beginning of the year and repaid it in dollars along with the agreed interest rate of 12 percent per annum. At the time of borrowing, the exchange rate was Rs. 70 per dollar. Assuming zero inflation rate in both the countries, the real cost of borrowing will be zero if the exchange rate is Rs. time of repayment (rounded off to one decimal place).
Q.45	per dollar at the
	There are 32 students in a class. Three courses namely English, Hindi and Mathematics are offered to them. Each student must register for at least one course. If 16 students take English, 8 students take Hindi, 18 students take Mathematics, 4 students take both English and Hindi, 5 students take both Hindi and Mathematics, and 5 students take both English and Mathematics, then the number of students who take Mathematics only is to
(in integer).	

Q. 47	The linear system of equations $\begin{gathered} x+y=3 \\ x+\left(k^{2}-8\right) y=k, \quad k \in R \end{gathered}$ has no solution for $k=$ \qquad (in integer).
Q. 48	A manufacturer producing pens has the following information regarding the cost of production of pens: If the total cost function is of the form $T C(Q)=a Q^{2}+b Q+c$ where a, b, and c are constants, then the value of $T C(Q)$ at $Q=4$ is \qquad (in integer).

| Q.49 | Consider the information given in the table below: | |
| :--- | :--- | :--- | :--- | :--- |
| | | |

Section C: Q. 51 - Q. 60 Carry TWO marks each.	
Q. 51	An individual owns a mobile phone, currently valued at Rs. 40,000. The current wealth of the individual is Rs. 2,00,000 (including the value of the mobile phone). According to reports, there is a 20 percent chance of mobile phone theft and an actuarially fair insurance policy is available to insure the loss of the mobile phone against a theft. The individual's von-Neumann-Morgenstern utility of wealth function is given by $U(W)=\sqrt{W}$, where W is the wealth. Then, the maximum willingness to pay for such an actuarially fair insurance policy is Rs. \qquad (rounded off to nearest integer).
Q. 52	Consider the following AK model where the production function is given by $Y=A K$ where Y is output, K is capital, and A is a constant that reflects the level of technology. Suppose there is zero technological progress in the economy and $A=0.50$. In the economy, the savings rate equals 0.60 and the depreciation rate for the capital stock equals 0.05 . The population growth rate equals zero and the size of the labour force is normalised to 1 . Based on the AK model, the steady state growth rate of output per capita in the economy equals \qquad percent (in integer).

Q.56	Let the value of a random sample drawn from a normal distribution with mean 5 and unknown standard deviation σ be 4.8, 4.5, 5.1, 5.2, 5.3, 5.5. Then, the maximum likelihood estimate of σ^{2} is places). Q.50unded off to two decimal
	An economy produces a consumption good and also has a research sector which produces new ideas. Time is discrete and indexed by $t=0,1,2, \ldots$
The production function for the consumption good is given by	
The production function for new ideas is given by	
where $L_{a t}$ is the amount of labour devoted to production of new ideas at time t.	
Suppose that for all $t, L_{a t}=10$ and $L_{y t}=90$. Then, the growth rate of the	
consumption good $\left(Y_{t}\right)$ at $t=50$ is $\quad Y_{t}=A_{t} L_{y t}$	
where, at time t, Y_{t} is the amount of consumption good produced, A_{t} is the stock	
of existing knowledge, and $L_{y t}$ is the amount of labour devoted to production of	
consumption good. It is known that $A_{0}=1$.	

Q.60	There are two goods X and Y and there are two consumers A and B in a pure exchange economy. A and B have Cobb-Douglas utility functions of the form $U_{A}=2 X^{0.4} Y^{0.6}$ and $U_{B}=X^{0.3} Y^{0.7}$, respectively. Initially, A is endowed with 50 units of good X and 20 units of good Y. Similarly, B is endowed with 50 units of good X and 20 units of good Y. If the unit price of good Y is normalised to 1, then the equilibrium unit price for good X is places).

