Unofficial CUET Mathematics Question Paper 2024

The comer points of the feasible region determined by $x+y \leq 8,2 x+y \geq 8, x \geq 0, y \geq 0$ are $A(0,8)$, $(4,0)$ and $C(8,0)$. If the objective function $Z=a x+$ by base its maximum value on the line sept $A B$, then the relation between a and b is:

$$
\text { If } t=e^{2 x} \text { and } y=\log _{e} t^{2} \text {, then } d^{2} y / d x^{2} \text { is : }
$$

$$
\int\left(\pi /\left(x^{n+1}\right)-x\right) d x=?
$$

$$
\int_{0}^{1}\left(a-b x^{2}\right) d x /\left(a+b x^{2}\right)^{2}=?
$$

The second order derivative of which of the following functions is 5^{\times}?

The degree of the differential equation $\left(1-(d y / d x)^{2}\right)^{3 / 2}=k d^{2} y / d x^{2}$

Let R be the relation over the set A of all straight lines in a plane such that $I_{1} R I_{2} \leftrightarrow I_{1}$ is parallel to I_{2}. Then R is

The probability of not getting 53 Tuesdays in a leap year is:

The angle between two lines whose direction ratios are proportional $<1,1,-2>$ and $<(\sqrt{ } 3-1)$, ($-\sqrt{ } 3-$ $1),-4>$ is:

$$
\text { If }(a-b) \cdot(a+b)=27 \text { and }|a|=2|b| \text {, then }|b| \text { is: }
$$

If $\tan ^{-1}\left(2 /\left(3^{-x}+1\right)\right)=\cot ^{-1}\left(3 /\left(3^{x}+1\right)\right)$ then which one of the following is true?

If A, B and C are three singular matrices given by $\left.A=\left[\begin{array}{ll}1 & 4\end{array}\right),\left(\begin{array}{ll}3 & 2 a\end{array}\right)\right], B=\left[\left(\begin{array}{ll}3 b & 5\end{array}\right)\right.$, $\left.\left(\begin{array}{ll}a & 2\end{array}\right)\right]$ and $C=\left[\left(\begin{array}{lll}a+b+c & c+1\end{array}\right),\left(\begin{array}{ll}a+c & c\end{array}\right)\right]$, then the value of $a b c$ is:

If a, b and c are three vectors such that $a+b+c=0$, where a and b are unit vectors and $|c|=2$, then the angle between the vectors b and c is:

Let $[x]$ denote the greatest integer function. Then match List-I with List-II:
List-I (A)|x-1|+|x-2|
(B) $x-|x|$
(C) $x-\{x\}$
(D) $x|x|$

List-II (I) is differentiable everywhere except at $x=0$ (II) is continuous everywhere (III) is not differentiable at $x 1$ (IV) is differentiable at $x=1$

Choose the correct answer from the options given below:

The rate of change (in $\mathrm{cm}^{2} / \mathrm{s}$) of the total surface area of a hemisphere with respect to radius r at r $=(1.331)^{1 / 3} \mathrm{~cm}$ is

The area of the region bounded by the lines $x / 7 \sqrt{ } 3 a+y / b=4, x=0$ and $y=0$ is:

If A is a square matrix and I is an identity matrix such that $A^{2}=A$. then $A(I-2 A)^{3}+2 A^{3}$ is equal to

Match List-I with List-II:

List-I (A) Integrating factor of $x d y-\left(y+2 x^{2}\right) d x=0 \quad$ (B) Integrating factor of $\left(2 x^{2}-3 y\right) d x=x d y$ (C) Integrating factor of $\left(2 y+3 x^{2}\right) d x+x d y=0 \quad$ (D) Integrating factor of $2 x d y+(3 x+2 y) d x=0$

$$
\text { List-II (I) } 1 / x \quad \text { (II) } x \quad \text { (III) } x^{2} \quad \text { (IV) } x^{3}
$$

Choose the correct answer from the options given below:

If the function $f: N \rightarrow N$ is defined as $f(n)=\{(n-1 \quad$ if is in even $),(n+1$ if n is odd), then $(A) f$ is injective (B) f is into, \quad) f is surjective (D) f is invertible

Choose the correct answer from the options given below:

$$
0_{0}^{0^{\pi / 2}}[(1-\cot x) /(\operatorname{cosec} x+\cos x)] d x=?
$$

