JEE Main Fluid Mechanics Previous Year Questions 2024

Q1: A solid sphere of radius R acquires a terminal velocity V 1 when falling (due to gravity) through a viscous fluid having a coefficient of viscosity η. The sphere is broken into 27 identical spheres. If each of these acquires a terminal velocity $\mathbf{v 2}$, when falling through the same fluid, the ratio ($\mathbf{v} 1 / \mathrm{v} 2$) equals
(a) 9
(b) $1 / 27$
(c) $1 / 9$
(d) 27

Answer: (a) 9

Q2: Spherical balls of radius R are falling in a viscous fluid of viscosity with a velocity v. The retarding viscous force acting on the spherical ball is
(a) directly proportional to R but inversely proportional to v
(b) directly proportional to both radius R and velocity v
(c) inversely proportional to both radius R and velocity v
(d) inversely proportional to R but directly proportional to velocity v

Answer: (b) directly proportional to both radius R and velocity v

Q3: A long cylindrical vessel is half-filled with a liquid. When the vessel is rotated about its own vertical axis, the liquid rises up near the wall. If the radius of the vessel is 5 cm and its rotational speed is 2 rotations per second, then the difference in the heights between the centre and the sides, in cm , will be
(a) 0.4
(b) 2.0
(c) 0.1
(d) 1.2

Answer: (b) 2.0

Q4: Water is flowing continuously from a tap having an internal diameter $8 \times$ $10-3 \mathrm{~m}$. The water velocity as it leaves the tap is $0.4 \mathrm{~ms}-1$. The diameter of the water stream at a distance $2 \times 10-1 \mathrm{~m}$ below the tap is close to
(a) $5.0 \times 10-3 \mathrm{~m}$
(b) $7.5 \times 10-3 \mathrm{~m}$
(c) $9.6 \times 10-3 \mathrm{~m}$
(d) $3.6 \times 10-3 \mathrm{~m}$

Q5: A 20 cm long capillary tube is dipped in water. The water rises up to 8 cm . If the entire arrangement is put in a freely falling elevator the length of the water column in the capillary tube will be
(a) 4 cm
(b) 20 cm
(c) 8 cm
(d) 10 cm

Q6:Water flows into a large tank with a flat bottom at the rate of 10-4 m3s-1. Water is also leaking out of a hole of area 1 cm 2 at its button. If the height of the water in the tank remains steady, then this height is
(a) 5 cm
(b) 7 cm
(c) 4 cm
(d) 9 cm

Answer: (a) 5 cm

Q7: A submarine experiences a pressure of $5.05 \times 106 \mathrm{~Pa}$ at depth of d 1 in a sea. When it goes further to a depth of d 2 , it experiences a pressure of 8.08 x 106 Pa . Then $\mathrm{d} 1-\mathrm{d} 2$ is approximately (density of water $=103 \mathrm{~ms}-2$ and acceleration due to gravity $=10 \mathrm{~ms}-2$)
(a) 300 m
(b) 400 m
(c) 600 m
(d) 500 m

Answer: (a) 300 m
Q8: Water from a pipe is coming at a rate of 100 litres per minute. If the radius of the pipe is $5 \mathbf{c m}$, the Reynolds number for the flow is of the order (density of water $=1000 \mathrm{~kg} / \mathrm{m} 3$, coefficient of viscosity of water $=1 \mathrm{mPa} \mathrm{s}$)
(a) 10^{3}
(b) 10^{4}
(c) 10^{2}
(d) 10^{6}

Answer: (b)104
Q9: The top of a water tank is open to the air and its water level is maintained. It is giving out 0.74 m 3 water per minute through a circular opening of $\mathbf{2 ~ c m}$ radius in its wall. The depth of the centre of the opening from the level of water in the tank is close to
(a) 6.0 m
(b) 4.8 m
(c) 9.6 m
(d) 2.9 m

Answer: (b) 4.8 m

