MHT-CET 2021 Question Paper

25th September 2021

- 1. Which from the following is NOT a primary amine?
 - (A) Diphenyl amine (B) Benzyl amine
 - (C) p Toluidine (D) Allyl amine
- 2. Which among the following has the lowest boiling point?
 - $(A) \quad CH_3 O CH_2 CH_3$
 - $(B) \quad CH_3 CH_2 CH_2 OH$
 - $(C) \quad CH_{3} CH_{2} CH_{2} CH_{3} \\$
 - (D) $CH_3 COOH$
- 3. Which of the following equations represents relation between $t_{\frac{1}{2}}$ and rate constant for a first

order reactions?

- (A) $k = \frac{2 \cdot 303}{t_{\frac{1}{2}}}$ (B) $t_{\frac{1}{2}} = \frac{0 \cdot 693}{k}$ (C) $t_{\frac{1}{2}} = \frac{k}{0 \cdot 693}$ (D) $t_{\frac{1}{2}} = 2 \cdot 303 \ k$
- 4. Which polymer is formed from hexamethylene diammonium adipate monomer?
 - (A) Buna S
 - (B) Nylon 6,6
 - (C) Nylon 6
 - (D) Polyacrylonitrile
- 5. Calculate molar mass of solute if 5 g of it in 100 g of solvent has the depression in freezing point 2.15 K. (K_f for solvent = $14.7 \text{ K kg mol}^{-1}$).
- 6. Which among the following has the highest boiling point?
 - (A) Propan-1-ol(B) Ethanoic acid(C) Propanone(D) Propanal
- 7. Which of the following formulae is used to calculate angular momentum of an electron in given stationary orbit?

(A)	$mvr = n\left(\frac{h}{2\pi}\right)$	(B)	$mvr = n\left(\frac{2\pi}{h}\right)$
(C)	$\frac{mv}{n} = r\left(\frac{h}{2\pi}\right)$	(D)	$mvr = \frac{n\pi}{h}$

8. Identify the catalyst used in following reaction. Vegetable oil + H₂ $\xrightarrow{Catalyst}$ vegetable ghee (A) Ni_(s) (B) Mo_(s)

(C) $Pb_{(s)}$ (D) $Fe_{(s)}$

9. What is the contribution of each particle at corner in unit cell of cubic system?

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{8}$
(C) $\frac{1}{4}$ (D) $\frac{1}{6}$

10. The enthalpy of formation of ammonia gas is -46 kJ mol^{-1} . Find the enthalpy of following reaction.

- 11. What is the value of dextrorotation of glucose and sucrose respectively?
 - (A) $+ 66.5^{\circ}$ and $+ 52.7^{\circ}$
 - (B) $+ 52.7^{\circ}$ and $+ 92.4^{\circ}$
 - (C) $+ 52.7^{\circ}$ and $+ 66.5^{\circ}$
 - (D) $+ 92.4^{\circ}$ and $+57.7^{\circ}$
- 12. One mole maltose on hydrolysis forms
 - (A) one mole glucose and one mole galactose
 - (B) two moles glucose
 - (C) one mole glucose and one mole fructose
 - (D) two moles galactose
- 13. If 'a' is edge length of a simple cubic unit cell then atomic radius is given as _____.
 - (A) 0.1 a (B) 0.5 a (C) a (D) 1.5 a
- 14. Identify optically inactive compound from the following.
 - (A) 2-Bromopentane
 - (B) 2-Bromo-3-methylbutane
 - (C) 3-Bromohexane
 - (D) 2-Bromo-2-methylbutane
- 15. Fraction of the total number of moles of an electrolyte dissociated when equilibrium is attained is known as _____.
 - (A) van't Hoff factor
 - (B) degree of dissociation
 - (C) degree of hydrolysis
 - (D) percentage dissociation

MHT- CET 25th Sept. 2021 **QUESTION PAPER**

Which among the following compounds is NOT 16. a phenol?

17. If Q is charge of one mole of electron equal to 96500 coulombs, then the number of moles of electrons actually passed during electrolysis is given as _____.

(A)
$$\frac{96500}{Q}$$
 (B) $\frac{96500}{2Q}$
(C) $96500 \times Q$ (D) $\frac{Q}{96500}$

18. Identify neutral complex from the following.

(A)	$[Fe(CN)_6]^{4-}$	(B)	$[Fe(CO)_5]$
(C)	$[Cu(NH_3)_4]^{2+}$	(D)	$[Ni(CN)_4]^{2-}$

- 19. Which of the following polymer is used in the manufacture of drinking straws?
 - (A) Polypropylene **(B)** PET
 - LDPE (D) Polystyrene (C)
- 20. Aromatization reaction involves
 - dehydration and oxidation (A)
 - dehydrogenation and cyclization (B)
 - (C) dehydrogenation and oxidation
 - hydrogenation and cyclization (D)
- 21. Which of the following oxoacids of sulphur is called as pyrosulphuric acid?

(A)	$H_2S_2O_3$	(B)	H_2SO_5
(C)	$H_2S_2O_7$	(D)	$H_2S_2O_8$

22. Find out the difference between ΔH and ΔU at 300 K for the following reaction.

> $C_{(graphite)} + CO_{2(g)} \longrightarrow 2CO_{(g)}$ (B) 5.0 kJ (A) 2.5 kJ (C) (D) 75 kJ 3.6 kJ

23. What is the relation between solubility and solubility product for lead iodide?

(A)	$K_{sp} = 8S^3$	(B)	$K_{sp} = 4S^3$
(C)	$K_{sp} = S^2$	(D)	$K_{sp} = 27S^4$

- 24. Which among the following reactions is used to prepare oleum?
 - (A) $SO_3 + H_2SO_4 \longrightarrow$
 - (B) $2NaOH + SO_2 \longrightarrow$
 - (C) $I_2 + SO_2 + 2H_2O \longrightarrow$
 - (D) $Na_2SO_3 + H_2O + SO_2 \longrightarrow$

- 25. $R-Cl + AgF \longrightarrow R-F + AgCl \downarrow$
 - This reaction is an example of _____
 - Sandmeyer's reaction (A)
 - Swartz reaction (B)
 - (C) Finkelstein reaction
 - Wurtz-Fitting reaction (D)
- 26. Identify the pair of compounds from the following that exhibits chain isomerism.
 - Ethanol and methoxymethane (A)
 - n-Butane and 2-methylpropane (B)
 - Ethoxyethane and n-butyl alcohol (C)
 - Keto form and enol form of carbonyl (D) compounds
- 27. What is the value of Henry's law constant for CH_3Br if its solubility is 0.08 mol L⁻¹ at 0.5 bar?
 - (A)
 - $\begin{array}{c} 0.50 \text{ mol } L^{-1} \text{ bar}^{-1} \\ 0.40 \text{ mol } L^{-1} \text{ bar}^{-1} \\ 0.16 \text{ mol } L^{-1} \text{ bar}^{-1} \end{array}$ (B)
 - (C)
 - $0.08 \text{ mol } \text{L}^{-1} \text{ bar}^{-1}$ (D)
- Identify the magnetic behavior and structure of 28. $[Ni(CN)_4]^{2-}$ complex from the following.
 - (A) Paramagnetic and pyramidal
 - (B) Diamagnetic and tetrahedral
 - (C) Diamagnetic and square planar
 - (D) Paramagnetic and square planar

Calculate number of moles of nitrogen gas filled in 29. a container of volume 3.05 dm^3 at $32 \degree \text{C}$ and at $4 \cdot 7$ atm pressure. (R = $0 \cdot 0821$ dm³ atm K⁻¹ mol⁻¹) (A) 2.30 (B) 1.65 (D) 0.57 (C) 1.14

- 30. Which of the following compounds on reactions with Grignard's reagent followed by hydrolysis forms tertiary alcohol?
 - (A) Propanone (B) Ethanal
 - (C) Methanal (D) Propanal
- 31. Which among the following has the lowest pKa value?
 - (A) Monochloroacetic acid
 - **(B)** Acetic acid
 - (C) Trichloroacetic acid
 - Dichloracetic acid (D)
- 32. The reaction in which $-C \equiv N$ group is converted into -CH₂NH₂ group is called _____.
 - Hofmann alkylation (A)
 - Hofmann degradation (B)
 - Mendius reaction (C)
 - (D) Hofmann elimination
- 33. What is the value of density of an element having bcc structure with edge length 5 A° ? (Atomic mass = 70 g mol^{-1})
 - 4.35 g cm^{-3} 3.72 g cm^{-3} (A) (B)
 - (C) 5.35 g cm^{-3} (D) 1.86 g cm^{-3}

	QUESTION PAPER
Which of the following factors does NOT affect heat of reaction?	43. Which among the following groups causes +I effect?
 (A) The path by which final products are formed (B) Temperature (C) Physical states of reactants (D) Physical states of products 	 (A) Cyano (B) Carboxy (C) Ethyl (D) Ester 44. How many coulombs of electricity is required to
Which of the following molecules has the highest bond order? (A) Cl_2 (B) O_2 (C) H_2 (D) N_2	deposit 0.5 g of calcium metal (Molar mass = 40.0 g mol^{-1}) from calcium ions? (A) 2412.5 C (B) 3612.5 C (C) 2214.0 C (D) 3302.0 C
A weak monobasic acid is 0.1 % dissociated in 0.04 M solution. Calculate dissociation constant of acid. (A) $= 4.5 \times 10^{-6}$ (B) $= 2.8 \times 10^{-6}$	 45. Which polymer from the following is used to manufacture toys? (A) Rayon (B) HDP (C) LDP (D) Glyptal
(A) 4.3×10 (B) 2.8×10^{-8} (C) 4.0×10^{-8} (D) 2.5×10^{-8}	46. "A given compound always contains exactly the same proportion of elements by weight" is a
 In carbinol system, sec-butyl alcohol is named as (A) sec-butyl carbinol (B) ethyl methyl carbinol (C) diethyl carbinol (D) icorroryd carbinol 	 (A) Law of combining volumes of gases (B) Law of conservation of mass (C) Law of multiple proportion (D) Law of definite proportion
Which of the following metals when heated with hydrogen does NOT form hydride?	47. What is the relation between boiling point elevation and molality of solution?
(A) Mg (B) Ca (C) Si (D) Be	(A) $K_b = \frac{1}{\Delta T_b \times m}$ (B) $K_b = \frac{m}{\Delta T_b}$
What is the molar conductivity of 0.20 M KCl solution if its conductivity is 0.0242 S cm ^{-1} at 208 K2	(C) $K_b = \frac{\Delta T_b}{m}$ (D) $K_b = \Delta T_b \times m$ 48. Which among the following lanthanoid
(A) $148 \cdot 4 \text{ S cm}^2 \text{ mol}^{-1}$ (B) $82 \cdot 6 \text{ S cm}^2 \text{ mol}^{-1}$ (C) $121 \cdot 0 \text{ S cm}^2 \text{ mol}^{-1}$	hydroxides is the strongest base?(A) La(OH)_3(B) Lu(OH)_3(C) Sm(OH)_3(D) Ho(OH)_3
(D) $484 \cdot 0$ S cm ² mol ⁻¹ Which of the following compounds forms	49. Identify the number of electrons lost by H_2O_2 when it is oxidised to O_2 according to following
1-Bromo-1-methylcyclohexane when treated with HBr?	reaction. $H_2O_{2(aq)} + ClO_{4(aq)}^- \longrightarrow ClO_{2(aq)}^- + O_{2(g)}$
(A) (B) (B) (CH_3) $(CH$	 (A) 2 electrons (B) 1 electron (C) No loss of electron (D) 4 electrons
(C) (D)	50. For the reaction $2NO+Cl_2 \longrightarrow 2NOCl_{,}$
Which among the following statements about common properties of d-block elements is <u>NOT</u> true?	$\frac{d[\text{NOC1}]}{dt}$
(A) These are bad conductors of heat and electricity.	(A) $\frac{1}{2} \frac{d[\text{NOCl}]}{dt} = -2 \frac{d[\text{Cl}_2]}{dt}$
 (B) These have high tensile strength. (C) These are electropositive metals. (D) These are lustrous and shining. 	(B) $\frac{d[\text{NOCl}]}{dt} = -\frac{d[\text{Cl}_2]}{dt}$
A first order reaction takes 40 min for 50% decomposition; calculate its half life time.	(C) $\frac{d[\text{NOCl}]}{dt} = -\frac{1}{2} \frac{d[\text{Cl}_2]}{dt}$
(A) 20 min (B) 4 min (C) 2 min (D) 40 min	(D) $\frac{d[\text{NOCl}]}{dt} = -2\frac{d[\text{Cl}_2]}{dt}$

R

3

MHT- CET 25th Sent 2021

34.

35.

36.

37.

38.

39.

40.

41.

42.