SEAL

COMMON P. G. ENTRANCE TEST - 2024 (CPET-2024)

Test Booklet No.: 00025

Subject Code : 05

Hall Ticket No. :

Subject : CHEMISTRY

TEST BOOKLET

Time Allowed: 60 Minutes

Full Marks: 80

: INSTRUCTIONS TO CANDIDATES :

- The Test Booklet contains 16 pages including the cover page and 80 (Question Nos. 1 to 80) multiple choice questions.
- 2. DO NOT break open the seal of the Test Booklet until the invigilator instructs to do so.
- The candidates must check discrepancy, if any (like up-printed or torn or missing pages or missing questions) in the Test Booklet immediately after breaking the seal of the Test Booklet. If detected, the invigilator may be requested to replace the same.
- Candidates are required to fill up and darken the Hall Ticket No., Test Booklet Serial No. and OMR Answer Sheet Serial No. in attendance sheet carefully. Wrongly filled in OMR Answer Sheet is liable for rejection.
- Each question has four choices / answers marked (A), (B), (C), (D). Candidate has to select the
 most appropriate choice / answer to each question and darken the oval completely against the
 question number provided in the OMR Answer Sheet.
- Indicate only one choice / answer from the options provided by darkening the appropriate oval in the OMR Answer Sheet. More than one response to a question shall be treated as a wrong answer.
- 7. Use only Black Ball Point Pen for darkening the oval for answering.
- All the questions are compulsory and they carry equal marks. The total marks scored by a candidate depends on the number of correct choices / answers darkened in the OMR Answer Sheet. There will be no negative marking for wrong answers.
- No candidate shall be allowed to leave the Examination Hall / Room till all OMR Answer Sheets have been collected by the invigilator.
- 10. On completion of the entrance test, the original OMR Answer Sheet be handed over to the invigilator. Candidates are allowed to take the second copy of the OMR Answer Sheet along with the used Test Booklet for reference.
- Candidates are not allowed to carry any personal belongings including electronic devices such as scientific calculator, cell phones, headphones, earbuds, or any other type of devices that allow communication of any kind inside the Examination Room / Hall.
- 12. The candidates are advised not to scribble or make any mark on the OMR Answer Sheet except marking the answers at the appropriate places and filling up the details required. Rough work, if any, may be done in the blank sheet(s) provided at the end of the Test Booklet.
- 13. Any malpractice / use of unfair means will lead to your disqualification from the entrance test / admission process and may also lead to appropriate legal action as deemed fit.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

GO – 36/15 (Turn over)

Tour Book London O CO 25

THE ROOK RE

rializari (1924). Pak genesalurak Lorgani (1905) anangkan kepenjar aylar iz keka is kepind

ever election of the electronic field of the electronic electronic electronic electronic electronic electronic

or obtained and related to the hor have lettled that any loss on a first transition of

destruction and services of the process of the proc

Minimum and the art being the story of the s

GO - 36/15 (2) (Continued)

A 40 May by the Core of the Section of the Section of the Core of the section of

1.	Sod	lium chloride heated in sodium	vapour shows	s color.
	(A)	Yellow	(B)	Greenish yellow
	(C)	Violet	(D)	Bluish yellow
2.	Solu	utions of alkali and alkaline eart	h metals in liq	uid ammonia conducts electricity:
	(A)	Electronically		Contractor of the boundary
	(B)	Electrolytically		
	(C)	Partly electronically and partly	electrolyticall	y
	(D)	Non conducting		11 ME VE 7 GOV (414)
3.	The	standard emf of the Daniel cell	is 1.1 V. Then	the equilibrium constant (log k) is:
	(A)	18.6	(B)	37.2
	(C)	O MATERIAL CONTRACTOR	(D)	3.3
4.	For	an ideal gas (∂V/∂S) _p =	a tegiane tan	treated gatherolled entries shortful It
	(A)	RT/PC _p	(B)	RT/C _p
	(C)	C _p /T	(D)	C _v /P
5.	Crite	eria for spontaneity is:		in Oi
	(A)	(dS) _{E,V} < 0	(B)	(dH) _{S,P} < 0
	(C)	$(dA)_{T,V} = 0$	(D)	$(dG)_{P,V} > 0$
6.	Whi	ch of the following photochemic	cal reaction ha	as highest quantum yield (φ)?
	(A)	Photochemical combination b	etween hydro	gen and chlorine
	(B)	Photochemical combination b	etween hydro	ogen and bromine
	(C)	Photochemical combination b	etween hydro	gen and iodine
	(D)	Photochemical degradation of	facetaldehyd	e anticolomber to reckning on the S
7.	A plo	ot of Z (compressibility factor) is	s a function of	pressure at 0° C for N ₂ , yields Z:
	(A)	Less than unity at high pressu	re and greate	r than unity at low pressure
	(B)	Less than unity at all pressures	S THE BOOK STATE	4 The conquantum number of
	(C)	Higher than unity at all pressur	res	1 - 12 - 1A1
	(D)	Less than unity at low pressure	e and greater	than unity at high pressure
GO-	- 36/1	15	(3)	(Turn over)

8.	Whi	ch of the following gases sh	ow maximum de	viation from ideal b	ehavior at °C?			
	(A)	H ₂	(B)	CO ₂	olor (A).			
	(C)	CH ₄	(D)	N ₂	SIGIV (U)			
9.	The	compressibility factor for Co	O ₂ at 273 K and 1	100 atm is 2.007. TI	nen the volume			
		upied by 0.1 mole of CO ₂ is			desira de Av			
	(A)	$4.5 \times 10^{-6} \mathrm{m}^3$		$4.5 \times 10^{6} \text{m}^3$				
	(C)	4.5 × 10 ⁶ cm ³	(D)	$4.5 \times 10^{-6} \text{cm}^3$	mol4 (0)			
10.	The	wavelength associated with	an electron (hav	ving velocity of 20 m	ns ⁻¹) is:			
	(A)	3.6 × 10 ⁻⁵ mm	(B)	$3.6 \times 10^{-5} \text{cm}$				
	(C)	36 μm	(D)	360 nm	0 (0)			
11.	Whi	ch of the following quantum	n number is not	derived from Schro	odinger's wave			
	equa	ation for H-atom?						
	(A)	n 9,3	(B)	l				
	(C)	m	(D)	s a vienunoga				
12.		black body radiation experim	ent, with increasi	ng temperature the	λ_{max} of emitted			
		Shifts towards higher wave	(I) Jenath					
		(A) Shifts towards higher wavelength						
	(B) (C)	Shifts towards shorter wav Remains constant	elengur					
		and the second property second	by the award not	saidthad is sin silvi				
12		number of radial nodes ass		d orbital is:				
13.								
	(A)							
	(C)	n 2 seng viði rá ytinu marft rá	pera bras an (D)					
14.	The	spin quantum number of a f	ree electron is:					
	(A)		(B)	+1/2				
	(C)	-1/2	(D)	1/2	sead (0)			
GO	-36/	15	(4)		(Continued)			

15.	Giv	en sublimation energy (S), Ionization er	nergy (I), Dissociation energy (D), Electron
	affi	nity (E _a), Lattice energy (U _c) and Fo	rmatio	on energy (ΔH_f), then the correct
	ехр	ression for the formation of NaCl is:		1 Tomin 058 (A)
	(A)	$\Delta H_f = S+I+1/2 D -E_a-U_c$	(B)	$\Delta H_f = S+I-1/2 D -E_a -U_c$
slitte	(C)	$\Delta H_f = S-I+1/2 D -E_a -U_c$	(D)	$\Delta H_f = S+I+1/2 D + E_a - U_c$
16.	For	a reaction xA → Product(s), the half lif	e perio	od (t _{1/2}) of a reaction of n th order is
	rela	ted to the initial concentration (a) of A,	by:	liw nettulog risidw, basidamib
	(A)	t ₁ is proportional to (1/a ⁿ⁻¹)	(B)	t ₁ is proportional to (1/a ⁿ)
	(C)	$t_{\frac{1}{2}}$ is proportional to (a^{n-1})	(D)	$t_{\frac{1}{2}}$ is proportional to (a^n)
17:	The	manufacture of ammonia by Haber pr	ocess	utilizes:
	(A)	Ni as catalyst and Fe as promoter		A DUMI SI
	(B)	Fe as catalyst and Mo as promoter		
	(C)	Fe as catalyst and Ni as promoter		
	(D)	Fe as catalyst	val en	
18.	Whi	ich of the following statements is CORF		
	(A)	The relative lowering of vapor pressur	e is de	pendent on the nature of the solute
		only.		
	(B)	The relative lowering of vapor pressure	e is dep	pendent on the nature of the solvent
		only.	je-2.	(D) A straight line with stop
	(C)	The relative lowering of vapor pressure	e is de	pendent on the mole fraction of the
		solute only.		(A) POL ++ POL + QU
	(D)	The relative lowering of vapor pressu	re is d	ependent on the temperature and
		mole fraction of the solute only.		offering to estimate on a second
19.	Ana	queous solution contains 20×10^{-3} kg c	fgluco	ose per dm ³ . Assuming the solution
	to be	e ideal, the osmotic pressure at 298 K	is	?
	(A)	2.718 atm	(B)	27.18 atm
1	(C)	0.2718 atm	(D)	1.0 atm
GO-	- 36/1	5 (5)		(Turn over)

20.	A 5.1	3% solution of cane sugar	r is isotonic with 0	.9	9% solution of an unknown solute.	
	Then	nolar mass of the solute is	· One i Land Lab			
	(A)	320 g.mol ⁻¹	(B)		3200 g.mol ⁻¹	
	(C)	620 g.mol ⁻¹	(D)		60 g.mol ⁻¹	
21.					I M sucrose; 1 M NaCI; 1 M BaCl ₂	
					completely ionized and phenol is	
	dime	rized, which solution will s	how highest colling	ga	ative property?	
	(A)	1 M sucrose	(B)		1 M NaCl	
	(C)	1 M BaCl ₂	(D)		1 M Phenol	
22.		ne reaction $N_2(g) + 3H_2(g)$ RUE?	↔ 2NH ₃ (g) + Hea	at	t, which of the following statements	
	(A)	Increase in temperature	favors ammonia f	or	rmation.	
	(A)	Temperature has no effect				
	(C)	Increase in temperature				
	(D)	Decrease in temperature				
23.		ot of Kp vs 1/T is:			strate probable and for leastly in 81	
20.	(A)	A straight line passing th	rough origin with	sl	lope ΔH ^o /2.303 R	
	(A) (B)	A straight line with slope			· · · · · · · · · · · · · · · · · · ·	
present the	(C)	A straight line with slope			You'v menunkorasion as 611 1 1491	
	(D)	A straight line with slope			The state of the s	
24.	Whi	ch of the following equilib	ria is not affected	b	by pressure change?	
	(A)	PCl ₅ ↔ PCl ₃ + Cl ₂			$N_2 + O_2 \leftrightarrow 2NO$	
	(C)	O ₃ ↔ O ₂	(D)	$NO_2 \leftrightarrow N_2O_4$	
25.	The	distribution of I2 in followi	ng solvents holds	9	good for distribution law:	
HOL	(A)	Between benzene and to	olune		adia noo neer igo appoppe (William)	
	(B) Between carbon disulphide and water					
	(C)	Between carbon tetrach	loride and water			
	(D)	Both (B) and (C)			(c) = 0.05 (C) (D)	
GC	- 36/	15	(6)		(Continued)	

26.	The ionic radii of Na , Mg ⁻ and Ai ⁻ follow the order and it is due to							
	(A)	A) Na ⁺ > Mg ²⁺ > Al ³⁺ , increased charge on the nucleus						
	(B)	B) Na ⁺ > Mg ²⁺ > Al ³⁺ , increased charge on the ions						
61011	(C)	Al ³⁺ > Na ⁺ > Mg ²⁺ , increased char	ge on th	e nucleus and ions				
,	(D)	Na ⁺ > Mg ²⁺ > Al ³⁺ , increased char	ge on the	e nucleus and ions				
27.	The	factors that affect ionization energy	is:	of beau mobist obseited . Ch				
	(A)	The size of atom	(B)	The charge on the nucleus				
	(C)	Screening effect	(D)	All of these				
28.		ording to Mulliken the relationship be	tween el	ectronegativity, Ionization energy (I)				
	and	electron affinity (E) is:		steps (Chargos) - Data (Ch				
	(A)	Electronegativity = (I + E)/2	(B)	Electronegativity = $(I - E)/2$				
	(C)	Electronegativity = 2 (I + E)	(D)	Electronegativity = 2 (I – E)				
29.	Whi	ch of the following metal ions is foun	d in carb	ooxypeptidase metalloenzyme?				
	(A)	Cu(II)	(B)	Co(II)				
	(C)	Zn(II)	(D)	Mn(II)				
30.	The low spin transition metal complexes are preferred by:							
	(A)	(A) First and second row transition elements						
	(B)	B) Second and third row transition elements						
	(C)	C) First and third row transition elements						
	(D)	Second row transition elements	the production	eg virkier giden beka xirina . Si				
31.	Whi	ch of the followings is not a ligand?	ereno.	Zinereszken munon (km)				
	(A)	NH ₃	(B)	CIT				
	(C)	NO ⁺	(D)	None of these				
32.	Effe	ctive atomic number of Fe in [Fe(CN	N) ₆] ³⁻ is:	360				
	(A)	26	(B)	35				
	(C)	29	(D)	36				
GO	- 36/	15 (7)	(Turn over)				

2-

33.	Sod	ium bis (thiosulphato) argentite(I) i	S: Abns	26. The ionic radii of Na . Ma
	(A)	$Na_3[Ag(S_2O_3)_2]$	(B)	Na[Ag(S ₂ O ₃) ₂]
	(C)	$Ag_3[Na(S_2O_3)_2]$	(D)	Ag [Na(S ₂ O ₃) ₂]
34.	CrC	I ₃ 6H ₂ O best shows iso	omerism.	one *EIA = * pM; si sid (8)
	(A)	Linkage	(B)	Ionization
	(C)	Hydrate	(D)	Coordination
35.		oed's reagent used for general	test of r	nonosaccharides, has chemical
	(A)	Neutral Copper(II) acetate solution	n	(C) Screening affect
	(B)	Aqueous Copper(II) acetate solut	ion	28. According to Molliken the rela
	(C)	Acidic Copper(II) acetate solution)	and electron affinity (E) is :
	(D)	Basic Copper(II) acetate solution	2(3	+ D = Electronegativity = (1 +
36.	Dilut	te HCl, a most commonly labora	tory reag	ent provided in general students
laboratory has s concentration of			28. Which of the following metal	
	(A)	1M (B) (C)(U)	(B)	2M
	(C)	4M (ii):iM (C)	(D)	6M
37.	Whi	ch of the halide ion can etch glass	? sigmost	30. The low spin transition meta
	(A)	lodide	(B)	Bromide
	(C)	Chloride	(D)	Fluoride
38.	Bora	ax bead test is usually performed to	detect_	salts.
	(A)	Sodium, Postassium, Copper	(B)	Potassium, Barium, Iron
	(C)	Iron, Copper, Manganese	(D)	Iron, Copper, Magnesium
39.		ence of oxide.	coal cavity	during cobalt nitrate test indicates
	(A)	Aluminium	(B)	Magnesium
	(C)	Zinc 88 (CI)	(D)	Barium
GO.	- 36/	15 (1	B)	(Continued)

40.	H ₃ P	O ₄ is a tribasic acid at 25°C, the	order of pK	values follow the order:
	(A)	$pK_1 > pK_2 > pK_3$	(B)	$pK_3 > pK_2 > pK_1$
	(C)	$pK_1 = pK_2 > pK_3$	(D)	$pK_1 = pK_2 = pK_3$
41.	Ben	yl is an important mineral of beryll	ium, has the	e chemical formulae of:
	(A)	Al ₂ Be ₃ (SiO ₃) ₆	(B)	Be ₃ Al ₂ (SiO ₂) ₆
	(C)	Be(SiO ₂) ₂ Al ₂ O ₃	(D)	Be ₃ Al ₂ (SiO ₃) ₆
42.	The	Ziegler-Natta system is	and the	e active metal species in a fibrous
	form	of		(C) Microwaves
	(A)	Homogeneous and TiCl ₃	(B)	Heterogeneous and TiCl ₃
	(C)	Homogeneous and TiCl ₄	(D)	Heterogeneous and TiCl ₄
43.	Wad	cker process uses as	catalyst.	
	(A)	PtCl ₂	(B)	PtCl ₄
	(C)	Pd	(D)	PdCl ₂ ·
44.	Whi	ich of the following statements is	not TRUE w	with respect to silicones?
	(A)	Silicones are resistant to heat a	and most of	the chemicals.
	(B)	Silicones are good electrical ins	sulators.	
	(C)	Silicones can be used as foami	ng agents.	
	(D)	Silicones have non-stick proper	rties.	
45.	The	hybridization seen in [PtCl ₄] ²⁻ is	iff (a)tnern	51 Which of the following slate:
	(A)	sp ³ autos ill bre detom grei	(B)	sp ² d
	(C)	spd ²	(D)	dsp ²
46.	The	bonding patterns found in salicya	aldehyde is	(U) Asymmetric sheldship
	(A)	Covalent and intermolecular H-l	bonding	(D) CO ₂ is IR inective,
	(B)	Covalent and ionic	olialdiv gni	
	(C)	Covalent and intramolecular H-	bonding	FireVA (A)
	(D)	Covalent, Ionic and H-bonding		te de va da
CO	36/	15	(0)	(Turn over)

47.	The frequency and wavenumber associated with a IR radiation having wavelength of						
	10 μm is :						

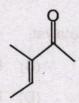
(A)
$$3 \times 10^{13} \,\mathrm{s}^{-1}$$
 and $10^{-5} \,\mathrm{m}^{-1}$

(B)
$$3 \times 10^{12} \,\mathrm{s}^{-1}$$
 and $10^{-1} \,\mathrm{m}^{-1}$

(C)
$$1 \times 10^{13} \,\mathrm{s}^{-1}$$
 and $10^{-6} \,\mathrm{m}^{-1}$

(D)
$$1 \times 10^{11} \,\mathrm{s}^{-1}$$
 and $10^{-1} \,\mathrm{m}^{-1}$

48. Which of the following radiations can cause changes in electronic energy levels within molecules?


(A) Infrared

(B) Ultraviolet

(C) Microwaves

(D) Ultraviolet-visible

49. Predict the λ_{max} for a $\pi \to \pi^*$ absorption band in the UV-spectrum of ______.

(A) 227 nm

(B) 237 nm

(C) 230 nm

(D) 232 nm

50. Molar absorptivity has the unit of:

(A) L mol⁻¹

(B) Dimensionless

(C) L mol⁻¹ cm⁻¹

(D) Mol L⁻¹ cm⁻¹

51. Which of the following statement(s) TRUE with respect to IR of CO₂?

- (A) All symmetric stretching and bending modes are IR active.
- (B) All stretching modes are IR active.
- (C) Asymmetric stretching and bending modes are IR active.
- (D) CO2 is IR inactive.

52. The selection rule of observing vibrational energy level transition is:

(A) $\Delta V = \pm 1$

(B) $\Delta V = \pm 1, \pm 2, \pm 3$

(C) $\Delta V = 0, \pm 1$

(D) $\Delta V = 0$

53.	The	$\upsilon_{\text{C=O}}$ stretching absorption of HCH	O, CH ₃ C	CHO, CH ₃ COCH	l ₃ are in the	order:		
	(A)	HCHO > CH ₃ COCH ₃ > CH ₃ CHO	(B)	CH3COCH3>	HCHO > CH	H ₃ CHO		
	(C)	HCHO > CH ₃ CHO > CH ₃ COCH ₃	(D)	CH3CHO > CH	13COCH3>	нсно		
54.	Con	nparative stretching vibrations of free	hydroxy	l group, inter-mo	olecularly hy	drogen		
	bone	ded hydroxyl group and intra-molecula	arly hydro	ogen bonded hyd	roxyl groups	follows		
	the	order:						
	(A)	Free > Intra- > Inter-	(B)	Inter->Intra->	Free			
	(C)	Free > Intra- = Inter-	(D)	Intra-> Free >	Inter-			
55.	Nuc	lear magnetic resonance involves tr	ansition	between	energy	y levels		
	and	energy is required for the	e transit	tion.				
	(A)	Nuclear and Radio frequency						
	(B)	Nuclear spin and Microwave freque	ency					
	(C)	Nuclear and visible frequency						
	(D)	Nuclear spin and Radio frequency						
56.	Mag	netogyric (γ) ratio is the ratio betwee	en:					
	(A) Nuclear spin (s) and nuclear angular momentum(I)							
	(B) Nuclear magnetic moment (µ) and nuclear angular momentum (I)							
	(C)	Nuclear precessional frequency (v)	and nuc	clear angular mo	mentum (I)			
	(D)	Nuclear spin (s) and nuclear preces	ssional f	requency (v)				
57.	The	aldehyde proton usually appears in	the δ val	ue range of :				
	(A)	2.0 – 3.6	(B)	6.0-7.0				
	(C)	3.0 – 7.0	(D)	9.0 – 10.0				
58.	In m	ethyl acetate (CH ₃ COOCH ₃) protons	s appear	at δ =	and	6		
	resp	ectively.						
	(A)	2.0 and 3.6	(B)	0.9 and 1.2	Sec. 19			
	(C)	4.2 and 5.1	(D)	0.9 and 4.2	20 - A 10			
GO.	-36/	15 (11)		(Tur	n over)		

59.	Which of the following statements is TRUE?						
	(A)	The base peak is always the molecular ion pe	eak.				
	(B)	Base peak corresponds to a fragment of the r	molecule.				
	(C)	The intensity of the molecular ion peak is 100	%.				
	(D)) Mass spectra are always collected from a gas	seous sample.				
60.	Mas	ass spectra of 1-decanol through chemical ioniza	tion results in base peak at m/e:				
	(A)	157 (B) 1	41 m s sam s agri? (2)				
	(C)) 158 (D) 1	12 m sent (a)				
61.	The	e most common stationary phase used in thin lay	ver chromatography is:				
	(A)	SiO ₂ (B) Z	ro ₂				
	(C)) TiO ₂ (D) A	N ₂ O ₃				
62.	The	e relationship between retention factor (k) and re	tardation factor (R _F) in thin layer				
	chro	romatography is:	(C) - Noclear radivisible (
	(A)	$k = 1 - R_F$ (B) k	= R _F -1 (g) (d)				
	(C)	$k = (1 - R_F)/R_F$ (D) k	$= R_F/(1-R_F)$				
63.	Which of the following statements is not CORRECT with respect to green chemistry?						
	(A)	Microwave assisted reactions can be consider	ered as clean and green.				
	(B)	(B) Supercritical carbon dioxide is not a green solvent.					
	(C)	C) Solid state reactions are not green.					
	(D)	Dichloromethane can be considered as a gre	en solvent.				
64.	Identify X, Y and Z in the following transformation:						
	C ₆ H	$C_6H_5OH \xrightarrow{X} C_6H_5O^-(CHCl_2) \xrightarrow{Y} C_6H_5O^-(CHO) \xrightarrow{Z} C_6H_5OH(CHO)$					
	(A)	X = CHCl ₃ , NaOH; Y = NaOH; Z = HCl	CO-FICe stufspetvol error 188				
	(B)	3) $X = CH_2CI_2$, NaOH; $Y = NaOH$; $Z = HCI$					
	(C)	X = CHCl ₃ ; Y = NaOH; Z = HCl					
	(D)	X = HCI, NaOH; Y = NaOH; Z = HCI					
GO-	- 36/1	6/15 (12)	(Continued)				

65. The name of the following compound is:

- (A) (2R, 3S)-3-bromobutan-ol
- (B) (2S, 3R)-3-bromobutan-ol
- (C) Meso-3-bromobutan-ol
- (D) 2-bromo-3-hydroxy-butan-ol
- 66. An unknown compound on ozonolysis gives acetaldehyde and benzophenone. Identify the compound:
 - (A) 1,2-diphenylpropene

(B) 1,1-diphenylpropene

(C) 2-phenyl-2-hexene

- (D) 1,2-diphenylhexene
- 67. The α -helix is a common form of _____ of proteins.
 - (A) Primary structure

(B) Tertiary structure

(C) Secondary structure

- (D) Quarternary structure
- 68. Which dyes become linked to the fiber by chemical reactions?
 - (A) Acid dyes

(B) Direct dyes

(C) Disperse dyes

- (D) All dyes
- 69. Prussian blue has the chemical formulae:
 - (A) Na₄[Fe(CN)₆]

(B) Fe₄[Fe(CN)₆]₃

(C) Fe₃[Fe(CN)₆]₂

- (D) NaCNS
- 70. Which of the following tests is not confirmatory test for phenol?
 - (A) Reaction with FeCl₃ solution
 - (B) Reaction with Br₂ water
 - (C) Phthalein test
 - (D) Reaction with sodium hydrogen carbonate solution

71.	The	The p-, sec- and tert-alcohols can be differentiated on the basis of their behavior							
	towa	ards:							
	(A)	Hot acidic K ₂ Cr ₂ O ₇ solution							
	(B)	Acidic K ₂ Cr ₂ O ₇ solution							
	(C)	Basic K ₂ Cr ₂ O ₇ solution	WO LE						
	(D)	Neutral K ₂ Cr ₂ O ₇ solution							
72.	Whi	ch of the following compound(s) is an	ti-arom	atic?					
	(A)	Anthracene	(B)	Cyclopropenyl cation					
	(C)	Furan	(D)	Cyclopropenyl anion					
73.	How	many π -electrons are there in ananti	-aroma	tic compound?					
	(A)	4n + 4	(B)	4n					
	(C)	2n+2	(D)	4n+2					
74.	Fora	a compound to be aromatic, how man	ny π-ele	ectrons must be in π -cloud ?					
	(A)	Even number	(B)	Odd number					
	(C)	An odd number of pairs	(D)	An even number of pairs					
75.	Whi	ch of the followings is not a nucleophi	le?	2 Sylvinis A / (A)					
	(A)	H ₂ O	(B)	ROH					
	(C)	BF ₃	(D)	RNH ₂					
76.	When 2-bromobutane is treated with alc.KOH, the product formed is								
	(A)	1-butene	(B)	2-butene					
	(C)	Mixture of 1-butene and 2-butene	(D)	3-butene					
77.	The	least stable carbocation among the f	ollowing	Hose (Old America) (A)					
	C ₆ H	$_{5}\text{CH}_{2}^{-}$, $(\text{CH}_{3})_{3}\text{C}^{-}$, CCI_{3}^{-} and CH_{3}^{-} is	:						
	(A)	C ₆ H ₅ CH ₂	(B)	(CH ₃) ₃ C ⁻					
	(C)	CCI3	(D)	CH ₃					
GO	-36/	15 (14))	(Continued)					

78. Which of the following compounds does not give a secondary alcohol upon reaction with methylmagnesium bromide?

(A) 3-methylpentanal

- (B) Ethyl benzoate
- (C) 4, 4-dimethylcyclohexanone
- (D) 4-heptanone

79. Predict the major product of the following reaction:

$$CN$$
 $FeBr_3$
 Br_2
 NO_2

- (A) 2, 6-Dibromo-nitrobenzonitrile
- (B) 3, 5-Dibromo-nitrobenzonitrile
- (C) 2-bromo-4-nitrobenzonitrile
- (D) 3-bromo-4-nitrobenzonitrile

80. Identify the reaction conditions for the following transformation:

- (A) Ni, 200° C, High pressure
- (B) Ni, 200° C

(C) Ni, High pressure

(D) Fe, 200°C, High pressure

SPACE FOR ROUGH WORK

(A) 2, 5-Charama narabenzonitnie (B) 3, 5-Edurano-ndrabenzoninie

(-0.1-)