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FOREWORD

Punjab School Education Board has continucusly been engaged in
preparation and review of gyllabl and textbooks. In today’s scenario, imparting
right education io students is the joint responsibility of teachers as well as
parents. With a view to carry out entrusted responsibility, some important
changes pertaining to present day educational requirements have been made
in the texthooks and syllabus in accordance with NCF 2005.

Mathematics has an important place in school eurriculum and a good
textbook is the first requisite o achieve desired learning outcomes. Therefore,
the content matter of Mathemnaties for the class XIT has been so arranged so
as to develop reasoning power of the students and (o enhance their
understanding of the subject. Graded guestions and exercise have been given
to suit the mental level of the students, This book is prepared by NCERT, New
Delhi for elass XII and is being published by Punjab School Education Board
with the permission of NCERT, New Delhi.

Every effort has been made (o make the book useful for students as well
as for the teachers. However, comsiructive suggestions for its further
improvement would be gratefully acknowledged.

Chairman
Punjab School Education Board
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(INTEGRALS )

o Just as o mountaineer clinths o mountain — because it is there, so
a good mathematics sindent studies new material because
it is there, — JAMES B. BRISTOH. &

7.1 Introduction

Differential Calculus is centred on the concept of the
derivative, The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
tunctions and calculating the slope of such lines, Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.

If a function f is differentiable in an interval 1, i.e., its
derivative [ "exists at each point of I, then a natural question
arises that given fat each point of 1, can we determine
the function? The functions that could possibly have given
function as a derivative are called anti derivatives {or G .W. Leibnitz
primitive) of the function. Further, the formula that gives (1646 -1716)
all these anti denivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantancous velocity of an
object at any instant, then there arises o natural question, i.e., can we determine the
position of the object at any instantT There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:

(a) the problem ol finding a lunction whenever ils derivative is given,

ib) the problem of finding the area bounded by the graph of a function under certain
conditions,
These two problems lead to the two forms of the integrals, e.g., indefinite and
defimite integrals, which together constitute the Tnfegral Caleulus.
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There is a connection, knovn as the Fundamental Theorem of Calculus, between
indefinite integral and definite integral which makes the definite integral as a practical
ool for science and engineering. The definite integral is also used to solve many interesting
problems from various disciplines like economics. finance and probability.

In this Chapter, we shall confine oarselves to the study of indefinite and definite
integrals and their elementary properties including some technigues of integration.

7.2 Integration as an Inverse Process of Dilferentiation

Integration is the inverse process of differentiation. Instead of differentiating a function.
we are given the derivative of a fonction and asked to find its primitive, i.e., the oginal
Tunction. Such a process is called integration or anti differentiation.

Let us consider the following examples:

We know that E (sin x) =cos x oot ]
X
a.x @
de 30
d
d — (¢ )=t we (3
an &xl )=e (1)

We observe that in (1), the function cos x is the derived Tunction of sin x. We say

3
that sin x 18 an anti derivative (or an integral) of coz x. Similarly, in{2) and (3), \? and
& are the anti derivatives (or integrals) of x* and &, respectively. Again, we note that
for any real number C, treated as constant function, its derivative is zero and hence, we

can write {1}, (2) and {3) as follows :

i{smx+ﬁ‘l—msx.i{f—+{3;—xzﬂnd —(e' +C)=¢"

Thus, anti derivatives (or integrals) of the above cited functmus are not nnique.
Actually, there exist infinitely many anti derivatives of each of these functions which
can be obtained by choosing C arbitrarily from the set of real numbers. For this reason
C is customarily referred to as arbitrary constant. In fact, C is the parameter by
varying which one gets different anti derivatives (o7 integrals) of the given function,

d
More generally, if there is a function F such that =5 Fix)= f (x), v x e I{interval),
then for any arbitrary real number C, (also called constant of integration)

%[me] =fl) xe 1
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Thus, {F+C,Ce R} denotes a family of anti derivatives of f,

Kemark Functions with same denivatives differ by a constunt. To show this, let g and &
be two functions having the same derivatives on an interval 1

Consider the function f= g — h defined by fi(zx) = g(x) - hix), vxe 1

]
Then i =f=g —HKeiving [x)=2"®) - () yxel
or [ (x) = 0, wxe | by hypothesis,

i.e., the rate of change of f with respect to x is zero on I and hence [ is constant.

In view of the above remarlk, it is justified to infer that the family {F + C, C e R}
provides all possible anti derivatives of f.

We introduce a new symbol, namely, _[f (xidx which will represent the entire
clags of anti derivatives read as the indefinite mtegral of fwith respect to x.
Symbolically, we write I fixyde=Fix)+C.

d
Notation Given that ﬁ = f (%), we writz y = _[f (x) dx.

For the sake of convenience, we mention below the following symbols/lerms/phrases
with thelr meanings as given in the Table (7.1},

Talle 7.1
Symbols/Terms/Phrases Meaning
j-f (x) dx Integral of f with respect to x
fin | [0 dx Integrand
xin J'f (x) dx Variable of integration
Integrate Find the integral
An integral of f A funetion F such that
Flx) =f(0
Integration The process of finding the integral
Constant of Integration Any real number C, considered as
constant function
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We already know the formulae for the derivatives of many important functions,
From these formulae, we can write down immediately the comresponding formulae
(referred to as standard formulag) for the integrals of these functions, as listed below

which will be used to find integrals of other functions.

Derivatives Integrals (Anti derivatives)
d .T"+] . _;r“+1
i ~TZ =X - H = ~xy
() dx{nﬂ] ; [x" —+Conz-l
Particularly, we note that
d
E{I]=l = j.ﬂfox+C
e}
(ii) E[sinx}zmsx; [cos & dx=sin 54 C
Lood ) N~ [ .
(iii) al{—ms x)=ginx ; JSI'I‘I.-\:SJTX——LBS_!'-I“C
d
(iv) — (tan x) =sec’x . Isﬂcj xdr=tan x+C
dx
da 2
v —l—coLx)=cosecTx cosec” xdy=—cot x -+
W — _  xdx C
d
{viy a[s:cx}=ﬂﬁc.x:t&n,r : Is&cxtﬂnxdxzsecxd—c
d
iwii) E(_ COREC r}=ms¢c Xeotx . [-:nsec rcotxdr=-cosecx+C
fiii -w-~(s1n ';]:—1—- ) |7 =sin"' x+C
dx \f]—r'l 3 =
d 1 I d'x 1
sy —|-tes RjEme—— | ———=—q0s x+C
(%) gy ) = Iﬁ,‘l..f
d i 1 dx i
—|tan” x| =— —=ta x+C
() dx( } 1+ x% - |+ %%
d "
ixi) Ei&‘;}—f Je*dx=e‘+¢
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{xii) %UUEHIFII; Iid.t=lngl.xl+c
d a.r Fd a’

i — =gt dy=—2_4C
{K]]ﬂ Ei-t[zﬂg’ﬂ] £ ! J‘ﬂ ﬂgga

| Note [In practice, we normally do not mention the interval over which the various
Tunctions are defined. However, in any specific problem one has (o keep it in mind,

7.2.1 Same properties of indefinite integral
In this sub section, we shall derive some properties of indefinite integrals.
{1} The process of differentiation and integration are inverses of each other in the
sense of the following results

2 [ s =0

and Jf “(x) dx = f(x) + C, where C is any arbitrary constant.

Prool Let F be any anti derivaive ol f, i.e.,

%Fﬁx} = f(x)

Then | frdr =Fxy + €
i
Therefore % !‘ffx'} di = e (Fx1+C)
= %Fm = f(x)

Similarly, we note that
d
ey =— Fx)
Ji ! 7

and hence [Fyde =f)+ C

where C is arbitrary constant called constant of integration.

(IT) Two indefinite integrals with the same derivative lead to the same family of
curves and so they are equivalent.
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Prool Let fand g be two functions such that

2 rmar = 2 [ewas

ar

A [rwa-[gwar] =0

Hence | f(x)dx—[gx)dr= C, whereC is any real number  (Why?)
or jf[x}i::fg{x]dx+(f

So the families of curves {[ f (x) dx + C;, C, € R}

and  {]£(0)dx+C;,Cye RY are identical.

Hence. in this sense. j S(x) dxand Ig{x} dx are equivalent,

|®= Noic|The equivalence of the families {jf[x}dx+C],E|ER} and

{j'g{ﬂ di+C,.C; R] is customarily expressed by writing If(ﬂ dr = IE(H dx,
without mentioning the parameter.

(I1I) _“f{.x,'l+g[x)]drzj-fﬁ.rjdx+j-glx]dx
Proof By Property (1), we have

%UI_:’L::] +gt_,:'ﬂdx] =fix) + g (x) - (1)
On the otherhand, we find that
%[]’f{xu dx+ jg{.ﬂ d.x:l = i j'ftxl dx+£ fg{x}dx

=flx) + gix) k)
Thus, i view of Property (11}, it follows by (1) and (2) that

j(f{x}-t-g{ﬂ}dx: jf{ﬂdx+[g{ﬂdx,

(IV) For any real number [, jk fix)dx=k _[ Flxydr
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Proof By the Propetty (T). % [ fo ds=k £().

Also %[# [ ruax] = k%jf{x} d=k f(x)

Therefore, using the Property (IT), we have jk flx)de=k j'f (x) dx.

{V) Properties (TIT) and (IV) can be generalised 1o a finite number of functions
fis fyr wos f, and the real numbers. &, k,, ..., &_giving

[[kfio)+ By fy (14 bk, f )] d
= k[ A dx+k[ £, @y dv+..+k, [ £ dx.

To find an anti derivative of a given function, we search intuitively for a function
whose derivative is the given function. The search for the requisite function for finding
an anti derivative is kmown as integration by the method of inspection. We illustrate it
through some examples.

Exsmiple | Write an anti derivative for each of the following functions using the
method of inspection:

1
(i) cos 2x iy 3.2+ dx® (iii) P 20

solution
(1) We look for a function whose derivative is cos 2x. Recall that

d
Esinlr:Emslt

) dfl ,
{gmh;:a ;.SmZx

or cos 2x

18
2 dx
C "
Therefore, an anti derivative of cos 2k is 3 sin 2x

{ii) We look for a function whose derivative is 3.2 4+ 4. Note that
d

— (") =32 442,

dx

Therefore, an antl derivagve of 347 + 42 iz 2% +
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{iii}) We know that

i 1 d : 1 . 1
atlﬂgx)—;.x:r—ﬂanda[log{—x}]—_—x{—l}—?x{ﬂ
Combining above, we get i (iﬂg|x1:l = l, x#0

= dx x

1 1
Therefore, j; dr=1log |J’| is one of the anti derivatives of %

Example 2 Find the following integrals:

. [ 2 3 1
O [Fod ) e ydr (i) [GI+2" ——)dx
Solution
(i} We have
J')(J' -1{& 2
3 :jxdx—‘[x dx  (by Property V)

x

I+ -2+
%
= [1+I +C1J _[_2_'_1""':2]: C,. C, are constants of integration

2 1 2

x x x 1
=_+C e = — —_ -

5 = G 2+r C-C;

.3 T . .
2 +;+E.wh3re{,=ﬂ._ (, 15 another constant of integration.

a5~ Note | Fromnow onwards, we shall write only one constant of integration in the
final answer,

(1) We have

J'{i%-t-l;-dx:!x%ebc-cufdr

TP
= +x+C:gx3+x+C
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(i) We have J-(.xg +2& —I;}d.r=jx% d.r+_|-.‘2€x :ix—f%cix

3

2
=~{-—+2el—lug|.21+ﬂ'
— %1

5
xiy2é —lng|x|+-{f

W | B3 pa | e

Example 3 Find the following integrals:
(i) J{sin x+cos x)de ﬁi}jcﬂmcx(msm x+cot x) dx
Il —gin x
(i) cos® x
Solution
i} We have
I(sin £4cos o) de =Isin rde+ Icﬂs 1 dx
= -—cosx+s8inc+C

dax

(i) We have
f(ﬂﬂﬁtﬂ fcogec x +col x) dy = Imsnc:xix + Icmaec xcot x dx

= —¢ot x—cosec x-+C

i) We have
| —sinx l sin x
dy=|——dx- i)
J' cos x j' costx * I cos x *

= Jsculxrth J-w.n x sec x dx

=tanx-—gecx+C
Example 4 Find the anti derivative F of fdefined by f (x) = 4x* — 6, where F (0) =3
Solution One anti derivative of f (x) is x* — 6x since

%{x‘ 6 S5 _G

Therefore, the anti derivative F is given by
Fix} = a* = 6x + C, where C iz constant,
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Given that F(0) = 3, which gives,

3=0-6x0+C o C=3

Hence, the required anti derivative is the unigue function F defined by

Fx) = — 6x + 3.

Remarks

(i) We see that if F is an anti derivative of f, then so is F + C, where C is any

(i)

(i)

constant. Thus, if we know one anti dedvative F of a function f, we can write
down an infinite number of anu derivatives of f by adding any constant 1o F
expressed by F(x) + C, C e R. In applications, it is often necessary to satisfy an
additional condition which then determines a specific value of C giving unigue
anti derivative of the given function.

Sometimes, F is not expressible in tenms of elementary functions viz., polynomial.
logarithmic, exponential, tigonometric funciions and their inverses ete. We are

therefore blocked for finding I.fl'x,} dx . For example, it is not possible to find

Ie 7 i by inspection since we can not find a function whose derivative is ¢ 5

When the variable of integration is denoted by a variable other than z, the integral
formulae are modified accordingly. For instance

4 v I =
Vdp=i—4+C=—y"4C
j' % 4+ 5}?

EXERCISE 7.1

Find an amti derivative (or integral) of the following functions by the method of inspection.

1.
4.

sin 2x 2, cos 3x 3. &
{ax + B)F 5. 5in 2x —4 &

Find the following integrals in Exercises 6 w0 20:

9.

= | ,
Jaer+nae 7 WAoo @ +hato)ds

Z 3 i
1 Fe | 2 a5t =4
jer+era 0. j[ﬂ-ﬁ] a . [EEEA
X +31+4 L= rx-1
p [ERER,  ga [Rrnelygg [0ondRd

x|
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15. J-J;{_sz+2x+'3}dx 16. I{Ex—?rcos r+et)dx

17. I(Zxﬂ—asm x4 35x) dr 18. jmx{s&cx+tanx}dx

]
i = o —qcin ¥
o, [EEEa g, [l
COSEC” X cos®
Choose the correct answer in Exercises 21 and 22.
o 1)
21. The anti derivative of | VX +—= equals
Jx)

1 1 1

(A) %xi +222 +C (B) %x?"- +]£3'2 +C
- g 3 1 4
(C) 53'2’4‘21'2'1'{: (D) EII"'EIE-FC

d 3
22. T a}r{,\:} =iy ~—5 such that f(2) = 0. Then f{x) is
X

4 1 129 A1 129
(A) & +;‘;‘—'§" (B) +;:+-,;“
| 129 1120

0 W i b

o = I's 8 (B) © 8

7.3 Methods of Integration

In previous section, we discussed integrals of those functions which were readily
obtainable from derivatives of some functions. It was based on inspection, i.e., on the
search of a function F whose derivative is f which led us to the integral of f, However,
this method, which depends on inspection, s not very suitable for many functions.
Hence, we need to develop additional techniques or methods for finding the integrals
by reducing them into standard forms. Prominent among them are methods based on:

I. Integration by Substitution

2. Tntegration using Partial Fractions

3. Integration by Parts
7.3.1 Integration by substitution
In this section, we consider the method of integration by substinution.

The given integral j f(x)dx can be transformed into another form by changing
the independent variable x to ¢ by substituting x = g (1)
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Consider 1= | fix)dx

Put x = g(1) so that % =g'(1).

We write dy = g’(1) dt

Thus I=[f®d=[fe) g0 di

This change of variable formula is one of the important lools available to us in the
name of integration by substitution. It is often important to guess what will be the useful
substitution. Usually, we make a substitufion for a function whose derivative also ocewrs
in the integrand as illustrated in the following examples.

Exumple 5 Integrate the following functions w.r.t. x:

(i} sinmx (i) 2a sin (x*+ 1)
o oan® frsec? fx _ sin(an ' %)
{111} B 1w} ]
Solotion

i1y We know that derivative of mx is m. Thus, we malke the substitution
mx =1 50 that mdx = 4.

. L, I
Therelore, jsm n-ucbc:—_[smrdr = - nguc =— —cogmr+C
i T e

(i} Derivative of ¥* + | is 2y. Thus, we use the substitution ¥* + | = ¢ 50 that
2y dx.=.dt.

Therefore, lesin (x1+l}dx=Jsin:di = —cosf+C =—cos(2+ 1)+ C

i

i vl =T | W

{iii) Derivative of .J; iE—xr = . Thus, we use the substitution
2 2x

*f;=rﬂt}l.ha12—‘jﬁdx=drg'ivmg drx =2t dt

X

Thus, J-lan“' £ sect J; e _[ 2t tant sec’t di

Jx t

Again, we make another substitution tan ¢ = 4 50 that sect ¢ di = du

= ZJ‘ tanr sec’t dt
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3
Therefare, 2 _"lan“r sec’t dt =2 _fu“ du =2 "? +C

2
= ElanSHC' (since u = tan t)

- %tzms x+CI[SiI]L‘EI='\I|r;}

Itangﬁﬂﬁciﬂ 2 T

dx = =
J_E X ST.EI.I’I

Alternatively, make the substitulion tan '\jr; =t

Hence,

{iv) Derivative of tan™ = . Thus, we use the substitution

14+%°

= dt.

tan~' x =1 s0 that 5

l+x
gin (tan 'x)

T dx:jslnrdr — —cost+C=— cositan™w) + C
+.£

Therefore |, I

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technigque. These will be used later without
reference.

(i [tan x dx =log|sec x|+ C

We have
Itanxcix=‘l-smx dx
COS X
Put cos x=fsothatsinx dy =— 4t
Then jmnxdx=—j$=—lug|i|+C=—lng|cusx|+C
or jLan.xdx=lng|sec):|+C

(ii) jmtxdx =log|sinx|+C

CO5 X

We have j-:ﬂt xdx=j dx

gin x
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Put sin x = ¢ so that cos x dx = dt
dt |
Then jmtxdx:.FT = log|t|+C = loglsin x|+ C

(iii) [secx dx=log|sec x+tan x|+C

We have

RECX (seCx+—lan x
( fis
EEC X Tlan x

jsecx.:ir=j

Put sec x + tan x = ¢ so that sec x (tan x + sec x) dx = dt

Therefore, jSEEXcit=I£:-:ng|t[+ C=1log|sec x + tan x| + C

{iv) Imm: x dx =log |cosec x —cot x| +C
We have

Imsm < _J- cosec x{cosec x +cotx) de
(cosec x + cotx)

Put cosec x + cot x = f so that — cosec x (cosecx + cot x) dfr=dt

So jmsecrdx:—lﬂz—lugm:—]ng|cusacx+cu‘rxi+€
I
|cosec? x —cot? x|

+C
| COSeC X —cot x [
= log |cosec x — cot x|+ C

Example 6 Find the following integrals:

' 1
P iy [_SBE o b e
(1) Ism XCOs X (11} -l-sin{:ﬁ-a} (L) I]-f-tan:r

Solution
{1} We have

Ising xcos xdv= Jﬁi]ll x cos’x (sin x) dx
- J‘[ | —cos?x) cos’x (sin x) dx

Pul t = cos x 50 thai dif = — sin x dx
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Therefore, Isinixcnsgx (sin &) dx = —j{l — 2y dr

= —j-[:i —1‘}dr:—{§—£§]+c

| |
= ——coS x+—cosx+C
a 5

(i) Putx + a =1t Then dx = dt. Therefore

j- §in x _J'Sm{t a}lﬂ,

sin (x+ a) sl f

—Ismrm‘:;msmadf
= CO§ a Id: ~ 8in ﬂjmt t i

= (cos a) ¢ — (sin @) [ log fsin 1| + C, |

= (cos a) (x+a)— (sin a}[lug lsin (x + a)| +C]]

= XCOsd+adcosa—(sina)log |sin (x+ a,}| ~C, sina

Hence, I = xcos a- sina log lsin (x + a)l + C,

sin (x +a,'l

where, C=-C sin a+ a cos g, is another arbitrary constant.

{ijjjj dx :j msx%t

1+tan x COS x+sin X

lf (cos x + sin x + cos x — §in x) dx

Cos ¥+ 8in x
cos x —5in x
o far s [ SRR g
co8 £ 450 X
& 1l pcosx—sin X
z—+—'+—_[—_dx
2 2 24 cosx+sinx

239
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MNow, consider l=j'

Putting it in (1), we get
_déx  x G

l+tanx 2 2

=
2

COs £ —8in x
cos X +5in x

dx

l . :
+Elug|cﬂs:c+5m .r|+%

l. i C]:
+ log |cos x + sin .x|+?+

|[EXERCISE 7.2]

Integrate the functions in Exercises | 10 37:

4,

18.

2x
1+ x°

gin x sin (cos x)

Jax+h

(45 +2) Jf +x+1 10,

e e

-
e

16.

(1og 4’

X

Put cos x + sin x = 1 50 that (cos x — sin x) dx = dr

! X 8
- i+-—lug lcos x+sm,1:|+C'.[C=—]+
272 3

sin {ax + b) cos (ax+ b)

8.

17.

2)

Therefore 1:]’%:@ lt] +C, = log [cos x +sin x|+ C;

e 4



21. tan® (20— 3) 22. sec (7 — 4x) el
(-
: 2cos x—3%in x i 1 L. cos 'J;
24, Boos x4+ 48in x =% cosfy (1 - tan 1)® =h. :.I'x
cos X

F 1 . 2 T = 3 |
27. yJsin Zx cos Zx 28, m 29. cotxlog sinx

gin x sim ¢ 1

e —————— 3
A S p 3. (14 cos x)° 2. 1tz
" 1 " Jtan x - [14.[.:,5;]2
S l—tan x 7" gin xcos & e ¥

i 3. -1_4

s+l x+logx x'sin(tan” " x

36, SHDlxtlozs)y o —{&‘J
X |+

Choose the cormrect answer in Exercises 38 and 39,

10x° + 107 log, 10 dx

a8, & uals

I 210" “

(A) 1F—x+C (B) 10+ 4+ C

(C) (-3 C (D) log (10F 4+ £+ C
a9, equals

'[sinlxcoij q

(A) tanx+cotx+C (B) tan x—cot x + C

(C) mnxcotx+C (D) tmx—-cot 2x + C

7.3.2 Integralion using friconomelric tdeniifies

When the integrand involves some rigonometric functions, we use some lknown identities
Lo find the integral as illustrated through the following example.

Example 7 Find (i) jms'zxdx (i) jsm 2xcos3xdx (i) Jlsinﬂ.rdx
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Solution

(i)

(ii)

(i)

Recall the identity cos 2x = 2 cos? x — 1, which gives

I+ cos 2k

-
Costh =
2

Therelore, JWs’x.-fx = %I{Hms 2x)edx = éjdx+%jmshdx

+—sin2x+C

| =
-

|
Recall the identity sinx cos v = 3 [sin (x + ¥) + 5in (x — ¥)] (Why?)

Then Jsjn 2xcosdxdy = %[Jsi‘n 5x dx—jsin xa’x]

= l[--£ﬂm51+msx:|+c
21 5

= —icasix+lmsx+f:
10 2

From the identity sin 3x =3 sin x — 4 sin?x, we find that

3sin & —sin 3x

=

sin?

. I |
Therefore, Jﬂihjxdr = EJ sin x;ir—zjsmixdx

3 1

= ——gos x4+ —cos3x+C
4 12

Alternatively. jsin‘lx dx=[sin*xsin x dx = j{I - cos’x) sin x dx

Put cos x = 7 zo thal — sin x dx = dt

Therefore, _l-sing.u:dx = —f{l —ri)dr = —dej:i d!=—r+§+c

3

1
= —cus.:;+§r:us *+C

Remark It can be shown nsing trigonometric identitics that both answers are equivalent.
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EXERCISET7.3
Find the integrals of the functions in Exercises 1 to 22;
1. sin®(Zx+ 5) 2. sin 3x cos 4x 3. cos 2x cosdx cos 6x
4, sin? (2x+ 1) 5. sinfxcostx fi. sin x sin 2x 5in 3x
1-cos x Co8
7. sindx sin 8x [ A — . TR
| +cos x I +cos 2
.0
in, sin*x 11. cos* 2x 12. ..
1+ecos x
! COS X —8in X
g (Sofdrecondi gy TOLA SR 15. tan® 2x sec 2x
COE X — CO8 1+ 35in 2%
gin’ x+cos’ x 2x + 2sin?
16, tan‘x 17, ———— 18, TR
sin” xcos® x cos™ I
| 08 2
W 24, L—xi 21, sin ' (cos x)
sin x cos'x (cos x + sin x)
22, I
cos (X —alcos(x—&)
Choose the correct answer in Exercises 23 and 24,
e S
23. Jm—?ﬁlﬂz-—xdxis cqual to
sin® xcos® x
(A) tmx+cotx+C (B) tmx+cosecx + C
(C) —tamx +cotx+ C (D) tanx + sec x+ C
AR
24, J#dx:quals
cos®(etx)
(A) —col(ex) + C (B) tan (xe’) + C
(C) tan (&) + C (D) cat (e +C

7.4 Integrals of Some Particular Functions

243

In this section, we mention below some important formulie of inlegrals and apply them

for integrating many other related standard integrals:

dx 1 =
(1) J'H X—&

S +C
2n X4a

log
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dx 1 a+x
2 = — log |——|+ C
@ Ia*—x’* a—x
1 1 X
(3) = T =+C
xt+a* n a

dx

) [ﬁmg‘“u’x’ —a®|+C
de

(5) _[ Sy =gin ';JE+C
dx

(6) |———=lng x+Vx? +a?|+C
'[1||.r2+a3

We now prove the above results:

I |
Ch Wt T _{x—ahl'cx+u“l

) {x+a}—{x—cr‘1__L:_ I I
= {_1-—.:1}{_1'-!-.:;} _E_zﬂ '"_Jc—ﬂ X4+a

de _1[rd L
Therefore, j‘;?_iai'zﬂhxjﬂ_-[,ﬁ+ :;ZI

[log!(x —a)l—logl{x+all]+C

—a
Ll +C
Xk a
(2) In view of (1) above, we have

b [I{ﬁ+xj+fa ﬂ 11t }

., L (@a+x)(a-x) |~ 2a]|a- a+.x

k]
24
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dx
L

|
= —|-logla-xl+logla+xl|+C
zﬂl 3 £ |

Therefore, _[ xz Py LI

= Llﬂg

2a

at+x .
+C

a—Xx

245

| &~ Note| The rechnigue used in (1) will be explained in Section 7.5.

(3) Putx = a tan 8. Then dx = a sec® & 48.

j' dx Ja.sr.czﬂriﬂ
- Harat T Y antore’

i ¥

:l_[dr::luw::ln S

i i a a
{4) Let x=a sech, Then dx = a sech and 40,
a sech tanf 40

Ja* sec?0—a?
jsccﬂ dfl = log |secfl + tanfl| + C,

x
Therefore, j in yr

= log| —+,|—=-1{+C,

= log i+ - -lug|a|+C,

= log | ¥ +yxt —a® +C, whereC=C —loglal

(5) Letx=gsinf Then dx = a cosd db.

Theref J dx @ cosd 40
erefore, : ;
J - Ja? —a* sin’
= [do=0+C=sin ' F+C
s
(6] Letx=gtand, Then dr = o sec?B dB,
=
Thesefore, j .!ir i j a sec™ 40
&+’ Ja* tan®e+ 4"

1l

| sect d = log |(sect + tan@)| + C,
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(7)

(8)

(9)

MATHEMATICS

If
=
5

+G,

X ixl
—+ 5+l
i a

log |x ++4/x* +a* |- log| a|+C,

= log [x+v/x° +a°|+C where C =, log |a|

Applying these stamdard formulag, we now obtain some more formulac which
are useful from applications point of view and can be applied directly to evaluate
other integrals,

d the int W B o — it
To fin e integra J-ax24£:x+-e‘wcwe

i 2 1
al+hx+te= a|:.rz +gx+§:|=a|i[x+%] +[-§—§1—1H

1

¢ b
Now, put Jr+i =t so that dx = df and writing ——— =+k* . We find the
Za a 4a

; 1 dt . . e b
integral reduced to the form = J Y depending upon the sign of [E e E‘;]

and hence can be evaluated,

. r dx ; .
To find the integral of the type JF—— . proceeding as in (7), we
ax® +hy+ o

obtain the integral using the standard formulae.

ety
ax’ +hx+c
constants, we are to find real numbers A, B such that

To find the integral of the type dx  where p, ¢, a. b, ¢ are

Pﬁ‘_&.%%ml $hy+¢) +B=A (2ax+b) +B

To determine A and B, we equate from both sides the coefficients of x and the
constant terms, A and B are thus oblained and hence the integral is reduced Lo
one of the known forms,
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; . . A px+q)dx
(107 For the evaluation of the integral of the type j- \1'7 we proceed
ax® + br 4

4% in (9) and transform the integral inlo known slandard [orms,
Let us illustrate the above methods by some examples.

Example 8 Find the following integrals:

J-dx X J dx
¥ -16 o 25—

Solution
(M) w.ahavej ={ = Ilc-g 24 L C [by7.4 (1)]
D [ B 43 +4
[ ==
".l'[:l:t'-‘.\'1 .JI [:r 1f
Put x = | = ¢ Then dy = dt.
dx dt
Therefore, = = sin™! () +C [by 7.4 (5)]
jJEx—ri j*u.l'[l—rl »
—gin”' (x-0)+C

Example Y Find the following integrals :

J‘ o ax . J‘L
& ~6x+13 o Azt +132-10 () Jsxl_zx

Solution
(i) Wehave x*-6x+ 13 = - 65+ -3+ 3=ix-32+4

So, ‘[ i - j I

H-6x+13 (x-3)7+2°
Let x—3=1 Then dx = dt
dx dr 1 i F
- =—t£|.[l _+C (3
Therefore, '[_r"' T Lg T > [y 7.4 (3)]
_ L ‘_3+C
2 2



248 MATHEMATICS
(it} The given integral is of the form 7.4 (7). We write the denominator of the integrand,

(2 13% 10
3¢ +13x—10 = BL,;” i _J

3 3

[c. 13Y [ary
_ ]i_ .l"!'EJ ﬁ J {completing the square)

e

A +132—10 [ E] _[ET
i 3}

13
Put x+E=f.'I1mfndx=dI.

dr | et
Therefore. =
R ij—kISx—iU 31:? (1?]“
A
17
| e
= 5 log 17 +C, by 7.4 (1)]
IxIn— t+—
6 6

1 xtil

17 ﬁx+3{}|

| |3x—2] L
—=—Ilg +C, +—1log—
17 %8 s et ToEg

1 Ix-12 1 |
= 4+ C SRR
7 OE t5 , where C 1+]7 53
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1
Put X—E=I,Th:3n dr = dt,

Therefore,

_Ls

! 2
=—=log i+ |t
5
Lli:n X l~+
=5 [ 3
Examiple 10 Find the following integrals:
x+2 x+3
i ——dx
0 f2;1+51+5 J-mi:- 4x— 4
Solution

{i) Using the formuola 7.4 (9), we express

X+2= Ai{2x1+ﬁr+5}+l§ — Alde+6)+B

R =

P
b i I]

= |
-

+C

%)

+C

249

(completing the square)

[by 7.4 (4)]

Equating the coefficients of x and the constant terms from both sides, we get

] L
dA=land6A+B=2 or A= - andB=

4 ey
Jx 4G

Theret f x+2 __I
erefore, A3 1 6r+5 -~ 44 2 E L 6x+5

L1
=T +=1
4 | 2 2

_j__fi__
292 +6x545

(say)
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In1, put 2¢* + 6x + 5 =1, so that (dx + 6) dx = dir

Therefore, I = j%zlng|r]+€.,
= log!2x* +62+51+C, R
[y - -
anid L= 257 +6x4+5 2 .x"'+31'+£
2
1 dx
ZEJ 3 T
(=) &
2 2
Put x+—=1, s0 that dx = ¢, we get
17 dt | 2
L= EJ ;= —tan '2t4C, [by 7.4 (3)]
r:_{l} 2%
2 2
= Lun'll[x+§J+ C, = tan™ (2x+3)+C, i A9
Using (2) and {3) in (1), we get
j‘—-fi-z_—ir_-xng!zx +ﬁx+si+-- tan™" (2x+3)4C
24" +6x+5
g L E
‘here, C:—"l'-—l
where 3

This integral 15 of the form given in 7.4 (10). Let us express
d 2
IE3= Aziﬁ—dx—x )+B=A(-4-20+B
Equating the coefficients of  and the constant terms from both sides, we get

1
—2A=1md-4A+B=31e A= g andB =1
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Theref j' x+3 2, _ij{_d‘_ix}"'h_‘_j' dx
oeore a2 2 \5—dx—a C Js—dr—2
I
==7 L+L (D)
Inl, pw 5 —4r— & =1 so that (- 4 - 2x) dy = dt.
(—4—2x)dx

V5—4x—x

= W5—dx—x" +C, o (2)

Therefore, 1= |

=I% = 2~J'T+C|

. ""j dx - dx
s —ar T 9— (4 2)?

Now consider

Puot x + 2 =1, so thal dx = dt.

Therefore, L= J

vonq-b
; =sin "' ~+C, [by 7.4 (5)]

3‘1 0 i._l

_;x+2

= 8if +CE {?},}

Substituting (2) and (3} in (1), we obtain

f%=—145“ 4.1’-- xz +Si|'|_| %"‘ C, where C:Ci —5
S5—4x—x

2
] I‘lXFlRE].SI'ﬂ?.-IJ
Integrate the functions in Exercises | to 23,
35 L I A 1
Pa| R 7 [2—x}2+1
I . 3x z x°
Jo— 25,2 Tl+2s B
x-1 ¥ sectx
- . 9
—1

P +at " Atan?x+ 4
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1 I L
1n, —— N — 12
' 42+ 9 462+ 5 i
13 : 14 b 15 1
SN T B v N o aury
N E— ) 5 552
N s I T+ 204347
6x+7 +2
_I_!]_ 't— IU. ;— 211 x—ﬂ
,,‘[x—i][z—il-} 4" Vi +2x+3
33 5543

3% TE a3 23. 3 :
25 —2x-5 x.llx +dx+10
Choose the correct answer in Exercizes 24 and 25.

-

3 ———— equals

- jx‘+21‘+2 %
{A) xtan™{x+ 1)+ C (B) tan(x+ 1)+ C
iC) x4+ 1jtanty+C (D) tnir+ C

15, IL equals
VOx —4x’

1. -1 Or—8 I . —l( %-91
A) —u ~-+C -4 —_— |+
(A} e ( 5 J (B) 55 5 J

I . 4f9x-8 1 _{gx—g e
iy 5 sin [T] +C T = sin 5 +

7.5 Integration by Partial Fractions
Recall that a rational fumction is defined as the ratio of two polynomials in the form

% , Wi PG anid Q) aite polynoniials in £ aad QU4 £ 0. Ifilis dégies oL P
X

18 less than the degree of Q1x), then the rational funciion is called proper, otherwise, it
iz called improper. The improper rational functions can be reduced to the proper rational
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Pix) . Plx) P (xj
functions by long division x5, Thus. if —— isin then =T(x)+
e e Quy © R o) W’
. i Byix) | ; ;
where T(x) is a polynomial in x and @; is a proper rational function. As we know

how to integrate polynomialg, the integration of any rational function is reduced to the
integration of a proper rational function, The rational functions which we shall consider
here for integration purposes will be those whose denominators can be factorised into

{‘]
ﬂfx =k
TR T

i3 proper rational function, It is always possible 10 write the integrand as a sum of
simpler rational fimetions by a method called partial fraction decomposition. After this,
the integration can be carried out easily using the already known methods. The following
Table 7.2 indicates the types of simpler partial fractions that are to be associated with
various kind of rational functions.

linear and quadratic factors, Assume that we want 1o evaluate I

Table 7.2
S.No. | Form of the rational function Form of the partial fraction
L |21 S P
(x—a) {x—b) x—a =x-b
3 Py = 2 J )
' (x—a)* *—a (x-a)
% pe+grtr A B _C
x—allx—bi{x—q) x—0 *=b x—c
1 prttaxtr A B €
’ (x—a)’ (x=b) x—a (x—a)f x-b
. pi’+ gt r A Bx+C
{x—ﬂ}{.ti+b1+f-'] Xx-a x+bx+e
where % + bx + ¢ cannot be factorised further

In the above table. A, B and C are real numbers (o be determined suitably.
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dx
ix+1)ix+2)

Example 11 Find j

Solution The integrand is a proper rational function, Therefore, by using the form of
partial fraction [Table 7.2 (i)], we write

1 A B :
= + e 1)
(x4l (x+2) x+l x+2

where, real numbers A and B are to be determined suitably. This gives
IT=Ax+2)+Bix+ 1)

Equating the coefficients of x and the constant term, we get
A+B=0

and ZA+B=1

Solving these equations, we get A=l and B =~ 1.

Thus, the integrand is given by

| 1 o |
= +
(x+D(x+2)y x4+l x+2
dx dx dx
Therefore, jqx+1]{x+2} :jx+1_-[x+2

= loglx+1]-log [z +2[+C
41

= lnsg'L‘+C
x=+2

Remark The equation (1) above is an identity, i.e. a statement true for all {permissible)
values of x. Some aothors use the svmbol ‘=" 1o indicate that the statement 18 an
identity and use the symbol *=" to indicate that the statement is an equation, i.e., o
indicate that the statement is true only for certain values of x.

Esample 12 Find | ]
LXa e Lo EIn T T
xamp J(l N
5l . . ;
Solution Here the integrand 7 _ser6 is not proper rational function, so we divide
— X

2+ | by 2~ 5x + 6 and find that
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P 1 S5k—=5 o 5x—5

25246 B-5x+6  (x=2)(x-3)
- Sy=5 A B
=Dilx-3 " -2 23
So that Sx—-5=Ax-3N+Bx-2)

Equating the coefficients of x and comstant terms on both sides, we get A+ B =3
and 3A + 2B = 5. Solving these equations, we get A=-5 and B =10

i ‘5 10
P 5546 ¥=2 »=3
dx
Therefore, J‘uxz—ix+ﬁ¢t jdx SJ-—“-Ei.I: lﬂjx :
=x—5Sloglx—21+ 10loglx-31+C.
3x—2

Exampic 13 Find |————
s s I{x+|}2{x+3’i

Solution The inlegrand is of the type as given in Table 7.2 (4), We write

3x-2 A B C
= + +
(x+1Px+3) ~ &+l @+ x+3
S0 that x-2=Ax+Dx+3N+Bx+N+Cix+ 17

=AFE+dx+N+Bix+3N+CHE+2x+1)

Comparing coeflicient of 2%, x and constant term on both sides, we get
A+C=0,4A+B+2C=3uand 3A + 3B + C=- 2, Solving these equations, we get

A= “ B =— 3 a_ndC:__“.Thusﬂ;eintegrandisgivenb}r
2 B
-2 w5 1
1P x+3) ~ 40+D 2+ 4(x+3)
j 3x-2 _l!_J'ix _EJ‘ dx _]1I'
E+0Pxe+3) 47 x+1 27 x+DF 47 x43

Therelore,

11 11
:?h1g|x+1|+2 —Ilug|x+3|+C

x+1)
=uug X+ 2 +C
4 x2+3| 2{x+1)
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2

Exampie 14 Find jmfﬁ'

x

Solution Consider m and put 1 =y,
" v
L PP +d) (1) (r+4)
Write 2 mtty B
a P+ y+4)  y4l p+d
So thal y=A@+H+BG+1)

Comparing coefficients of y and constant terms on both sides, we get A+ B = |
and 4A + B =0, which give

1 4
= —— and B=—
A 3 3
- i A
. D +d | 302+l 30C+4)
x dx |
Thensins, j[x‘-pl}:’xz +4) _iji+1+3-[xz+4
=—1t:m 'x+u4-§<a[~t:m O,
3 3 2 2

| 1 3
' x+ = ' 2 +C
3 3 2

In the above example, the substitution was made only for the partial fraction part
and not for the integration part. Now, we consider an example, where the integration

involves a combination of the substitution method and the partial fraction method.

(3sin ¢ —2)cosd 3
5-cos’h—4sin
Solution Let y = sind

Then dy = cosp 4o

Example 15 Find j
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Jsing -2 3y-2
Therefore, j{ smi_nl }c{:ltsdl do = j%
5 -cos’d— 4sm S5-(-y") -4y
3y-12
= jyz—-d}l-i-ﬁidy
) j 3}?—22 =1 (say)
(¥-2)
Now, we write L o + B [by Table 7.2 (2)]
' (y-2) ¥-2 o-2¢ '
Therefore, Iv-2=A(y-2)+B

Comparing the coefficients of ¥ and constant term, we get A=3and B -2A=-12,
which givesA=3 and B=4.

Therefore, the required integral is given by

3 dy
1=jru_2 = z}zld}_ﬂ j@_z}ﬂ

= 4log] 3~ 2|+4(-—'-]+r
:P'-

4

= 31 inp=2|+ +C
og|sing-2| T

= 3log (2-sin ¢)+ z %t + C (since, 2 - sind is always posilive)

—sin

xE 4 x4+ 1dx

Example 16 Find jm

Solution The integrand is a proper rational function. Decompose the rational function
into partial fraction |Table 2.2(3)). Wrile

w4 xl A  Bz+C
= =
E+Dx+2)  x+2 P+

Therefare, P+x+1=A+ 1D+ Bx+0) (x+2)
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Equating the coefficients of 2%, x and of constant term of both sides, we get
A+B=1,2B+C=1and A + 2C = |. Solving these equations, we get

A=2,B=2andc=1
3 5 5

Thus, the integrand is given by

2 1
¥4 x+l 3 54%5 3 I[EJH-[]
= ; - T -
D+ S5x+2) A+l S5+ St +l

2

2 a+x+l 3pde 1 Ly L
=— += dy+— | —dx
a, 5'[::+Z 5-[_:’+| ijlﬂ

(e +1) (e +2)

Therefore, J

3 log| x+2 |+%Iug| s | |+%lﬂn_'x+ﬂ

5
|EXERCISE7.5|
Integrate the rational functions in Exercises 1 to 21.
* . 1 a Ix—1
(x+1) (x+2) = el T e =2 r=3)
X ~ 2% y PR
4 5. = 6, ——
x=D(x-2)(x—3) A +3x+2 x{1-2x)
. i i x & Jx+5
LD -1) N1 (x42) B e
0 2x-73 i 5 : X +x+1
G- (2x+d) T —4) 2t =1
2 3x-1 . I
3. Gndrs W ey 5. 2% 4
|
16, m [Hint: multiply numerator and denominator by x* ' and put £" =/ ]
Cos X
17. [Hint : Put sin x ={]

{1—sin x) (2 -sin x)
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 +1) (o +2) - 2 , 1
(2 +3) (5% +4) C D3 - xixt =1

1
21. m[ﬂmt:hur’:rl

Choose the correct answer in each of the Exercizes 22 and 23,

dx
22. j'x— equals
(x=1)(x=2)

L

ol -
(A) ]{:gu+{: B) flunjg;ﬂ +C
X = 2 —
_1N?
() log [,:TE] +C (D) log|(x—1)(x=2)|+C
23. |———— equals
'[x{x2+1‘l )
(A) luglxi——;lug{.r’ﬂﬁc (B) lug|.ﬁ+—;10g{xi+l]+fl

| ;
(C) —log |ﬂ+élug{xﬂ+l}+c (D ;lcg|x|+lﬂg{x"*+ll+(?

7.6 Integration by Parts

In this section, we describe one more method of integration, that is found quite useful in
integrating products of functions.

I w and w are any two differentiable Tunclions of a single variable x (say). Then, by
the product mile of differentiation, we have

d dv  du
— ) =u—+v—
el dx  dx
Integrating both sides, we get

v Pl
My = jﬂadﬁ"i‘j'lfd—iix
dv dit _
—— B - _J e 1
or Judxri: Ly -"vdx X (1)
v
Let u=Jf{x}and E: gix), Then

du | ;
E=f (x) and v = Ig{x}dx
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Therefore, expression (1) can be rewritten as

[reoemdre = f0f g ax—[1] g6y dxl £y dx

Le. J‘f{:ﬂ glx)dr = th}J-g (x) :ir—j[f’ (x) J‘g{xj dx] dx

If we take [ as the first function and g as the second function, then this formula
may be stated as follows:

“The integral of the product of two functions = (first function) x (intcgral
of the second function} — Integral of [(differential coefficient of the first function)
% (integral of the second function)]”

Example 17 Find j.\.‘ oo x dx

Solution Put f (x) = x (first [unction) and g {x) = cos x (second function).
Then, integration by parts gives

jxcﬂs xdx = xjms Ly — I[%Lﬂ _Fms; dx] ds

.xslnx—_[sinxix: =xsinxs+cosx+C

Suppose, we take fix) =cos x and g(x) = x. Then

Ixcus xdx cuslexdx—j[-;-;{cns x) Ixei,r] dx

2 2
(cos x) =4 }‘sin X2
2 2

Thus. it shows that the integral I.r cos x dr is reduced 1o the comparatively more

complicaled integral having more power of &, Therefore, the proper choice of the first
function and the second funciion is significant.

Remarks
(i} Itis worth mentioning that infegration by parts is not applicable (o product of
functions in all cases. For instance, the method does not work for I\E sin x dy,
The reason i8 that there does not exist any function whose derivative is

J; sin .

{ii) Observe that while finding the integral of the second function, we did not add
any ¢onstant of integration, If we write the integral of the second function cos &
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as sin x + &, where k is any constant, then

J'xms.xci.t = xi{sin x+k}—j{_ﬁin x+kidz
= x(sin x+k)— [ (sin x de— [k dx

= xisinx+k)—cosx—kx+C = x8in x+cos x+C
This shows that adding a constant to the integral of the second function is
superfluous so far as the final result is concerned while applying the method of
integration by parts.

(i) Usually, if any funciion is a power of x or a polynomial in x, then we take it as the
first function. However, in cases where other function is inverse trigonometric
function or logarithmic function, then we take them as first function.

Example 18 Pind Ill}g xdx

Solution To start with, we are unable to guess a function whose derivative is log.r. We
take log x as the first function and the constant function 1 as the second function. Then,
the integral of the second function is x.

d
e loge.lydy = logx | 1dx—|[— x) | Ldx] dx
Hence, J'{ gx.l) E-'J- I[dxﬂug j 1
=ﬂug_t_l-x—jlxdr:xlngx—x+c_
x
Example 19 Find Ixe"d.:.

Solution Take first function as x and second function as ¢*. The integral of the second
function is e’

Thereflore, j.t e'dy = xe -f.‘[ ce¥dy = xe'— -+ C.

X &in lx

Example 20 Find J-\]'r—_.xz

e

1-x

Solution Ley first function be sin ~ tx and second function be

First we find the integral of the second function, i.e., I%
=%

Put ¢ =1 — x*. Then df = — 2x dx
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At ==l

[ 1 rdi
Therefore, | oz = EJE =

Hence, j-xsm 3 dy = (sm~ x}l[ Wl—a ] J_

—af]— — i sin 'k +x+C = x—yl-x* sin"'x+C

Alternatively, this integral can also be worked out by making substitution sin ' x =8 and
then inlegrating by parls.

l—x2

Example 21 Find Je’" sin & dx

Solution Take & as the first function and sin x as second function. Then, integrating
by parts, we have

I:Ie‘ sjnxdr:e‘f—cns.t}i-j-e‘cusxdx

=—¢ cos x+ | (say) o {1 4]
Taking e*and cos x as the first and second functions, respectively, in [, we gel

1, = ¢'sin .x—j::’tsin.rn{x
Substituting the value of 1 in (1), we get
[=—¢'cose+e'sinyg—1 or 21 = ¢ (sin x — cos x)

x

Hence, I= J-.‘:' sinxdx:%- (sin x—cosx) 4+ C

Alternatively, above integral can also be determined by taking sin x as the first function
and & the second function.

7.6.1 Integral of the ype j‘e"‘ [ fix)+ f (2] dx
We have I= J'E'J I_f{_;\"_} -I—f’{_t}_[ dr = J-ﬂjlf{xj' d—"l."f‘jf‘lf‘{x:}dx

= L+ e’ f'(x) dx. where I,= [ " f () dx (D
Taking f(x) and ¢* as the first function and second funetion, respectively, in I, and
integrating it by parts, we have [ = fix) e*~ IIJ{I} e'di+C
Substituting I, in (1}, we get
L= e fix)— J._.F'{x} e”dx+je‘_f’!x) dx+C =& f(x)+ C
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Thus, [e L F(x)+ f(0dx = o f(x)4C
Example 22 Find (1) | ¢ (tan™"x+ ]dl (i) j{f +1)e'
xamy I = e

Solution

i) We have | =je’ttau'1;-+

i
ar
l+x2]

Consider f(x) = 1an ', then f'(x) = e

Thus, the given integrand iz of the form e* [ f(x) + f'(x)].

Therefore, T= Je’r{lan _:vc+1 jdr =& tan g + C

&
02 +l}e —L+141)
(iiy We have I=|——
I (r+ 1) I m+l)2
=j¢xl_i;z'—'i+ L j‘*[x—_l+ildx
x+17% )? x+l (x+D?

Congsider f{x‘izi:-l- then [ ()= : 3

o x_q_]r fx+11‘

Thus, the given integrand is of the form e* [f (x) + f(x]].

2
+1 1
Therefore, j : = S NE W
(z+1} x4l
| EXERCISE 7.6
Integrate the functions in Exercises | to 22.
1. xsinx 2. xsin3x 3 e 4. xlogx
5. xlog 2x 6. x*log x 7. xsinlx B, xtan! x
1
S
9. xcost x 10. (gin'x)® 11. vl

ﬂ 12, xsectx

13. tanx 14. x (log x} 15, (#+ logx

263
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rat i l1+sm x
s
16. e (sinx+ cosx} 17. {l+x}l 8. l+cosx
1| (x=3)¢
e‘[———] b e
19, = 4‘1 20. {x—l}3 21l. e*sinx

9 sin_l ( 2x )
o 145
Choose the comrect answer in Exercises 23 and 24.

23, j‘xje‘ﬁdx equals

n | "

(A) 15‘ +C B) —¢" +C

3 3

| B | S
(€) ;¢ +C (D) e +C

24. je‘sccx:’]—rtanx}zix equals

(A) ecosx+C (B) e"secx+C
(C) e*sinx+C (D) e lanx + C

7.6.2 Integrals of seme more types
Here, we discuss some special types of standard integrals based on the technique of
integration by parts :

(i) J-w,l'x'z--az dx (i) j-v.l'xz +a* dx {ii) j"iﬂz—f dx
i) Let I=[x"~a” dx

Taking constant function | as the second function and integrating by parts, we
have

I= xyx* —a* - ]Ji

-
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Il
b
e 7
I
B

or I—J\J'x —a’ dx= ~.|'x —i -—lng‘x+u'x —a? ‘+F

Similarly, integrating other two mt\,gmls by parts. taking constant function 1 as the
second function, we get

2
N = L T L o 2 1V [
(i) I*az—x3ﬂ=§x‘-“’ﬂ'x2+‘;_zﬁ" i
i

Alternatively, integrals (i), (ii) and (iii} can also be found by making trigonometric
substitution x= a sec in (i), x=a tan8 in (i) and & = a sin® in (iii) respectively.

Example 23 Find [y +2x+5 dr

Solulion Note that

[Vt + 2045 de = [or+17 +4 dx

Pul £+ | =y, so that dx = dy. Then

J--sz +2x+35dx = _|.--.|||y2’+23 dy
1 7. 4 f
=__i}, }.i+4+.'.‘;.|ng v+ }f.z'l"d-"f'c [using 7.6.2 {ii}]
= %(x+l}<~.l'x1+2:+5 +2|ﬂg‘ 41447 42545 |+C

Example 24 Find I 3-2x—x* dx

Solution Note that J*-JS-—IJ;-—-.(E clx=jﬁ4-—(x+l]2 dx
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Put x + 1 =y so that dx = d.
Thus j.'q'3—2x—x?‘ dr = _f-.,,‘f’r— v dy

| T
=5 yy4-y" +-sin '%H‘J [using 7.6.2 (iif)]

5
= -é{x+lh'3—-2x—x"” +251n"'(%ﬂ-J+C

| EXERCISE 7.7 |
Integrate the functions in Exerciges 1 1o 9.

L. - - Al-4x® R - Tl
4. P+ 4x+l 5. afl=dx—s" 6. i +4x-5

T 143x-4 R P 2 9. I+

Choose the correct answer in Exercises 10w 11,

10, j'q‘1+.<1 dx is equal to
(A) %v‘l-wcﬂ +%1ng{x+ql+xﬂ)|+c

e

=]

2 2 2 3
(B) Eu+x*12+c (C) E.a.:::1+;.c=:z+ar:

D) §m+%leug‘x+yﬁ+—xi‘+{j

1l Imiris&quﬂlm
(A) %[r—4}\||.12—3x+7+91{=g x—4+m‘+c
(B) %mmJWw;ng[HMM‘m
(C) —;nx—mmﬂﬁm x—4+M‘+C
(D) %(4'—4}#52—3‘!(4-’?—%]% x—4+M‘+C
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7.7 Definite Integral

In the previous sections, we have studied about the indefinite integrals and discussed
few methods of finding them including integrals of some special functions. In this
section. we shall smady what is called definite integral of a function. The definite integral

has a unique value. A definite integral is denoted by I 5 f(x) dx . where ¢ i3 called the
)

lower limit of the integral and b is called the upper limit of the integral. The definite
integral is introduced either as the limit of 4 sum or if it has an snti derivative F in the
interval [a, &), then its value is the difference between the valuss of F at the end
points; i.e., F(b)—Fla).

7.8 Fundamenial Theorem of Calculus

T.8.1 Area function

We have defined | f(x)dx 2s the area of
o

the region bounded by the curve y = fix),
the ordinates x = a and x = b and x-axis. Let x

be a given point in [a, B]. Then J‘f(x}cbc

represents the area of the light shaded region Afx)
in Fig 7.1 [Here it 1s assumed that f(x) = 0 for
x € [a, b], the assertion made below i3 x% + + X
equally true for other functions as well].

The area of this shaded region depends upon Y Fig 7.1

the value of x.

=]

In other words, the area of this shaded region i3 a function of x. We denote (his
function of x by A(x). We call the function A(x) as Area function and is given by

x
Aw) = [ flode (1)
Based on this definition, the two basic fundamental theorems have been given.
However, we only state them as their proofs are beyond the scope of this text book.
71.8.2 First fundumental theorem of infegral calenlos

Theorem 1 Let fbe a continuous function on the closed interval [a, b] and let A (x) be
the area function. Then A"(x) = f (x), for all x € [a, b].
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7.8.3 Second fundamenial theorem of integral caleulus

We state below an important theorem which enables us to evaluate definite integrals
by making use of anti derivative.

Theorem 2 Letf be continuous function defined on the closed interval [a, b] and F be

an anti derivative of £ Then I:f(ﬂdx = I'F[I}lﬁ = F (b) = Fla).

Remarks

(i)

(i)

(i)

iv)

(ii)

b
In words, the Theorem 2 tells us that L f(x) dx=(value of the anti derivatve F
of f at the upper limit b — value of the same anti derivative at the lower limit a).

This theorem is very useful, because it gives us a methed of calculating the
definite intagral more easily, without calculating the limit of a sum.

The crucial operation in evaluating a definite integral is that of finding a function
whose derivative is equal to the integrand. Thiz strengthens the relationship
between differentiation and integration.

In J' bflx} dx . the function f needs o be well defined and continuous in [4. b].

|
—— . . N 3 B .
For instance, the consideration of definite integral I I a(x* —1)? dr is erroncous

|
since the function f expressed by fix) = w(x® ~1)2 is not defined in a portion
— 1 < x =< 1 of the closed interval [- 2, 3].

b
Steps for calculating L flx)dx.
Find the indefinite integral J flx)dx . Let this be Fix). There is no need to keep
integration constant C because if we consider Fix) + C instead of F(x), we get
Ifﬂx] dr=|F Lt‘.l—i-CJﬁ =[Fib) + C]-[Fla)+ C]=F(b) - F(a)

Thus, the arbitrary constant disappears in evaluating the value of the definite

integral,
Evaluate F(#) — Fla) = [F{.x:}]i. which is the valne of [ aﬂx} dx

We now consider some examples
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Fxample 25 Evaluate the following integrals:

i, 4 J;
(30 - x2)*
i 1 _xdx . E o .
() ij (iv) J;.sm 2t cos2idi
Solution

" 3
i) Let I=f;x] dx , Since Jxldx=%=fo},

Therefore, by the second fundamental theorer, we get

1= -Fo=2-5.2
3 3 3
; N
(i) Let I=|, ———5—dx. We first find the anti derivative of the integrand.
(30— c2)?

3 L
i 2
Put 30— x? =r.Then—%wa dx=dt or \de-—‘—idr

211 2 1 _
Lo ILM:—— E =31 ;}—— ——— |=F()

3
(30 -

b [ 2

3 > 30— 47
Therefore, by the second fundamental theorem of calcolos, we have

I=F(9) -F4) =

3

(30 - x2)

| k2

2l 1 1
T3 @30-27) 30-8]
xdx

i let [=] ———
) L (x+1(x+2)
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-1 2
= +
(x+D(x+2) x4+1 =x+2

Using partial fraction, we get

So j *ax = —log| x+1|+2log| x+2|=F(x)

(x+1) (x+2)

Therefore, by the second fundamental theorem of calculus. we have
I=F2)-Fili=|-log3+2log4] - [-log 2 + 2 log 3]

=_31033+1n32-+2Iogd=lgg[§J

x
Let 1= [ #sin® 2¢ cos2 ¢ dr. Consider [sin® 21 cos2t dt
. 1
Put sin 2f = u 30 that 2 cos 24 df = di or cos 20 di = 5 du
S0 JSi.I:I.J 2tcostdi =

J-ug'du

I
= —[u'l]:— sin® 2r =F (1) say
8 8
Therefore, by the second fundamental theorem of integral calculus

1=F{§}—E{m=%[5m‘*§—sm‘ m:%

[EXERCISE 7.8]
Ewvaluate the definite integrals in Exercises | to 20,
2
Itl{l'-i-l}dr 2. [ildx 3. L{4x3—5f+ﬁx+9;:dx
= R
— . P 5 :
Jusmhd;l: 5. Iﬂcuslxdx fi. Ledx 7. I;lanxdx

4,

8.

o1 dx ' J-a dx

' dx
COSEC X ok 9. IUF 110, umi’
—X

in k=
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Z 1 xdr I 2x+3 1
L = - i ——dx 5. re dy
12. [Zeos®xdx 1 Ji,r’+| 14 J"Sx‘]‘+l "]
el 5x° z b x X
16. —t 17, [*2sedx+2+2)dx 18, sin® = —cos® —) dx
I‘ 44543 L’ J‘?( 2 %
20x+3 Looeo. Ex
19, j-uxz_,_‘;'i" 20. J'ﬂ{.:e tsin =) d
Choose the correct answer in Exercises 21 and 22,
Bodx
3
el J-I Tos equals
(A) = (B) e () 1,3 D) -
) 3 3 [ () 12
i
= dx
3
22. fu P equals
% = B) — 0 - D) =
(A) % (B) 1 © 2 ) 3

7.9 Evaluation of Delinite Integrals by Substilution

In the previous secdons. we have discussed several methods for finding the indefinite
integral. One of the important methods for finding the indefinite integral is the method
of substitution.

b
To evaluate L J{x) dx , by substitution, the steps could be as follows:

I. Consider the integral without imits and substitule. y = f(x) ot x = g{y) lo reduce
the given integral to a known form.

2. Integrate the new integrand with respect to the new variable without mentioning
the constant of integration.

3. Resubstitute for the new variable and write the answer in terms of the original
variable.

4. Find the values of answers obtained in (3) at the given limits of integral and find
the difference of the values at the upper and lower limits,
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|=== Note |In order to quicken this method, we can proceed as follows: After
performing steps 1, and 2, there is no need of step 3. Here, the integral will be kept
in the new variable itself, and the limits of the integral will accordingly be changed,
so that we can perform the last step.

Let us illustrate this by examples.
1
Example 26 Evaluate _[_tﬁx“u‘xi +1dx.

Solution Put t =45+ 1, then dt = 524 dx.

3
2
Therefaore, ij F4+ldr = jwf—dx—z e ;.;51-[}2
3 3
o z—F il
Hence, [ s¥'ya*+1dx = 5L{x’+nf
|

Alternatively, first we transform the integral and then evaluate the transformed integral
with new limits.
Let t=x+ . Then dt =5 »* dx.

Note that. when x=—1,1=0and whenx=1,r=2
Thus, as xvaries from— 1 to L. r varies from 0 to 2

2
Therefare j_!lﬂx‘-d'.xﬁi-ldx = jﬂ\ﬁdr
B 2 :
a0l = g 2 3 ) a3
== :1 —= 11_{}3 e S
Lo

tilﬂ,ldx

+a

Example 27 Evaluate j
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Solution Let = tan 'x, then 4=

T dt . The new limits are, when x =0, t = ) and
+x

when x = l.::g.'l'hus.asxvan'esfmmﬂm l,.rva;icsfmmﬂtu%.

ftan' x ':' | O sz _?'I:2
Therefore j v dy = jﬁ:dr[iﬂ —E - —0 _E—i

T+

| EXERCISE7.9 |
Ewvaluate the integrals in Exercises 1 to § using substitution.

L. I:.zx £y j \5in & cos” 9 dp 3. js:n l(

x,]dx

bx" =+l
i [Deae2 puzva=m) 5. EL"I:&
% l+cos’ &
3 dy i dx 2 | | o
6. — W] e———— 8. ——— | dx
J.’~"’;'r+4—.'cﬂ j',u:g+2-x+5 j‘[x 11'2]

Choose the correct answer in Exercises Y :md 10,

3
9, Th:va]utnf!htmtcgrslf £ rﬂ} dx s
J.‘

(A) & (B) 0 (€) 3 (D) 4
10. Iffix)= L:I sintdr, then f'(x) is

(A) cosx +x8inx (B} xsinx
(C) x cosx (D} sint + ¢ cosx

7.100 Some Properties of Definite Integrals

We list below some important properties of definite integrals. These will be useful in
evaluating the definite integrals more casily.

P [ fnde=[]fiar
j:f{_rjdx = —J:f{x]dx. In particular. j:ﬁx}dx:{}

[ rae=["fdn+ | foax
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P, j:f(xmx=_[:,f{a+b e

P, j:f{x}dx= _l-:f{a—.x}dx
(Note that P, is a particular case of P,)
ia & a
i [, fd=[fde+ | fRa-x)dx

P: [ 7dr=2]fdeif f2a—5)=f(x) and
0iff(2a -2 =~ fx)

P : (D I : ,f{x}iJc:ZL:f{xj&x. if fis an even function, i.e., if f(—x) = f(x).

i) [° fxadx=0,if fis an odd function. i.e., if f(~ x) =~ /().
]
We give the proofs of these properties one by one.
Proof of P, It follows directly by making the substitution x =1,

Proof of P| Let F be anti derivative of /. Then. by the second fundamental theorem of

calculus, we have ['f(x)dr=F (@) -F(a)=-[F(@)-F®)l=—[ f(x)

Here, we observe that, if @ = b, then I:f".ﬂ di=0,

Proof of P, Let F be anti derivative of f2 Then
[*Fxydx =p(b) - B@)
| Fx dx =Fio) - Fla

and [7f0 dx = i) - Fee)

Adding (2) and (3), we get j:f{szfx+j°f{x}dx= Fib) - F(a) = I:f{x}dx
This proves the property P,

dr

- (1)
wkd)

«13)

Proofof P, Lett=a+b—x Thendr=—dr. Whenx=a.t=band when x=b, r=a.

Therefore
B
[ fody= [ fla+b-sdi



INTEGRALS 275

k
= [ flatb-ndt (byP)

B
= Lf[a-i—b—xjdx by P,

Proof of P, Putr=a—x Thendi=—dx. Whenx =0, r=a and whent=a. t=0. Now
proceed as i P,

2a ia
Proof of P, Using P, we have I f{x]dxzjnf{x}dx+j fixvdx,

0 L] a
Let r = 2a —x in the second integral on the right hand side. Then

df =—dr. Whenx=a, f=aand whenx=2a,r=0. Alsox=2a -t
Therefore, the second integral becornes

[ f@dc= -] fGa-ndt = [ r@a-ndi = [ f2a-nax

Hence J‘:pf{x} dx = J:_f{x}dx+j:f{2a—xjdx
in ] 4,
Proof of P_ Using P, we have j‘} flxyde= J'G £1x) dx+fﬂ fRa-xdy  ..(1)
Now, if JF(2a —x) = f(x), then (1) becomes
Ta a fil
[, fodr= [ foode+]] Fxyde=2[ f(x)dr,
and if fi2a — x) = - fix), then (1) becornes
Za ] ; @ .
[ fmar= [ roode=[ sixrdx=0
Proof of P, Using P,, we have
& ] a
[ " rac = [ fxydet [ f(x)dx . Then

Lat = —x in the first integral on the right hand side.

di = —dx, When x =—a, i = a and when
=0 =0 Alsox=—1,

Therefore [* roode = <[ fende+] | fx)ar

= |, fende+[ fyde by P (D)
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(iy Now, if fis an even function, then fi{-x) = fix) and so (1) becomes
[* rmar=[] fooar+ [ fde=2(" fna
{1ty If fis an edd function, then fi—x) = — f(x) and so (1) becomes

|7 rzac==] flode+ [ fxdx=0

Example 28 Evaluate j zj ] % —x |cb.'

Solution We note that * — x 2 0 on [- 1, 0] and ¥ — x < 0 on [0, 1] and that
x—xz0on[l,2] So by P, we wrile

3=l = [ @ e -2 et [0 -1

= Ij[xﬂ —x) dr+J:U:—xj | dxi—f{xi —x)dx

AN AN
=14 z.J_I 2 479 2|

Example 29 Evaluate J 4ﬂ sin? x dx
s

Solution We observe that sin? x is an even function. Therefore, by P, (i), we get

" L
J* sin®ads = Zj;sinzx::t,\:
"

11
_ = [1—cos2x)
= gj; 1 =4

o E %
3 dx—fﬂ (1—cas 2x)dx
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Example 30 Evaluate J- —ﬂf—-d
0 ] +cos x
Toxsinx

Solution Let I = I dx . Then, by P,, we have

¢ |+costx

B jxm x)sin (m—x) dx
14 cos® (T—x)

—I

I"f‘.ﬂ: x}smxcfr Ij-rsinxdx
B | +cos? x B 01+ cosdx

n 510 x dx
o 2= xj'i' 1+ cos® x
_ _j-ﬂ sin x dx

014 cos® x

Putcosx=rsothat—sinxdx=dr. Whenx=0.¢t=1 and whenx=m. r=- 1.

Therefore. {by P,) we get

—m -l odl Tl dt
I:— = — —_—
9 ) 14+ 2-[-‘1-”i

|

di | ;
m|. s (by P., since i 1s even function)

K[Lan'lr]; ='JI|:L"11'I_1] -num'lﬂ]= [_-g_i_ﬁ

, 1
Example 31 Evaluate J_I sin® x cos® x dx

|
Solution Let 1= I _Esin5 reost xdx . Let fix) = sin® x cos* x. Then

[ i—x) = sin® (— x) cos* (—x) = —sin® x cos® ¥ = — f(x). L.e.. fis an odd function.

Therefore, by P, (ii). I=0
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.
Example 32 Evaluate I Ldﬂf
mn .1r++:m. x

s . &
Solution Let I = _sm—.x dx

0 sin* x+cos*z
Then, by P,

o sin® l%—xﬁi TR
iz =
o} i - s

3 i ; T 0
sm“f;—chﬂs"’{-z-—x} cos” x+sin” 4

Adding (1) and (2), we get

[ | i
n 'i BN X+ CO5 X
[ 350 2+o0s X
-

o gin* x+cos* x

Henge I[= ik
4

n
= dx
Example 33 Evaluate j T
= 1+ /tan x

E‘ dx f Jeos x dx
Solution Let] = J. =_| ' -
2 I+\fhm.x 3 eos x++Jsinx

Then, by PP,

n 1fmstg+g—x}dx
Izj-g con| EaEp ] fn] EaZoy
3 6 3 6
o= (3 ryn(5 -5

-.|'51|1x

= dx
j u'sm.r-k cogx
Adding (1) and (2}, we gEL
_ g KB K _& _m
2= j {]E 36 6 . Hence I= =

E-

e

- (2}

- (1

{2y
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E
Example 34 Evaluate L}I log zin x dx

i
Solution Let I = Jl_f’ log sin x d

Then, by P,

it X
- E 1 E— r= E
I L, log sm{2 I]tit jﬂ log cos x dx

Adding the two values of T, we get

mw

A= J@E{lﬂg sin x + logcos x ) dr
£ J'E{lﬁg sin x €08 x +log 2—log 2) dx (by adding and subtracting log 2)

: 1
= | Zlogsin2xdy—[ *log2ds  (Why?)

Put 2y =} in the first integral. Then 2 dx = df, when x =0, { =0 and when x=g+

=1

Therefore 2= %j:lng sint dr —-% log2
—EI EIUESEM&I—E]UE” [by P_ as sin (T — ) = sin )
=2 )3 5 '08= [by F, as s =
: bin
= L"‘-" log sin xdx—ElﬂgE {by changing variable ¢ to x)
- l—glugi

x
Hence j.:,z logsingdr = :ET-I- log2 .
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I[EXERCISE 7.10 |

By using the properties of definite integrals, evaluate the integrals in Exercises | to 19,

X

= x -
) 5in x

1. Izg;ns.z,rdx 2, J-'z—. dr 3
0 0 fsinx ++fcosx
x 5
3 Co8 xdx = 5

&, jz'—_-s =— 3 I | x+ 2| dx
0 gin” x+cos’x =

1 »
Inx{l—x}”u{x 8. I;Ing{l+tanx}dr

10. J'Eﬂlogsma log sin 2x) dx 1.

‘i[
12. [’ A 13. |2 sin” xa 14.
0]+sinx =t
o
15, [2 SRIZCOSX o [Mlog Q+eosmyde 17,
b | +&inxcosx o
18. j"j e 1] dx

3
v s
_[E sin? x dx
2 3

Rin? x4 cog? x

I:| x—5|dx

I:xn.l'l—x{ix

"
J- E“_Ei.llz xdx

1

in
In cos® x dx

s

E+ya—x

de

19. Show that j:ff_x}g{xl dr=1 I:.f{xj dx , if fand g are defined as f(x) = fla—x)

and g(x) + gla-31=4
Choose the correct answer in Exercizes 20 and 21.

I
20, The value of j'_i:{xj + xcos x+tan® x+1) dx is
iz

(A) O (By 2 (Ci m
1. Th:va.]ucnfj.ihg Stagms dx
b d+3cosx
3
(A) 2 (B) — (Cy 0

4

D) 1

(D) -2
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Miscellaneows Examples
Example 35 Find Ims Bx+f1+sin 6x dx
Solufion Put =1 + sin 6x, so that df = 6 cos 6x dx
1
- |
Therefore J'cﬂs Byl 4+ 8in 6x dx = 2 Ja‘ﬂdf

9 2 1 2
xgu}i +C= §f1+sin o)t +C

1
6

]
4 _ 44
Example 36 Find ju—” A
I
: a-Lys
i .
Solution We have j'u —x .tir=j < de
¥ x

1 _ 3
Put 1—;5—=1~x =180 Thal;;—dx=d:

5

1
4 _x)* 4 1 42 4 1%s
Therefore ju—sx-]—dxzéjr‘*df =§><—t4 +C=— I——] +C
X

5 15\ &
I le 37 Find jiﬂ_
xample in x—1) i_'.rz o
Solution We have
2! L
e {I+J_}+_—
{x—=1a"+1) &=t x=1
. 1
= 1.1:+1_}+-—:i-—_
{x~1)tx=+1)

1 __A _ BatC
=D+~ (=1 F+1

Now express

- (1)

- (2)
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So I=A P+ D+ (Bx+C)(x—1)
=(A+B)¥+(C-B)ix+A-C
Equating coefficients on both sides, we get A+ B =0, C-B=0andA-C=1,
which give A =%,E =C=—%- Substituting values of A, B and C in (2), we get

1 | | £ |

= a = N e > -4 3
(x=Dx+1) 2x=1) 2(f+l;| 20 +1) (3)
Again, substituting (3) in (1). we have
xt | T x I
= (x+1)4+ e
(x=D (4541 Ax-D 22+ 22+
Therefore
4
j I_,_ dx:-'i-+x+l]ug|x—l|—-l-lug|;x2+l}l—ltan x4+
{x=Dix"+x+1) 2 2 4 2
Example 38 Find j‘ljlng {log x)+ -lrix
i e L (logx)? |
Solution Lat I=Irlng {log x) + - dx
| T (log )
—ji:}gtlnngdxﬂ' 5 dx
(logx)*

In the first integral. let us take | as the second function. Then inteprating it by
parts, we get

1= xlog (log x)— xdx+
BNER '[x log x jl{]r;.'rga:)2
elx
= xlog (1
=Xk (ogn)= j[ogx jflug.ﬂz A
Again, consider J— take 1 as the second functon and integrate it by parts,

log x

el t . ] [L] i
we have logx |logx Iflt:-gx:lz A )
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Putiing (2} in (1), we get

I=zxloz (logx) = +C

= xlo {ln ]""
I{lung“' SRR YRS log x

dx
lﬂgx -l (log x)* *
Example 39 Find j[ col x ++/tan r:|dx

Solution We have

I= J[M+ tan,r:|cfx :IM{Hmu}c&

Pultan x = £, so that sec? x dy = 2+ dt

ud
O f_‘hl'= .:I_i!.
|+t
1y 2
= e s
Then I J[ rE]ﬂ.H“]
L {H%)d: [i+-—li}ir
=2 dt=2 ! 4 L
| Grpa=2f |

1 l
Put F—I— = y. so that {I+F] di = dy. Then

)

e
o

+C

I—Zf}? +(J_) =2 tan IEH: V2 tan !

2 1| L +C=+2tan" {t‘mx—LJ+C
-J—.! 2tanx
sinn 2xcos 2xdx
A9 —cos®(2x)

sin 2xcos Zx

V9 —cos? 21

=1

Example 40 Find j

Sulution Let I='|'

283
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Put cos? (2x) = ¢ so that 4 sin 2x cos 2x dy = — 4t

i)+E‘=—lsir1 ' lcnszix +C
4 3

_lj dt =_ls,-n-4[
4° Jo_2 4 3

Therefore I=

3
Example 41 Evaluate J ZI | & sin (7 x) |dx

asnftrfor—l=x=l

Solution H =[xsinmx | =
MR Hore ey =1 v —'IR:i.H?'E..{fﬂtlﬂj"_:%

2 1 ik
Therefore j_‘illxsinxxtdx:j Ixsinﬂrdxﬂ-jl"'—xﬁinﬂxir

- .
- j lxsmﬂxdx—jlzxsmxxix

Integrating both integrals on righthand side, we get

3 3

Jlilxﬁinﬂxldx: I:—xcﬂfsrtx+51'n11'cx]1 N [—rcusiﬁx+sinﬂ;tr]5
- T i 1 b 4 |
2 { | 1} 3 1
= === ==t=
| o w| ® oo
= xdx
Example 42 Evaluate
" L’ a‘cos®x+bisin’x
Solution LetI= | - e =[. e (usingP,)
— "0 g% cos? x+bPsin® x 70 a?cos® (- u)+ besin’ (K- x) HRIE 4
R Iy P
0 gcos® x+b%sin“x 70 g*cost x+b sin’ x
n dx
=T - o |
Iﬂ a*cost x+bisin? &
dx

w
Thus N=T|.— e
0 g?cos® x+b"sin x
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W

A dax w 5 i
or I =i . =22 - {using P
EJ‘“azuusﬂxi—blsm]'x 2 'l-“ a’cos® x+ b sin® x gFy)

i|8

"
P j’E dx 3 jz dx
= |0 a’cos® x4 b sin"x Y x alcos® x+blsin® x
4

al +b% tan® x a’cot® x+b°

IE sec? vdx _[: cosec vdx ]
L1}

B|la

1 e ¢ du
=T — uf lan x = tandcol x =u
In a* +b'* J-l uia.:‘+.br3:|{’!;I )

1 i

m[ ...hr} '.IT[ -.au} o i e

L 7wl LA S o D 2 a2
abl " al, ab Pl

Miscellaneous Exercise on Chapter 7

Integrate the funetions in Exercizes 1 o 23,

1 1 1 i
L. 2 ————— 3J. ——— [Hint'Putz=—
x—x Jx+a+x+b tax—i? [H * f']
1 1 1 1
§ ———% 8 T [Hint: — =— 7 ,putx =1
PR EAES N e ¥ +xP 0 [HF'KEW

s

‘ 5x : simx 4 Goes _ 4lopx
Y D) (32 +9) " sin(x—a) B vhes_ dioge
COS X 10 sin® —cos? x i1 1
V4 —sintx " 1=2gin® xeostx T oeos(x+a)eos (x4 5)
12 x 13 # 14 ;
L=t T (4eM )12+ C D+
15, ogiy elosn Lo, edbe (f + 1) ! 17, f (ax + B) [flax + BY]"
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. 1 " 1-x , 2Hsin2x
. Jsinﬂxsin{x-htl} ' 1+;x T 14cos2x

; 22, wn” —
{(x+1)" (x+2) 1+x

N [tng (B+1)-2 lc-g.::l

4
X

Evaluate the definite integrals in Exercises 24 to 3 1.
24, J':e*[l"smjdx
- l—cosx

2
i
5 sinx+cosx 1 dx
—_—dr 8. | —
jg Sin 2% et

i1
30. _[; sin 2xtan " (sin x) dx

cos® x+dsin’ &

k=

T sinx cosx ~ costxdx

o T X C0s = CO§TE

5. j‘*ﬁdxm_ J'J.—
8 cos” x+sin” x o

b

()
~

L.
j-; SINX+C08x
2 94168in2x

al. _[f[lx-1|+|x—2|+lx-31]cn
Prove the following (Exercizses 32 to 37}
7
3. J-g—ndx—: +1ug~% 33, lee‘dle

Lxf(x+D) 3 3 0

1 f )
34 wams‘*x.-ix=ﬂ is Iiams.xdx=:

i : :

% 3 . - | | pl4
36. j'uztau xdx=1-log2 37. _[usm xdx=2—]

Choose the comrect answers in Exercises 38 to 40

38, j }dx — 1s equal to
e +e
(A) tan! (&) + C (B) tan! (e*) + C
(C) log (& —e)+C (D) log(e"+ e+ C
19, J- cos2x

— " —dx isequal lo
(sin x+cos x)* =



40.

INTEGRALS 287

-1
(Y = —— —1ia (B) loglsinx+4cosxl4+C
SiM X+ COS X
|

(C) loglsinx—cosx|+C (D) (sinx+cosx)®

I£f(a+b-x =7 ), then [ x f(x)dx is equal to

(A) “*bj Fb—x) dx (B) “”’j Fb+ 1) dx
© 2 (D '“H’j' fx)dx
Summary

4 Integration i the inverse process of differentiation. In the differential calenlus,

we are given a function and we have to find the derivative or differential of
this function, but in the integral calculus, we are to find a function whose
differential is given. Thus, integration is a process which is the inverse of
differentiation.

d :
Let EF{I] = f(x). Then we write Ij"{ﬂ dx=F(x)+C . These integrals

are called indefinite integrals or general integrals, C is called constant of
integration. All these integrals differ by a constant,
Some properties of indefinile inlegrals arve as follows:

L [l +g @lde= | f(xrdx+ [ g (x) dx

2. For any real number k, ka[x}ir=kjfijdx

More generally, il f, £, f, ... , J, ave functions and &, &, ... k_are real
numbers. Then

[l 100 +ka fy (30 R ()]
=k [fdork, [ Loy ds+.+k, [ £ (0dx

@ Some siandard inlegrals

+1

A +C, n#~ |, Particularly, _Ilix‘=3.?+C

@ [atdr=
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(i) jcusxdx:sin.r+c (iii) J-Si]lj'dxz—gﬂs.x-r-c
(iv) Ismz.rdx=mnx.+c () !mscczxdxz—cmx+c

(vi) J.set:xmﬂxdx=secx+c

(vii) I osec x col x dy =— cosec x+C  (viii) Ii_ﬂﬂ“'-ﬁ+ﬂ
vii) | cos =—cosecx+C (vil) J == .
|-

dx -1 dx -
: =—co8 x+0C , = —tan e
() hl-r’ ) I|+_{1 £
dx .
(xi) IIEE:_W‘ ‘z4C {xii) IE*ixze’-l-C
jasdx—- LA & =
(i) e (xiv) I—;dz—lngl.x_HE

Integration by partial [ractions

Pix)
Recall that a rational function is ratio of two polynomials of the form Qx) !

where P(x) and Q (x) are polynomials in » and Q (x) # (. If degree of the
polynomial P (x) is greater than the degree of the polynomial  (x), then we
may divide P (x) by Q(x) so that M:Tmﬁ]‘{—ﬂ, where Ti{x) iz a
Q(x) Qix)
polynonial in & and degree of P (x) is less than the degree of Q(x). T(x)
Fi(x

being polynomial can be easily integrated. ?1?_3 can be integrated by
3

P
eXpressing _Qﬂé% as the sum of partial ractions of the following type:

e S D e
(x—a)(x—b) x—a x—b
5 pr+gq _ A 5 B

{Jrv—:z}li XK= {J:-—-u]l
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Z
+gx+
2 pxt+gx+r _ A . B . C
(x—a)(x—B)(x—¢) ¥—d x=b x—¢
4 pf +ga+r _ A = B o c
Y (x=a) (x=h) x=a (x—a) x—b
J'.f!-l‘ ==
" prt+q - A | BesC

(x—a)(x* +bx+¢)  x-a L+brte
where 2 + bx + £ can not be factorised further.

% Integration by substituiion

289

A change in the variable of integration often reduces an integral to one of the
fundamental integrals. The method in which we change the variable to some
other variable s called the method of substitution. When the integrand involves
some trizonometric functions, we use some well known identities to find the
integrals. Using substinition technique, we obtain the following standard

integrals.
(i) jlm.x:tzzlng |secx|+C

(it Jsﬂcx-d.t=lng|5ﬁcx+tﬂnz|+{3

(iv) jmsmx dx =log|coseex —cotx |+ C

* Inlegrals of some special functions

dx | x—a
=—1 g
O sz__ﬂz 2a i i+ta
dx 1 a+x dx
i ——=— +C i
(i) jaz—xz 2a o8 a—4 () J.,rzhf

=log

; dx:
e ——
j-.l'x“-aj
dx [
{VI} jm:]ﬂﬂlﬁf"" .\’1+ﬂz|+c

@ lInlecgration by parts
For given functions f, and f,. we have

1

=

2]

(it} ijx irzlug|sin:-: |+C

e
ol o
a

d. i
x:+-~.|'f—a:|+{3{'ﬂ j@%—xzzsm I§+C



30 MATHEMATICS

JAt- fy de= fitz) [ o dv- | [fxﬂx}-mm asx]dx . d.e., the

integral -of the product of rwo functions = first function x integral of the
second function — integral of {differential coefficient of the first function x
integral of the second function}, Care must be taken in choosing the first
function and the second function: Obviously, we must take that function as
the second fumetion whose integral is well known Lo us.

* [+l de= [ef f () dut C

4+ Some special types of integrals

2
i) j i .:i.::%\llxi —a® —%Iog
(if) j vx' +at ir=%1.l'x2 +a* +§lug

Py St ]-I—C
x4 fxt+a?

2
f1i) j at-x" ﬂf’-\:=%\}'a2—f +%sin"£+c
o

+C

can be

(iv) Integrals of the types Iqx3+ TR “"J J H)
ar -+ox+

transformed into standard form by expressing

24 h u[rz+2x+£:|—-u'{[_r+i]2+ L
AT ARRL = a’ a I_ 24 a 4g°

px+qdx px+gdx
= or j
ax’ +hate ot 4hro
iransformed into standard form by expressing

(v} Integrals of the types I can be

Bl g=ﬁsi{axz LB+ ey B=ARax+ BB, where A and B are
determined by comparing coefficients on both sides.

# We have defined j : f(x) dx as the area of the region bounded by the curve

y=f(x), @ <x <= b, the x-axis and the ordinates x =wand x =& Letxbe a
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given point in [a, b]. Then j': fix)dx represents the Area function A (x).

This concept of area function leads to the Fundamental Theorems of Integral
Calculus,

First fundamental theorem of integral caleulus

Let the area function be defined by A(x) = [~ f(x) dx for all x> a, where

the function fis assumed o be continuous on [a, &], Then A’ (x) = f(x) for all
x e [a bL

Second fundumental theorem of intezrnl calculus

Let [be a continuous function of x defined on the closed interval [a, b] and

¢l
let F be another function such that EF{x} = f{x) for all x in the domain of

. then [ * fGrde=[F)+Cl =F B)-Fa).

This is called the definite integral of f over the range [a. b]. where a and b
are called the limits of integration, o being the lower limit and & the

upper limit.

— e —
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Chapter

'APPLICATION OF INTEGRALS

& One should study Mathematics beeause it is only through Maithematics that
nature can be conceived in harmonious form. — BIRKITOFF <

8.1 Introduction

In geometry, we have learnt formulae to calculate areas
of various geometrical figures including triangles,
rectangles, trapezias and circles. Such formulae are
fundamental in the applications of mathematics to many
real life problems. The formnlae of elementary geometry
allow us lo calculate areas of many simple figures.
However, they are inadequate for calculating the areas
enclosed by curves. For that we shall need some concepts
of Tntegral Calculus,

In the previous chapter, we have stodied to find the
area bounded by the curve y = f (), the ordinates x = g,
x = b and x-axis, while calculating definite integral as the
limit of a surm. Here, in this chapter, we shall study a specific
application of integrals to find the area under simple curves,
area between lines and arcs of circles, parabolas and
ellipses (standard forms only}. We shall also deal with finding
the area bounded by the above said curves.

8.2 Area onder Simple Curves

In the previous chapter, we have studied .
definite integral as the limit of a sum and ¥
how to evaluate definite integral using
Fundamental Theorem of Calculus, Now,

we consider the easy and intuitive way of //_ '

finding the area bounded by the curve Sié
¥ = f{x), x-axis and the ordinates x = a and
x = b. From Fig 8.1, we can think of area
under the curve as composed of large x=a
number of very thin vertical strips. Consider
an arbitrary strip of height ¥ and width dx;

A.L. Canchy
(1789-1857)

¥ =__f (x]

s

x=0

then dA (area of the elementary sirip) = ydx, X4g—p
where, y = flx). v
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This area is called the elementary area which is localed at an arbitrary position
within the region which is specified by some value of x between a and b. We can think
of the total area A of the region between x-axis, ordinates x = a, x = b and the curve
¥=f1(x) as the result of adding up the elementary areas of thin strips across the region

PQRSP. Symbolically, we express Y F
J_I =

A= [lan=["yac=[" f(0dx j
o)
y=c ,J

The area A of the region bounded by dy
the curve = g (v}, y-axis and the lines vy = ¢,
y=dis given by

d ) =
A=Lm‘y=L g(y)dy LGL >X
Here, we consider horizontal strips as shown in Y
the Fig 8.2 Fig 8.2

Remark If the position of the curve under consideration is below the x-axis, then since
Six)=0from x=ato x=b, as shown in Fig 8.3, the area bounded by the curve, r-axis
and the ordinates x = a, x = b come out to be negative. But, it is only the numerical
value of the area which is taken into consideration. Thus, if the area is negative, we

take its absolute value, 1.2.,

_f:ftx} dx

Y

'l.

£

Y’ Fig 8.3

Generally, it may happen that some portion of the curve iz above x-axis and some is
below the x-axis as shown in the Fig 8.4, Here, A, <0 and A, > 0. Therefore, the area
A bounded by the curve y = f (x), x-axis and the ordinates x = g and x = b i5 given
byA=|Al+A,
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Fig 8.4
Example 1 Find the area enclosed by the circle 2 + v= &,

Solution From Fig 8.5, the whole area enclosed
by the given circle

= 4 (area of the region AOBA bounded by
the curve. x-axis and the ordinates ¥ = 0 and
x = a) [as the circle is symmetrical about both
x-axis and y-axis]

= 4_[: ydx (taking vertical strips)

= 4]:*4'(12 —.l’z ax

Since x2 + ¥ =al gives v=t+g" -2 Hess

As the region AOBA lies in the [irst quadrant, ¥ i$ taken as positive. [ntegrating, we get
the whole area enclosed by the given circle

-4 %*Ja-l—r} +§-sin 'f]
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Alternatively, considering horizontal strips as shown in Fig 8.6, the whole area of the

region enclosed by circle

= 4] “xdy = 4}':1(31 — 2 dy (Why?)

4|:y~.|l|r.t —-y s = }I}
E- i d xn’:

-{[ZXGH— —sin 1l ﬂ:|

2

a‘mn 5
= 4——="ng" Y,
) Y
., Fig8s
Example 2 Find the area enclosed by the ellipse- -Jf-i- + -g-z--:l
a

Solution From Fig 8.7, the area of the region ABA'B’A bounded by the ellipse

4 area of theregion AOBAin the first quadrant bounded
N by thecurve, x — axis and the ordinates x=0,x=a

{4 the ellipse is symmetrical about both x-axis and y-axis)

- 4j: yex (iaking vertical strips)

Iﬂ 2

b 73
Now -'—’+ — = | gives ¥y=1% % a’ —x* ‘buras the region AOBA lies in the first

B
gquadrant, v is taken as positive. So. the required area is

= & ﬂ-_ 12 — : F
= J-ﬂ = i E ii."u'.
E

) ; ar
= ﬁ[éqﬂff —xt +%51‘n"] iL (Why?) /,_-
| = @
& ﬁl’
A€

l_ ’ 0‘!

a 2
=
_Yatm Y
a 2 2
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Alternatively, considering horizontal strips as
ghown in the Fig 8.8, the area of the ellipse is

4j:xdy - 4%}1#52—:92&)? (Why?)
f

K A) B
Piindy u}!-/m.'m
it " 4
Aa gﬂlhl -y +%Ein : %]
l]

b B (0~ &)
o v
_dalfb 0 B nty)o TS
h _|,\2 2
_ EEE: b
b 20
EXERCISE 8.1
g
1. Find the area of the region bounded by the ellipse E+ ?=1 .
¥yl
1. Find the area of the region bounded by the ellipse ?+?=1 ;

Choose the correct answer in the following Exercises 3 and 4.
3. Arealying in the first quadrant and bounded by the cirele = + 3 =4 and the lines

x=Dandx=21is
T B 'H
(A) (B) 5 3 D) 3
4. Area of the region bounded by the curve * = 4x, y-axis and the line y=3 is
9 9 9
(A) 2 ®) © 3 ®) 5

Miscellaneous Examples

Example 3 Find the area of the region bounded by the line 3= 3x + 2, the x-axis and
the ordinates x=—1 and x = 1.
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Solution As shown in the Fig 8.9, the line Y

=T

y=1x+ 2 meets x-axis at x = 7y and its graph

i , -
lies below x-axis for x& [ -1, ?] and above

x-axis for :re[_?l, l) .
The required area = Area of the region ACBA +

Ares of the region ADEA

-2
= |[3 Gre2dr+] |, Gr+2)a v

3

1
E-l—lf =£-1-§=E
2 26 6

I ie‘
= 3i+2z +
2 1t ‘

T

Example 4 Find the area bounded by
the curve v = cosx between x = 0 and

x=2m

Solution Fromthe Fig 8.10, the required e 5
area = area of the region OABO + area
of the region BCDB + area of the region
DEFD.

Thus, we have the required area

3
= J':mmdx+ cos xdx

J

o 3
+j£muix
2

e ”‘|§

an

. i
[sin x]‘:.
2

x
= [sin r]'; +

+ [sin J.];:

&

=1+2+1=4
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Miscellaneous Exercise on Chapter 8
1. Find the ares under the given curves and given lines:
(i) y=x x=1, x=2 and x-axis

(i) y=+" x=1, k=5 and x-axis
1. Sketch the graph of y = |x+3§ and gvaluate Iuﬁ|x + 3| .

3. Find the area bounded by the corve ¥ = sinx between x =0 and x = 2w,
Choose the correct answer in the following Exercises from 4 1o 5.
4. Area bounded by the curve y = &%, the x-axis and the ordinates x=—2and x=1 is

—15 15 17
(A) -9 (B} & (<) I (D 'y
5. The area bounded by the curve v = x |x|, x-axis and the ordinates x = — 1 and
&= lis given by
1 2 4
(A) O (B} 3 (&) 3 (D) 5

Mint:v=xtifx>0andy=—x2 if x <0].

Sununary

# The area of the region bounded by the curve ¥ = [ (x). x-axis and the lines

v=aand.x=b (b>a) is given by the formula: Area= ' yax=[ " (.
# The area of the region bounded by the curve x = ¢ (), v-axis and the lines

. d
v=c, y=d is given by the formula: ﬁm:j-c'xdy =‘F:T¢ (¥)dy .

Historical Nole

The origin of the Integral Calculus goes back to the early period of development
of Mathematics and 1 is related 1o the method of exhaustion developed by the
mathematicians of ancient Greece. This method arose in the solution of problems
on calculating areas of plane figures, surface areas and volumes of solid bodies
etc, In this sengse, the method of exhaostion can be regarded as an early method
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of integration. The greatest development of method of exhaustion in the early
period was obtained in the works of Eudoxus (440 B.C.) and Archaimedes
{300 B.C.)

Systematic approach to the theory of Caleulus began in the 17th century,
In 1665, Newton began his work on the Calculus described by him as the theory
of fluxions and nsed his theory in finding the tangent and radius of curvature at
any point on a curve. Newton introduced the basic notion of inverse function
called the ant derivative (indefinite integral) or the inverse method of tangents.
During 1684-86, Leibnitz published an article in the Aeta Erudirorum which
he called Calculas swmmaiorius. since it was connected with the summation of
anumber of infinitely zmall areas, whose sum, he indicated by the symbol ' In
1696, he followed a suggestion made by J, Bernoulli and changed this article 1o
Calcalus integrali, This corresponded to Newton's inverse method of tangents.
Baoth Newton and Leibnitz adopted quite independent lines of approach which
was radically different. However, respective theories accomplished results that
were practically identical. Leibnitz used the notion of definite mtegral and what is
quite certain is that he first clearly appreciated tie up between the antiderivative
and the definite integral.

Conclusively. the fundamental concepts and theory of Integral Calculus and
primarily its relationships with Differential Calculus were developed in the work
of P.de Fermat, I. Newton and G, Leibnitz at the end of 17th century, However,
this justification by the concept of Limit was only developed in the works of ALL.
Cauchy in the early 19th century. Lastly, it is worth mentioning the following
guotation by Lie Sophie's:

“lt may be said that the conceptions of differential quotient and integral which
in their origin certainly go back to Archimedes were introduced in Science by the
investigations of Kepler, Descartes, Cavalieri, Fermat and Wallis ..., The discovery
that differentiation and integration are inverse operations belongs to Newton
and Leibnitz",

_...6:..._
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(DIFFERENTIAL EQUATIONS)

% He whe seeks for methody withowt having a definite problem in mind
seeks for the most part in vain. — D. HTLERERT <»

9.1 Introduction
Tn Class XT and in Chapter 5 of the present book, we PEaEE i
discussed how to differentiate a given function fwith respect
to an independent variable, i.e., how to find f(x) for a given
function fat each x in its domain of definition. Further, in
the chapter on Integral Caleulus, we discussed how to find
a functon f'whose derivative is the function g, which may
also be formulated as follows:

For a given functon g, find a function f such that

dy . .
— = glx), where y = f(x) i 1)
dx :
An equation of the form (1) is known as a differential Henrl Poincare

equation. A formal definition will be given later. (1854-1912 }

These equations arise in a variety of applications, may it be in Physics, Chemistry,
Biology, Anthropology, Geology, Econoimics etc. Hence, an indepth study of differential
equations has assuwmed prime importance in all modern scientific investigations,

In this chapter, we will study some basic concepts related to differential equation,
general and particular solutions of # dillerential equation, formation of differential
equations, sorme methods to solve a first order - Ticst degree differential equation and
some applications of differential equations in different areas.

9.2 Basic Concepts
We arc already familisr with the eguations of the type:
DA-3x+3=0 v 413

sinx+cosx=10 w2y
x+y=7 (3
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Let us conzsider the equation:

dy
Zry =
x o ¥ =0 (4

We see that equations (1), (2) and (3) involve independent and/or dependent variable
(variables) only but equation (4) involves variables as well as derivative of the dependent

variable y with respect to the independent variable x. Such un equation is called a
differential equation.

In general, an equation involving derivative (derivatives) of the dependent variable
with respect 1o independent variable (variables) is called a differential equation,

A differential equation involving derivatives of the dependent variable with respect
to only one independent variable is called an ordinary differential equation, e.g.,

dy (@T e : : ) )
2 T + sl 0 is an ordinary differential equation N

Of course, there are differential equations involving derivatives with respect to
more than one independent variables, called partial differential equations but at this
stage we shall confine ourselves to the study of ordinary differential equations only.
Now onward, we will use the term ‘differential equation’ for ‘ordinary differential
equation”.

1. We shall prefer to use the following notations for derivatives:

# dt. " ‘i! e
D_, L=y mdoy
de v dx

2. For derivatives of higher order, it will be inconvenient touse so many dashes

d"y

i

as supersuffix therefore, we use the notation »_for nth order derivative

9.2.1. Order of a differential equation
Order of a differential equation is defined as the order of the highest order derivative of
the dependent variable with respect to the independent variable involved in the given
differential equation.
Consider the following differential equations:
dy

a =g’ e 1O}
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1
jxi*ﬂ =0 (D)
1y 5 w3
5{_-‘;1 |+ 2 [E_-‘i_"] —0 o (8)
fil‘ A tfx

The equations (6), (7} and (8) involve the highest derivative of first, second and
third order respectively, Therefore, the order of these equations are 1, 2 and 3 respectively,

9.2.2 Degree of a differential equation

To study the degree of a differential equation. the key point is that the differential
equation raust be a polynomial equation in derivatives, i.e., ¥, ¥", ¥ etc. Consider the
following differential equations:

d._‘!.y_}g'[ﬂﬂ_ywl_ﬂ.[.}r =1 {9}
de \dd | dx
2
[%] +[%:]-sin2 =0 (10
dy . (dy
dx+5m(rix] =0 we (11}

We observe that equation (9) is a polynomial equationin ¥, ¥" and y', equation ( 10)
15 a polynomial equation iny (not a polynomial in v though). Degree of such differential
eguations can be defined. But equation (11) is not a polynomial equation in " and
degree of such a differential equation can not be defined.

By the degree of a differential equation, when it is a polynomial equation in
derivatives, we mean the highest power (positive integral index) of the highest order
derivative involved in the given differential equation.

In view of the above definition, one may observe that differential equations (6. (7),
{8) and (9) each are of degree one, equation {10} is of degree two while (he degree of
differential equation (11) 15 not defined.
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Examplie 1 Find the order and degree, if defined. of each of the following differential
equations:

5 3
@ G-ewsa=0 @ w2 +x( L] 52 g

i) "+ +e” =0
Solution

(i) The highest order derivative present in the differential equation is %-, 50 its

ay
order is one. Itis a polynomial equation in v and the highest power raised (o E{-

15 one, s0iks degree 18 one,
; . . e . . dhy
(i) The highestorder derivative present in the given differential eguation is PR 50

d*y d
its order is two. It is a pelynomial eqoation in d_l and E}r and the highest
iy :
fy
power raised to Al is one, so its degree is one,

(i) The highest order derivative present in the differential equation is ™, g0 its

order is three. The given differential equation is not a polynomial equation in its
derivatives and =0 its degree is not defined.

EXERCISE9.1

Determine order and degree (if defined) of differential equations given in Exercises
T 10

d4_’!" . w @ s & dz.i'

1. dx4+5|n(}r =0 2. ¥ +5y=0 3. (Er_) +3ﬁ—£;i-=ﬂ
rdz},]z  dy dty

4. |—| +eus| = |=0 5, ——=c¢os3x+sindx
de" kd.:] P

e |

6. (3P 4P+ P+ =0 Y 4+ +y =0
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8. ¥+y=¢e 9 v+ (WP +2y=0 10, ¥+ 2y +siny=0
11. The degree of the differential equation

GIRHEHE

(A) 3 (B) 2 C) 1 (D) notdefined
12. The order of the differential equation

d*y  dy )

2t -3+ y=0

di* dx * &

(&) 2 iB1 1 (C) 0 (D} not defined

9.3. General and Particular Solutions of a Differential Equation
In earlier Classes, we have solved the equations of the Lype:
#a1=0 o (1)
sin® x—cos x =0 i A2)
Solution of equations ( | ) and (2) are numbers, real or complex, that will satisfy the

given equation i.e., when that number is substituted for the unknown « in the given
equation, L.H.S. becomes equal to the R.H.S..

: 5 o
Now consider the differential equation Ers y=0 A3
Dt

In contrast to the first two equations, the solution of this differential equation is a
function & that will satisfy it 1.e., when the function ¢ is substituted for the unknown ¥
{dependent variable) in the given differential equation. L.H.S. becomes equal to R.ILS..

The curve ¥y = ¢ (x) is called the solution curve (integral curve) of the given
differenual equation. Consider the function given by

y=1 (x} =g sin (x + &) o (4

where @, b € R. When this [unclion and its denvatve are substiluied in equation (3),
L.HS. =RH.S.. Soitis asolution of the differential equation (3).

T
Let g and & be given some particular values say g = 2 and b= 3 then we get a

function y=,(x) = 2sin [Jr+£] . (5)

When this fanction and its derivative are substituted in equation (3) again
L.H.5, = R.H.8,, Therefore ¢, is also a solution of equation (3).



DIFFERENTIAL EQUATIONS 305

Function ¢ consists of two arbitrary constants (parameters) g, b and it is called
general solution of the given differential equation. Whereas function ¢, contains no
arbitrary constants but only the particular values of the parameters ¢ and & and hence
is called a parficular solurion of the given ditferential equation.

The solution which containg arbitrary constanis 15 called the general solution
{primitive) of the differential equation.

The solution free from arbitrary constants i.e., the solution obtained from the general
solution by giving particular values to the arbitrary constants is called a particular
sofution of the differential equation.

Example 2 Verifv that the function y = ¢ ¥ is a solution of the differential equation

d’y dy
TR B gyt
PE R

Solution Given function is y =& *. Differentiating both sides of equation with respect
to x , we get

dy 3
L =T Ix G|
i (1)
Now, differentiating (1) with respect to x, we have
ﬂi%' =Qa %
Iit'z

i’y dy
Substituting the values of Zix_f% and y in the given differential equation, we get

LHS. =9¢¥+(3e¥)-0e¥=9¢¥-9¢¥=0=RHS..
Therefore, the given functon is a solution of the given differential equation,

Example 3 Verify thal the Tunclion v = a cos x + b sinx, where, a, b € R 15 4 solution

2
of the differential equation %} +y=0

Solution The given function is
y=¢cos x+ bsinx o )

Differentiating both sides of equation (1) with respect to x. successively, we get

=—gsink + b cosx

._dta a_ |x§_

a
&?*:—acﬂﬁx—bainx
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dt
Substituting the values of Ex_ii and y in the given differential equation, we get

LHS. =(—gcosx—bsinx)+{acosx+hbsiny)=0=RHS.
Therefore, the given function is a solution of the given differential equation.

| EXERCISE 9.2

In each of the Exercizes | to 10 verify that the given functions (explicit or implicit) isa
solution of the corresponding differential equation:

1. y=e"+1 D ¥ -¥=0
2, y=2+2r+C s W=Dy D)
Y y=cosx+C ¥ +sinx=0
xy
= 1 N =t
4. y= 141 i T
5. y=Ax o=y xEd
. y=xsinx X =y+x -y (x#0andx>yorx<—y)
3
7. xy=logy+C 1 = xy#1
3 gy e Xy (xy=1)
¥y —COSV =X T (ysiny+cosy+x)y =y
x+y=tanly DY Y+ +Ll=0
0. y=Ji2_rxe(aa: x+ %zﬂ(}r;&ﬂ}
11.  The nuraber of arbitrary constants in the general solution of a differential equation
of fourth order are:
(A) O (B) 2 (Cy 3 (D) 4
12, Thenumber of arbiirary constants in the particular solution of a differential equation
of third order are:
(A) 3 B) 2 (Cy 1 (D) 0
9.4. Methods of Selving First Order, First Degree Differential Equations
In this section we shall discuss three methods of solving first order first degree differential
equations.
V4.1 Differential equations with variables separable

A first order-first degree differential equation is of the form

% =Fix, ¥) e i)
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If Fix, ¥) can be expressed as a product g (x) f{v). where, g(x) is a function of x
and h(y) is a function of y, then the differential equation (1) is said to be of variable
separable tvpe. The differential equation (1) then has the form

dy
— =3 ;
2 -0 (v . glx) (2)

If h{y}+ 0, separating the variables, (2) can be rewritten as

|
o dy = g(x) dx 5o {3

Integrating both sides of (3), we get
1
——dy= | g(x)dx o (4
roadl :

Thus, (4) provides the solutions of given differential equation in the form
Hiv) =Gix)+ C
1
Here. H (y) and G (x) are the anti derivatives of m and g (x) respectively and
C is the arbilrary constant.

Example 4 Find the general solution of the differential equation % = ;H : Ay#2)
=¥

Solution We have

v x+1 ;
E = = <A1
Separating the variables in equation (1), we get
(2—ydy=(x+1)dx o (2}

Integrating both sides of equation (2), we get
je-ydy= [(x+Ddx

32
or dy—— = —+1+C
ik 2 D) 1
ot .ri+}'3+3x-4}=+zcl=ﬂ
or #+y +2r—4y+C =0, where C=2C,

which is the general solution of equation (1).
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dy _1+y"

Examnple 3 Find the general solution of the differential equation T
+x

Solution Since 1 + y* = 0, therefore separating the variables, the given differential
equation can be written as

dy  dx
il - (1
I+y2 145 ()
Integrating both sides of equation (1), we get
j'1-4-]; - jl+f
or tan”' y =tan"'x 4+ C

which is the general solution of equation (1.

Example 6 Find the particular solution of the differential equation g_—— =—4xy° given
5

that y = |, when x =10,

Solution If ¥ # 0, the given differential equation can be written as

dy
}———i}cdx AL
Integrating both sides of equation (1), we get
jf—i}l-f = —;Ij.l'i'f
¥
1
or -——==28+C
X
‘ @
P = "
TR '

Substituting y = | and x = 0 in equation (2), we get, C =~

Now substituting the value of Cin equation (2). we gel the particular solution of the

given differential equation as y= :
YT

Example 7 Find the eguation of the curve passing through the point (1, 1) whose
differential equation is x dy = (2x* + 1) dx (x # 0).
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Solution The given differential equation can be expressed as

F dy = [lx +£Jdr .. (1)

Integrating both sides of equation (1), we get

Jor = oo+ Je

or y=x*4+log x|+ C o £2)

Equation (2) represents the family of solution curves of the given differential equation
but we are interested in finding the equation of a particular member of the family which
passes through the point (1, 1). Therefore substituting x= |, y= | in equation (2), we
get C =10

MNow substituting the value of C in equation (2) we get the equaton of the reguired
curve as y = x? + log lx[.

Example 8 Find the equation of a curve passing through the point (-2, 3). given that

the slope of the tangent to the curve at any point (x, ) i5 2_;

Solution We know that the slope of the tangent to a curve is given by & .

dv  2x
$0, — = — - (1

de ¥ )
Separating the variables, equation (1) can be written as
Integrating both sides of equation (2), we get

j- yidy = le dx
3

¥

or 53— =r2+C .. (3)

v
*  The noration — due o Leibnitz is exoremely flexible and vseful in many calculation and formal
tranzformations, where, we can deal with svmbols Ay and de exactly as if they were ardinary nmmbers, By
treating de and dy like séparate enlities, we can give neater expressions o many calcalationg.
Refer: Introduction o Caleulus and Analysis, volume-1 page 172, By Richard Courant,
Frtz John Spinget — Verlog New Yoik,
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Substituting x =-2, ¥ =3 in equation (3), we get C =35.
Substituting the value of C in equation (3}, we get the equation of the required curve as
[
2;- =x*+5 or y=(3*+15)
Example ¥ In a bank, principal increases continuounsly at the rate of 5% per year. In
how many yvears Rs 1000 double itself?

Sulution Let P be the principal at any time . According to the given problem,

(3
dr 100

dp P
ar = 20 (1)
separating the variables in equation (1), we gel
dp dt
P - 20 )
Integrating both sides of equation (2), we get
t
= —+
log P 0 G
il
or P= ¢X-5
k|
or P= Ce® (where ¢5=C) (3
Now P= 1000, whent=0

Substituting the values of P and ¢ in (3), we get C = 1000, Therefore, equation (3),
gives
At
P = 1000 ¢*
Let ¢ years be the time required to double the principal. Then

2000=1000¢% =5 1=20T0g2

EXERCISE 93|

For each of the differential equations in Exercises | to 10, find the general solution:

dy  1—cosx dy 7 _
e i . =——=qfd— -2 2
dx  l+cosx . dx Al
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dy

E+}'=H_}'¥=l} 4. sect xtan y de+ sect ylan x dy = 0

(e +et)dy— (e —ede=0 6. %=tl+x2}r.}.+}f11

coylogyde—xedy=10 8. Xiﬂ=—}'s
ey
BB
a—ﬁm & 1. eanyde+ (1 =e)secd ydy=10

For each of the differential equations in Exercises 11 to 14, find a particular solution
salisfying the given condition:

12

13.

14.

16.

17,

18.

19.

d
tz‘3+xg‘+x+”£ =2¢ +xy=1whenx=0

):2—1 E=].‘ —] ="’
x( }d:r. iy=0whenx=2

cﬂs[g.)=a faes R);y=1whenx=0

E’i.éi:}:tunx;}rz 1 when x =10
dx

Find the equation of a curve passing through the point (0, 0) and whose differential
equation is v = ¢ sin x.

For the differential equation xy iy =(x+2)(y+2), find the solution curve

X
passing through the point (1, —1).
Find the equation of a curve passing through the point (0, —2) given that at any
point (x, ¥) on the curve, the product of the slope of its tangent and y coordinate
of the point is equal to the x coordinate of the point.
At any point {x, y) of a curve, the slope of the tangent is twice the slope of the
line segment joining the point of contact to the point (— 4, —3). Find the equation
of the curve given that 1t passes through (-2, 1)
The volurne of spherical balloon being inflated changes at a constant rate. If
tnitially its radius 15 3 units and after 3 seconds itis 6 units. Find the radios of
balloon after ¢ seconds.
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20, In a bank, principal increases continuously at the rate of % per year. Find the
value of 7 if Rs 100 double itself in 10 years ﬂug‘;‘. =0.6931).

21. Inabank, principal increases continuously at the rate of 3% per year. An amount
of Rs 1000 is deposited with thig bank, how much will it worth after 10 years
(™= 1.648).

In a culture, the bacteria count is 1,00.000. The number is increased by 109% in 2
hours, In how many hours will the count reach 2,00,000, if the rate of growth of
bacteria is proportional to the number present?

(3]
L]

FEY

d
23. The general solution of the differential equation j‘i =e" 7 g
&

(A) €4e?=C (B) e+er=C
(C) e*+e=C (D} e*+e¥=C
D.4.2 Homoegeneous differential equations

Congider the following functions in x and y

F, (k3 =3+ Zxy, F, (x, ) = 20— 3y,
y) ,
F.(x,y= MS(IJ» F,(x,y)=sinx+cosy

I we replace v and y by Ax-and Ay respectively in the above functions, for any nonzero
constant A, we get

F, (hx, Jy) = M (2 + 2xy) = M F (x, ¥)
F, O, Ay) = A (2x - 3y) =L F, (x. y)

F, (A, Ay) = cos [%J :cus[%J =2 F,(x )

F, (A, hy) =sin hx +cos Ay = A" F,(x, y), forany ne N

Here, we observe that the functions F . F. F, can be written in the form
F(Ax, ky) = A" F(x, y) but F, can not be written in this form, This leads to the following
definition:

A function Fla, v) is said to be homogencous function of degree nif
FiAx, &y) = A7 Flx, y) for any nonzero constant A.

We note that in the above examples, F, F,, F, are homogeneous functions of
degree 2, 1. O respectively but F, is not a homogeneous function.
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We also observe that

{2
o B
21) P
&x Ex y) = yl[l+?‘tJ= 32h, [;J
(530 i [2)
F_!{AT. ¥i=x (2 = hj’(x
\
& F (. ) y'[25—3]=y';;4 [EJ
y ¥

5
e
o
|
o)
o
FE A
R
1]
iy
=
&=
P .
> |
e —

Fqix.y};tfha[i) Jforanyne N

aio fx
or F (x,y)= ¥ *’{;J.fﬂr any ne N

Therefore, a function F (x, ¥) is a homogenezous function of degree i if

fo.y}:ﬂg[ii] or y”ﬁ[f]

A differential equation of the form g= F (x, ) 15 said to be homogenous if

Fix, v)is a homogenous function of degree zero.
To solve a homogeneous differential equation of the type

dy 'FJ
s F Xy = 'L"' L I
S =F(xy) = 8|~ (1)
We mike Lhe substilution ¥=v.x e [2)
Differentiating equation (2) with respect to £, we get
P s ¥4 TE {"i}
dx  dx s
o dy ; ; :
Substituting the value of —~ from equation (3) in equation (1), we get

dx
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}
¥+ X -— v

3 & ; 4
or dx =g{v) =¥ o b4
Separaling the vanables in equation {47, we gel

= (5)

glvi=v X
Integrating both sides of equation (5). we get
d =1
J—F— = [~ar+C .. (6)
glvi—v x

Equation (6) gives general solution (primitive) of the differential equation (1) when

we replace v by A
x

| Note | If the homogeneous differential equation is in the form g}_ﬁ =F(x.y)
where, F (¥, y) is homogenous function of degree zero, then we make substimution

Eoy i.e., x = vy and we proceed further to find the general solution as discussed

above by writing et Flx.y)= ﬁ[i}
dy y

Example 10 Show that the differential equation (x— ) % = x + 2y is homogencous

amd solve il
Solution The given differential equation can be expressed as

dy x+2y
dx ~ x-v el
2
x-y
Alx+2y)
Now F(hx, Ay) = x—+}]—=}hu'ff-“+}"]'

h(x=y)
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Therefore, F(x, ¥} is a homogenous function of degree zero. So. the given differential
equation is a homogenous differential equation.

Alternatively.
2y
1+52
d‘r I_z -r v
&

R.H.5. of differential equation {2) is of the form g[i) and so it is ahomogeneous
T

function of degree zero. Therefore, equation { 1) is a homogeneous differential equation.
To solve it we make the substitution

y=vx we (33
Differentiating equation {3) with respect to, x we get

—-=rt fﬂ o (4)
dx

Subatituting the value of y and % in equation (1) we get

[+ 2w
P de— =
1—v
or x_df " T+2v_
1
or IE_ e |
dr ~  I—w
v—1 = dx
or o dv =
Tl e X

Integrating both sides of Bqllﬂ.l.'lml (3). we get

+v+1 b's
]_J-:'_E:]-_r+l—3 L C
or 4 v: J— =—log lxl+C,



Il6 MATHEMATICS

2v+1 3 1
O ] T
or 2732 41 - 2'[1-'2+v+] el
1
or “log|vi +v41|-2 J 1 T‘E'E#:“—lﬂglxj'l"cJ
r+--] | =
2 2
3 2 af 2v+1
ar ¥ Vl+v+l|—z.ﬁtﬂﬂ J(F)=_IUE|I|+CL
or é-]ﬂgl vt +1.-+l|+ é logx® =+f3tan? [2:}_%_1)_,_(31

Replacing v by %,we get

[ ¥ .y 1 ] af2ytx

“logle + L +1{+ = logx? =<3 tan +C,
L 2 e x 7 B Pz

] fvz b4 2z -r[z}'l-_l

—log|| “+2+1|x*|=3tan +C,
v 2 g['rg . ] V3x

i 2vtx

1ﬂgi.‘9'i+3c}'+xl]:7 3 tan '[—«-_}4-2['

. | | Vi)
Z

or 102.’|le +xy + Pl)!=2ﬁlan" [:%:]+C

which is the general solution of the differential equation (1)

Example 11 Show that the differential equation xcos EEJ%= }rw:i[l]-frx i3
X

#
homogeneous and solve it

Solution The given differential equation can be written as

)

dx ms[;zj
X
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Tt is a differential equation of the form %:F{x. ¥) -

yms{ﬂﬁn_c
Here Fix, ¥) = 2

=0

Replacing x by Ax and ¥ by Ay. we get

:".[“_UCGS[E}'I*I]
Fihe, A = ——Le—= RO[F(x, )]
Jl.(xcus—)

X

Thus, F{x, ¥) is a homogeneous function of degree zero.

Therefore, the given differential equation is a homogeneous differental equation,
To solve it we make the substitution

V=VX e (2)
Differentiating equation (2) with respect 1o x, we gel
ay dv
— = Pt a— PR 1)
dx ax ©)

d
Substituting the value of ¥ and E}’ in equation (1), we get

dv  veoosv+l

Y4+x— =
dx cos Y
dv  vcosv+|
or r— = —a=y
dx COSV
dv 1
ar X— =
dy  cosv
dx
ar cosy div'= —
X
- 1
Therefore J cosvay = | —dy
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or sinv=loglxl +log|C|
or sinv=1log ICx|

Replacing v by E . We get

sin{zj = log ICx|

X
which is the general solution of the differential equation (1).

Example 12 Show that the differential equation 2y e¥dx +(}rv— 2ze’ de =0is
homogeneous and find its particular solution, given that, x =0 when y= 1.
Solution The given differential equation can be written as

&

dx lre;—y

o e b e (]
dy F (1)
2ye?
T
Let Fxy) = =2 Y
2ye”
Al Dxe? —Jﬁ]
Then Fidx, Ay) = ———<==A[F(x¥)]
.:'L[E}re-;]

Thus, Fix, ¥) is a homogeneous Tunction of degree zero. Therefore, the given
differential equation is 2 homogeneous differential equation,

To solve it, we make the substitution
x=py {2}
Differentiating equation (2) with respect to ¥. we get
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Substituting the value of x and ;ﬂ in equation (1), we get
¥

dvr 2ue -1
VY= =
dy 2e"
dv 2wt =1 1
or — = =
Yo >
b1
or }Iff}r ol 2{,‘:"
—d
ar 28 dy = ==
¥
or [2e"dv = —ji“l
¥
or 2e"=—log v+ C

x
and replacing v by ? , we get

2e’ +loglyl=C
Substituting x =0 and y = | in equation (3), we get
2%+ loglll=C=C=2
Substituting the value of C in equation (3), we get
x
2e” +loglyl=2
which is the particular solution of (he given differential equation,

3w

3

Example 13 Show that the family of curves for which the slope of the tangent at any

a4yt
2xy

point (x, ¥) on it is iz given by a? — vl = cx.

Solution We know that the slope of the tangent at any point on a curve is & .

dx

Therelore, — =
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¥
|4+ =
dy x
or T 2 w (1)
X

Clearly, (1) is a homogenous differential equation. To solve it we malke substitution
¥ =1x

Differentiating ¥ = wx with respect to «, we get

%: L-'-i-,,t;E
P+x£ = Loy
& dx 2
IE_ 1=v*
& dx 2w
[ v &
pat dx
dv =
o v =] v o
- 2v |
Therefor —dv = —|—dx
ol J‘l-'l—'l Ix
or log v =11 =~loglxl+1og 1C |
or log (v = 1) ()l =log IC||
or (W—-1)x=+C,

W
Replacing vby = |, we get
&



DIFFERENTIAL EQUATIONS 34

EXERCISEY.4

Tn each of the Exercises 1 to 10, show that the given differential equation is homogeneous
and solve each of them.

-f +
L (24 xy)dy= (2 + %) dr 3 y=xx}’
oolx—-ydy—-{x+y)de=0 4. P —-de+ 2xydy=10
ey
5. xza'=.l'z—2}?z+x}-' 6. ady—yde= Ji*+y dx
y oy 0 ¥
7. {xcos| = +ysanL— ydr=4 ysin| = |—xcos| = |rxdy
x x x %
P
8. .tﬂ—}ri—xsiu[i]:ﬂ 9, yi':-f-xll:rgliny—Exdy:ﬂ
dx x x

10 [1+95]dx+95(1—5]@=0
' ¥

For each of the differential equations in Exercises from 11 to 15, find the particular
solution satisfying the given condition:

1, (x+v)dv+ix—ydr=0y=1whenx=1|

12, 2dy+tey+y¥)de=0y=1whenx=|

13. [xsiﬂz(f)—ﬁ]ﬂ’x+xdy=ﬂ: :r'=§ when = |

dy .(g

14, ——=+cosec
X X

j=ﬂ; y=0whenx=1

15. 2.1}""?'_‘}"2—2.239?-:5; y=2whenx=1
dx
’

dx x
16. A homogeneous differential equation of the from E =h L;] can be solved by

making the substitution.
(A) ¥y=wx (B) v=yx (Cy x=wy D) x=v
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17. Which of the following is 8 homogeneous differential equation?
(A) dx+6r+5)ayv-Gy+2x+dde=0
(B) (xy) dx— (2 +y)dy=0
(C) (P +2¥% de+2uvdy=0
D) ¥dr+ (X - xy-y)dy =0
0.4.3 Linear differential eguations
A differential equation of the from

%1‘?}' :Q

where, P and ) are constants or functions of x only, is known as a first order linear
differential equation. Some examples of the first order linear differential equation are

ay _
Lty =5
5 ¥ =smx
it
i [ = pf
e vk Yy=e
d_r+[L] _1
dr | xlogx x
Another form of first order linear differential equation is
£+E.t:(},
dy

where, P, and Q, are constants or functions of y only. Some examples of this type of

differential equation are

E—|- X=C08 ¥y
dy
b
ay ¥
To solve the first order linear differential equation of the type
dy
L ¥ Py =
p Py =Q

Multiply both sides of the equation by a function of x say g (x) to get

gfx % +P.lgla) y=0.2(x)

w3

. (2)
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Choose g (x) in such a way that R.H.S. becomes a derivative of y . g (x).

L.e. glx T + Poglx)y= i [}?.g .x}]
o E‘."j % + P-S‘:IJ }':E{x} % + .'!'S’L‘f}
- P.glx) =¢'(x)
or p= & (x)
rlx)

Integrating both sides with respect to x, we get

[[Pax - jmdx

glx)
or [Pedx = log (g (x))
or glo) = Jrar

On multiplying the equation (1) by z2(x) = ej o . the L.FLS. begomes the derivative

of some Tunction of x-and y. This function g(x) = ej P is called Integrating Factor
(LF.) of the given differential equation.
Substituting the value of g (1) in equation (2), we get

eimr E+I"-e*fp"&_y.a = Q-E-Jpﬂ
elx

m 2] -

Integrating both sides with respect to x, we get

el < f[oel™)e

or y= L"JM.J'[Q.EIW}@+C

which is the general solution of the differential equation.,
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Steps involved to solve first order linear differential equation:

dv
(i) Write the given differential eguation in the form :fx +Py=0Q where P, Q are

constants or functions of x only.
(i) Find the Integrating Factor (LF) = gz
{iii) Write the solution of the given differential equation as

¥(LE) = [(Q=LF)ar+C

dx
In case, the first order linear differential equation is in the form E +he=Q,
where, P, and Q are constants or functions of y only. Then LF = , F% and the
solution of the differential equation is given by
%, (LF) = [(Q XLF)dy+C

Example 14 Find the general solution of the differential equation ;ﬂ— ¥y =CO8X.
¢

Solution Given differential equation is of the form

dy

5 +Py=Q . whereP=—1and Q = cosx

[-raw -

Therefore ILF=* —F
Multiplying both sides of equation by LE. we get

e"% —E"y = g*Cosk
or %{_}Ie ‘}:e'cusx
On integrating both sides with respect to x, we get

ye = J'e""rms_r dr+C Y

Let [= Ie—"*ms_tdx

= CO5 x[%] —f{—s'm,n:'}l (=& ")dx
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= —cosxe -Iﬁinx e dx
= —cosxe " w[sinx{—f: Ty -—jmsx{—e ’}:ir}

= —cosxe ” +5in xe"—Juusxe"* dx
or [=—eFcos x + s8inxe" =1
or 2l=(sin x —cos x) &~
Ve (sinx—cosxhe ™
2
Substituting the value of 1 in equation (1}, we get

sinx—cosx |
e

or

R
or g [s:nx-;cus.:}+ Ce’

which is the general solution of the given differential equation.

Example 15 Find the general solution of the differential equation «tz—i+ 2y =" (al,

Solution The given differential equation is

x% + 3y = gt A1)
Dividing both sides of equation (1) by x, we gel

d}' b

Sy =

dx J.'y 4

9
which is & linear differential equation of the type % +Py=0Q , where P= = and Q =x.

So LF= EJ%"—& = ves = €% =% [as &8I 1 (1)
Therefore, selution of the given equation is given by

2= [0 @dreC = [RdrrC

3
. i,
or = —+Cx
Y=

which is the general solution of the given differential equation.
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Example 16 Find the general solution of the differential equation y dx — (x + 2% dy= 0.

Solution The given differential equation cun be written as

|
This is a linear differential equation of the type ;E +Pax=0Q,.where [, = —; ancl
¥

ﬂ"‘" 3
{Jj = 2y. Therefore [F= EJI ¥ oty ftﬂ‘E(ﬂ =l
y

Hence, the solution of the given differential equation is

i _ I{E}'}GJ@'FC

¥
.r -
¥
x
or — =+
}I
or r=2"+Cy

which is a general solution of the given differential equation.
Example 17 Find the particular solulion of the differential equation

ﬂ-lrycmx =2x+scotx (x=0)
dx
s b8
given lhat y = 0 when x:ﬂi-.

Solutien The given equation is 4 linear differential equation of the type E +Py=0Q,
where P = cot x and Q = 2x + 4? cot & Therefore
IF= efi‘ut.nﬁ:= e logsinz qi]'l ¥

g

Hence, the solution of the differential equation is given by
y.sinx=[(2xr+ R cotx)sinxds+ C
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or ysinx=|[2xsin xdx + [x* cos xdx + C
{m 2 PaR
a1 r— T "2'{2 . 2\-{ 3 -
or ysinx= SmxLTJ—Ier(Tde+IfC1mxd1+C
. 3 3 3o
or y&in x = x‘srnx—jx ms,rdx+jx cosxdx+C
or ysink=2sginx+C wlCL
i3
Substituting y =0 and =7 in equation (1). we get
2
0= (%) sian]-r—C
2) T\ 2
-
or C= =i
4

Substituting the value of C in equation (1), we get
2
, T
ysiny= x*sinx e

2
i

or y=x" - isinx=0)

4 ginx
which is the particular solution of the given differential equation.

FExample 18 Find the equation of a curve passing through the point (0, 1). If the slope
of the tangent to the curve at any point (x, v) is equal to the sum of the x coordinate
{abscissa) and the product of the » coordinate and y coordinate (ordinate) of that point.

Sulution We know that the slope of the tangent to the curve is & :

dx
Therelore, :?x =x+ 1y
or E“E}' =x we (1)

This is a linear differential equation of the type % +Py=Q whereP=—xand Q=u1.

Therefore, I.LE= EI
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Hence. the solution of equation is given by
-

yoel = [ (E‘z{ dx+C e (2)

i
Let I=[(x)e2dx
Let th, then — x dx = dt or x dx = —dl.

Therefore, I= -Ie’d; =g’ =— eT

Substimting the value of I in equation (2}, we get

5
Ye z = _pg t +C
23
o y= =14 Ce2 - (3)

Now (3) represems (he equation of family of curves. Bul we are interested in
finding a particular member of the family passing through (0, 1). Substituting x=0 and
y=1in equation (3) we gel

l=-1+C.&* or C=2
Substituting the value of C in equation (3), we get

=z

y=-1+2¢?
which 1is the equation of the required curve.
|[EXERCISE 9.5
For each of the differential equations given in Exercises | (o 12, find the general solution:
1. @+Z}r=3inx 3. Q-I-B:-.':E'zx 3. @+1=Jﬁ:
dx dx dx %

ih

=

4. QHRNIJJEIEHI[U‘EI{E] CDSZ.I'E'E+_}’=[EJIE [GL:I{E]
dx Z dx 2

dy

2
6, x——+2y=x"logx % xlugri}r—-k y=—logx
dx dx X

B. (1+x)dy+2eyde=cotxde(x=z0)
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dy dy
9, x——+y—x+rycotx=0 (0} 10, (x+y¥)—=1
T Ky ( ( s

1. yde+(r—y)dy=0 12. {x+3y*}%=y¢y}u;u,

For each of the differential equations given in Exercises 13 to 15, find a particular
golution satisfying the given condition:

13, ﬂ+2ytan.t=sinx;yzﬂ when J::E
dx 3
1
4252 oy = s =0 whenx=1
14, (+x PR S L

i : n
15. —y—JyC(:-T,r=3m2x; ¥»=2 when y=—
dx 2

16. Find the equation of a curve passing through the origin given that the slope of the
tangent to the curve at any point (x, ¥) is equal to the sum of the coordinates of
the poin.

17. Find the equation of a curve passing through the point ((), 2) given that the sum of
the coordinates of any point on the curve exceeds the magnitude of the slope of
the tangent to the curve at that point by 3.

18. The Integrating Factor of the differential eguation * % —y=2x"is

1
(A) e (B) e () = D) x
1Y. The Integrating Factor of the differential equation
U=y B gz = ay (1< ¥ <1 i
iy
1

1 L 1
A e Bl r——— 1 P ————
(A) F—1 (B) ||'yz 1 (C) -3 (D) 'II—}-!

Miscellaneous Examples
Example 19 Verify that the function y = ¢, ¢* cos bx + ¢, ™ sin by, where ¢, ¢, are
arbitrary constants is a solution of the differential equation

2
%—Zu%+{az+b1]}r:ﬂ
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Solution The given function is

y=e" [c, coshx + ¢, sinbx] e (1)
Differentiating both sides of equation (1) with respect to x, we get
ﬁ - =F4 wd . " a H "y
e [~Be, sinbx + b, coshx]+[e, cosbr+c, sinbx]e™ -a
S .
or g [(hey +ac lcoshx+{ac, —be )sin bx] wed2)
Differentiating both sides of equation (2) with respect to x, we get
dty
= e™[{(bey+ac, ) (—bsinbx)+(ac, — ke, ) (booshy))
x

+ [(bcy +ac) cosbx+ (ac; —bc;) sinbx] e™.a

= e*[(a" ¢, — 2abe, — b*c, ) sinbx + (a° ¢, + 2abe, —be, ) cosbx]

Fl
Substituting the values of o and y in the given differential equation. we get

dx® " dx
LHS. = ¢*[a’c, - 2abe, —bc,)sinbx+(a’ ¢ +2abe, — b o eosbx]

—2ae™ [(he, +ac, ycoshx+ (ae, —be,)sin by]

+iat+b%)e™ [, cos bx+ o, sinbx]

. “a’l ¢y~ 2abey —bTe, —2a’c, + 2abe, +a'c, +b e, |sinbx
&

[
| +(a’c, +2abey —b e, —2abe, —2a°c, +a ¢, +b7c, yeoshx _!

= ¢*[Oxsinbx+0cosbx] =e* x 0=0 =R.H.S.
Hence, the given function is a solution of the given differential equation.

Example 20 Find the particular solution of the differential equation log [gu}r ] =3x+4y
* 9
given that y = 0 when £ =10.

Solution The given differential equation can be written as

.a;}'. = v+ &)
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Ll T
or — =a¥_ ¥

dax
Separating the variables, we get

dy

;1;'==€3‘ ax
Therefore Jf""‘yd}‘ = jfhfbﬁ

=~y Ix
¢ £

ar _4 = T +C
or dev+3e*+12C=0

Substituting ¥ =0 and y =0 in (2}, we get
4+3+12C=00rC= =
12
Substituting the value of C in equation (2), we gel
4e¥43ev -T=0,
which is a particular solution of the given differential equation.

Example 21 Salve the differential equation

{x dy —vdx) ysin (}FJ = (v dx +x dy) x cos [%J

X

Solution The given differential equation can be written as

3
(Iysin[i]— - cus(i]}rfjf =[Ucus[lj+ ¥? sin(iﬂdx
I x \x x x
I
J}}'CDS[EJ-F ¥ sinLlj
&L X
E}'sin(i\|~x2ms[l)
X/ X
Dividing numerator and denominator on RIIS by 2. we get
; 2
Z cos (l]+[}—z] sin {1]
x x X 2
sin [2) - ms(EJ
x X &

iy

or -

B[

KE)

w1

vee (2)

- (1)
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b |t

v
Clearly, equation ( 1) s a homogeneous differential equation of the form EJ =g [

To solve it, we make the substitution
¥ =Vx R

or ey u+x—'
dx dy

dv  veosv+visiny

o PR o , : {using (1) and (2))
dx ¥ EIMY —Cosy
v 2 cosy
or P o
dxr  vsinv-—cosy
inv— 2ex
g (wﬁ-mv msv\;dv =
PCOE Y J %
VEInV —cosy 1
Therefore _[(—J dv = lj—d:r
VEOSY x
1 1
or tanvdv—| —dr = 2| —dr
| [av=2]-
or loglsecy|—loglvl = 2loglx|+log!C, |
log— —logIC,|
or vxﬂ =1og I
sec i
or 7 =+ C, P 3]
vk

Replacing v by % in equation (3), we get

)

= = Cwhere, C=xC,
(G
X
or sec(-:ﬂ) =C oy
x

which is the general solution of the given differential equation.
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Fxample 22 Solve the differential equation
(tan-'y —x) dy = (1 + ) dx

Solution The given differential equation can be written as

dx tan '
By xS . (1)
ay  l+y l+y
Now (1) is a linear dilferential equation of the form T +F x=Q,
y
where P = # and Q) —Lan_ly
1 1 1+},2 1= 1+}F'
[ dy
Therefore, LE= Ju™ _ oty
Thus, the solution of the given differential equalion i3
, (Y | gt
o™ y:f[m]ﬂ dy+C e (2)
ta.n'1}' ) g
Let I= || ——&" td
‘[[ 1+y* )[ y

A |
Substituting tan ! ¥ = 1 so that [l+ 2]ﬁfy:mr , we get
¥

I= J':e‘dz=ref—11 ddt=1e—f=¢(t-1)

or I= gha's(tany 1)
Substituting the value of I in equation (2), we get

x.e™ Y =™ Fianly )4 C
or = (lan y—-D+Ce™Y

which is the general solution of the given differential equation,

Miscellaneous Exercise on Chapter Y

1. For each of the differential equations given below. indicate its arder and degree
(if defined).
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dly (Y (Y (Y ;
(i) EE--I-SJ:[ i, —b6y=logx (ii) (EA —41\—‘£J +7y=sinx

d* d’y

o Sl

1. Foreach of the exercises given below, verify that the given function (imaplicit or
cxplicit) is a solution of the corresponding differential equation

a2
(i) zp=ae +be’+a° : xﬁ+2%—w+xz—2=ﬂ
d’y . dy
(i) v=e'(acos x+ hsinx) I—2—+2}| =0
dly
(i) ¥ = xsin 3x : F‘-ﬁ@y—ﬁmﬂx:ﬂ
(iv) =2 log y - (x +y1J-E{Ju’— xy=0

3. Prove that x* — ¥* = ¢ (* + ") is the general solution of differential equation
(x* — 3x *) dx = (' — 3x%) dy. where ¢ is a parameter.

4. Find the general solution of the differential equation —+ 3 ’

d
5. Show that the general solution of the differential equation - i "‘-5_——'—" =01is
dr  x"+x+1

given by (x+ v+ L) =A({l —x — v — 2xy), where A is parameter.
i T
fi. Find the equation of the curve passing through the point [ﬂf ZJ whose differential
equation is sin x cos ¥ dx + cos x sin y dy = 0.

7. Find the particular solution of the differential equation
(1 +e¥)rdy+ (1 +3) e dr=0, given that y = | when x=0.

F i X
H. Solve the differential equation ye”dxz(.rg"+}:l]d’y { w0},



10.

13.

14.
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Find a particular solution of the diffevential equaton (x—y) (dx+ dy)=dr—dy
given that y =—1, when x = 0. (Hint: putx — y =1}

“2r
NE

Solve the differential equation [ } =1{x£0).

. Find a particular solution of the differential eguation 'f;}l;*' yeotx =4y cosec x

T
(x = (). given that y = 0 when sz”

dv
. Find a particular solution of the differential equation (x + 1) E =2¢e’-1, given

that ¥ = () when x =),

The general solution of the differential equation Yds—xdy =0 is
(A) y=C  (B) x=C¥  (O)y=Cxr (D) y=C#

dx
The general solution of a differential equation of the type & +Px=0Q, is

(A) yeiﬁ{u=j(i},ﬁjn'ﬂ)dy+{3
®) y.J = [(Qe!"*)as+c
© "= [(Qel™®)ay+c

(1) .xe —-I(QI [rua )d_w+C

. The general solution of the differential equation & dy + (v e + 2x) dx =0 is

{A) xer+22=0C By xer+3y'=0C
(C) yer+ ¥ =C (D) yper+x2=C
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Summary
An equation invelving derivatives of the dependent variable with respect (o
independent variable (variables) is known as a differential equation.
Order of a differential eqoation is the order of the highest order derivative
oceurring in the differential equation.
Degree of a differential equation is defined if it is a polynomial equation in its
derivatives.
Degree (when defined) of a differential equation is the highest power (positive
integer only) of the highest order derivativa in il.
A function which satisfies the given differential equation is called its solution.
The solution which contains as many arhitrary constants as the order of the
differential equation is called a general solution and the solution free from
arbitrary constants is called particular solution.

Wariable separable method is used to solve such an equation in which variables
can be separated completely i.e. terms containing y should remain with dy
and terms containing & should remain with dx.

A differential equation which can be expressed in the form

dx .
% = f(xy) or & = glx, y) where, f(x, v) and glx, y) are homogenous

functions of degree zero is called a homogeneous differential equation.

A differential equation of the form %+P}: =0, where P and (} are constants

or functions of x only is called a first order linear differential equation.

Historical Note

One of the principal languages of Science is that of differential equations.

Interestingly, the date of birth of differential equations is taken to be November,
11,1675, when Gottfiied Wilthelm Freiherr Leibnitz (1646 - 1716) first put in black

and white the identity [ y dy =é 42, thereby inroducing both the syribols [and dy.

Leibnitz was actually interested in the problem of finding 4 curve whose tangents
were prescribed. This led him to discover the ‘method of separation of variables”
1691. A year later he formulated the ‘method of solving the homogeneous
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differential equations of the first order’. He went further in & very short time
1o the discovery of the ‘method of selving a linear differential equation of the
first-order’. How surprising is it that all these methods came from a single man
and that oo within 25 years of the birth of differential equations!

In the old days, what we now call the *solution’ of a differential equation, was
used to be referred Lo as ‘integral’ of the differential equation, the word being
coined by James Bernoulli (1654 - 1705) in 1690. The word ‘solution was first
used by Joseph Louis Lagrange (1736 - 1813) in 1774, which was almost hundred
years since the birth of differential equations. It was Jules Henri Poincare
(1854 - 1912) who strongly advocated the use of the word ‘solution” and thus the
word *solution’ has found its deserved place in modern terminology. The name of
the ‘method of separation of variables™ is due 1o John Bernoulli (1667 - 1748),
a younger brother of James Bernoulli.

Application to geometric problems were also considered. IL was again John
Bernoulli who first brought into light the intricate nature of differential equations,
In a letter to Leibnitz, dated May 20, 1715, he revealed the solutions of the
differential equation

2y =2y,

which led 1o three lypes of curves, viz., parabolas, hyperbolas and a class of
cubic curves. This shows how varied the solutions of such innocent looking
differential equation can be. From the second half of the twentieth century attention
has been drawn (o the investigation of this complicated nature of the solutions of
differential equations, under the heading ‘qualitative analysis of differential
equations’. Now-a-days, this has acquired prime imporlance being absolutely
necessary in almast all investigations.

— el —



* In mosi sciences one generation teary down what anether has built and what
one has established another undoes. In Mathematics alone each gemeration
builds a new story to the old structure, — HERMAN IHANKEL ¢

1.1 Introduction

In our day to day life, we come across many queries such fgstbbbsd
as — What is your height? How should a football player hit
the ball to give a pass to another player of his team7 Observe
that a possible answer to the first query may be 1.6 meters,
a quanltity that involves only one value (magnitude) which
15 a real number. Such quantities are called scalars.
However, an answer (0 the second query is aquantity (called
foree) which involves muscular strength (magnitude) and
direction (in which another player is positioned). Such
guantities are called yectors. In mathematics, physics and
engineering, we frequently come across with both types of
fuantities, namely, scalar quantities such as length, mass,
time, distance, speed. area, volume, temperature, work,
money, voltage, density, resistance ele. and vector quantities like displacement, velocity,
acceleration, force, weight, momenrum, electric field intensity etc,

W.R. Hamilton
{1K05-1865)

In this chapter, we will study some of the basic concepts aboul vectors, various
operations on vectors, and (heir algebraic and geomeltric properties. These two type of
properties, when considered together give a full realisation o the concept of vectors,
and lead to their vital applicability in various areas as mentioned above,

10.2 Some Basic Concepts

Let 1" be any straight line in plane or three dimensional space, This line can be given
two directions by means of arrowheads. A line with one of these directions prescribed
is called a directed line (Fig 10.1 (i), {i1)).
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I Iy I
B
A
(i) (ii) (i)

Fig 10.1

Now observe that if we restrict the line [ to the line segment AR, then a magnitude
i pregeribed on the line I with one of the two directions, so that we obtain a directed
line segment (Fig 10.1(iii)). Thus, a directed line segment has magnitude as well as
direction.
Definition 1 A quantity that has magnitude as well as direction is called a vector.

Notice that a directed line segment is a vectar (Fig 10.1(iii}), denoted as AB or
simply as @, and read as ‘veclor AB" or ‘vector @',

The point A from where the vector AB starts is called its initial point, and the

point B where it ends is called its terminal point. The distance between initial and
terminal points of a vector is called the magnitude (or length) of the vector, denoted as

|ABI, or ldl. or a. The arrow indicates the direction of the vector.

Since the length is never negative, the notation 1a| < 0 has no meaning.

Position Vector

From Class X1, recall the three dimensional right handed rectangnlar coordinate system
(Fig 10.2(1)). Consider a point P in space, having coordinates (x, v, z) with respect to
the origin Q(0, 0. 0). Then. the vector OP having O and P as its initial and terminal
points, respectively, is called the position vector of the point ' with respect
1o O. Using distance formula (from Class XI), the magnitude of OP (or F) is given by

IOPl= X2 + 3 + 27

In practice, the position vectors of points A, B, C, etc., with respect to the origin O

are denoted by @, b. ¢, etc., respectively (Fig 10.2 (ii).
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00,00}

X (i)
Fig 10.2
Direction Cosines

Consider the position vector OP(or 7 ) of a point P(x, y, z) as in Fig 10.3. The angles c,
B,y made by the vector # with the positive directions of x, y and z-axes respectively.
are called its direction angles. The cosine values of these angles. i.2.. cos o, cos [} and
cas ¥ are called direction cosines of the vector 7, and usually denoted by I, m and n.

respectively. Z

Ld
| 2] o e e S e e e
e ) S * Py2)
: e
0 oy
e |
E A il - i
F A T T —
X
Fig 10.3
From Fig 10.3, one may note that the triangle OAFP is right angled, and in if. we

have cosg =~ (r stands for |¥). Similarly, from the right angled triangles OBP and
F

OCP. we may write cos fi= 2 and cos V= : . Thus, the coordinates of the point P may

r r
also be expressed as (Ir, mynr). The nombers lr, mr and nr, proportional to the direction
cosines are called as direction ratios of vector ¥, and denoted as a, b and ¢, respectively.
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== Nole | One may note that 2+ m2 + a2 = 1 but a* + b + ¢* # 1, in general.
¥ g

10.3 Types of Vectors

Zero Vector A vector whose initial and terminal points coincide, is called a zero vector
(or null vector), and denoted as 0. Zero vector can not be assigned a definite direction
as it has zero magnitude. Or. aliernatively otherwise, it may be regarded ag having any
direction. The vectors AA, BB represent the zero vector,

Unit Vector A vector whose magnitude is unity (i.e., | onit) is called a unit vector. The
unit vector in the direction of a given vector 2 is denoted by 4.

Coinitial Vectors Two or more vectors having the same imitial point are called coinitial
vectors.

Collinear Vectors Two or more vectors are said to be collinear if they are parallel (o
the same line, irrespective of their magniiudes and directions,

Equal Vectors Two vectors & and b are said to be equal, if they have the same
magnitude and direction regardless of the positions of their initial points, and written
asd=h.

Negative of a Veetor A vector whose magnitude is the same as that of 2 given vector
(say, AB), but direction is opposite 1o that of it. is called negative of the given vecior.
For example, vector BA is negative of the vector m, and written as BA =— E
Remark The vectors defined above are such that any of them may be subject 1o 1ts
parallel displacement without changing its magnitude and direction. Such vectors are

called free vectors. Throughout this chapter, we will be dealing with free vtcl:‘[nrs only.

A

Example | Represent graphically a displacement

2 & .
of 40 kri, 307 west of south. We >E
Solution The vector OP represents the required  Scale
displacement (Fig 10.4). 10 km & 309
Example 2 Classify the following measures as >
scalars and vectors,

(i) 3 seconds ¥

(i) 1000 ¢r? Fig 10.4
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{iii) 10 Newton (ivi 30kmhr {(v) 10 gfem®
{vi) 20 m/s towards north
Solution
(i) Time-scalar {it} Volume-scalar {iil) Force-vector
(iv) Speed-scalar {v) Densgity-scalar ivi) Velocity-vector

Example 3 In Fig 10.5, which of the vectors are:

(i) Collinear (it} Equal (i) Coinitial
A
Solution
(i) Collinear veclors: 4. ¢ and 4 . __.:\\
Scale it
{ii) Equal vectors: dand c. 1 unit

[ 5]

L

(iif) Coinitial vectors: b, ¢ and d. Fig 10.5

EXERCISE 10.1

Represent graphically a displacement of 40 km. 307 east of north.
Classify the following measures as scalars and vectors.
(i) 10kg (i) 2 meters north-west (i) 40°
{iv) 240 watt fv) 10 coulomb fvi) 20 mfs*
Classify the following as scalar and vector gquantities,

(i) time period (i) distance {iii} force

{iv) velocity {v) work done i

In Fig 10.6 (a square), identify the following vectors,
(i) Coinitial (ii) Equal
(i) Collinear but not equal
Answer the following as tue or false.
(i) & and —& are collinear,

—
il

{ii) Two collinear vectors are always equal in % s

% &
magpnnde. Fig 10.6

(i} Two vectors having same magnilude are collinear.

{iv) Two collinear vectors having the same magnitude are equal.
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10.4 Addition of Vectors C

A vector AB simply means the displacement from a point

A to the point B. Now congider a situation that a girl
moves from A to B and then from B to C
iFig 10.7). The net displacement made by the girl from
point A to the pomt C, is given by the vector AC and @
expressed as

B
Fig 10.7

AC = AB+BC
This is known as the jriangle law of vecior addiiion.

In general, if we have two vectors @ and b (Fig 10.8 (1)), then to add them, they are
positioned so that the initial point of one coincides with the terminal point of the other
{(Fig 10.8(i)).

4

(i) (ii)

Fig 10.8

For example, in Fig 10.8 (ii), we have shifted vector b without changing its magnitude
and direction, so that it’s initial point coincides with the terminal point of d. Then, the
vector @ + b, represented by the third side AC of the triangle ABC. gives us the surm (or
resultant) of the vectors  and bie., in triangle ABC (Fig 10.8 (ii}), we have

 AB+BC=AC
Now again, since AC=—CA_ [rom the above equalion, we have
AB+BC+CA=AA=0

This means that when the sides of a (risngle are taken in order, it leads to zero

resultant as the initial and terminal points get coincided (Fig 10.8{iii)).
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Now, constroct a vector BC' so that its magnitude is same as the vector ﬁE, bt the
direction opposite to that of it (Fig 10.8 (iii)), i.e.,

BC' =-BC
Then, on applving triangle law from the Fig 10.8 (iii), we have

AT =AB+BC =AB+(-BO)=d-b

The vector AC' is said to represent the difference of & and b,

Now, congider a boat in a river going from one bank of the river to the other in a
direction perpendicular to the flow of the river. Then, it is acted upon by two velocity
vectors—one is the velocity imparted to the boat by its engine and other one is the
velocity of the flow of river water. Under the simultaneous influence of these two
velocities, the boat in actual starts travelling with a different velocity. To have a precise
idea aboul the effective speed and direction
{i.e., the resultant velocity ) of (he boat, we have B
the following law of vector addition.

IFwe havetwo vectarsé and b represented
by the two adjacent sides ol a parallelogram
in magnitude and direction (Fig 10.9), then their
sum @ + b is represented in magnitade and /
direction by the diagonal of the parallelogram  ©
through their common point, This is known as Fi ;1 0.9

=

¥

the parallelogram law of vector addition.

From Fig 0.9, using the triangle law, one may note that
OA+AC=0C
or DA +0B=0C (since AC= 0B )

which is parallelogram law. Thus, we may say that the two laws of vector
addition are equivalent to each other,

Properties of vector addition
Property 1 For any two vectors é@ and b,

oy
=]

a+h=

+a {Commutative property)
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Proofl Consider the parallelogram ABCD 7
(Fig 10.10). Let AB = @ and BC = b, then using
the irangle Law, from mangle ABC, we have A
q
AC=a+b S ;{
MNow, since the opposile sides of a *
parallelogram are equal and parallel, from pt
Fig10.10, we have, AD=BC=5 and 7
e v . . . Fig 10.10
DC=AB=d, Again using triangle law, from =
triangle ADC, we have
AC =AD+DC=5b+d
Henee d+b="hb+d
Property 2 For any three vectors a.band ¢
(G+by+E=d+(B+8) (Associative property)

P'roof Let the vectors 4,5 and & be represented by PQ, QR and RS, respectively, as
shown in Fig 10.11(i} and (ii).

(i)
Fig 10.11
Then +b =PQ+QR=FR
ﬂnd £+E=Q_Rh+ﬁ=(_z_§

So (6§ +5)+E=PR+R5=P5%
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and @+(b+¢)=PQ+QS=P§
Hence (b)) +d=d4+b+c)
Remark The associative property of vector addition enables us to write the sum of
three vectors @b, & as @ + b + & withoul using brackets.
Note that for any vecior g, we have
B F+0=0+d=a
Here, the zero vector 0 is called the additive identity for the vector addition.
10.5 Multiplication of 4 Vector by a Scalar
Let @ be a given vector and A a scalar. Then the product of the vector 4 by the scalar
A, denoted as A4, is called the multiplication of vector @ by the scalar A. Note that, A&
ig also a vector, collinear o the vector d. The vector Ad has the direction sarme (ot
opposite) to that of vector @ according as the value of A is posilive (or negative). Also,
the magnitude of vector Ad is | 4| times the magnitude of the vector &, i.g.,
IAdl =1 Al14]

A geometric visualisation of mulbplicaton of a vector by a scalar is given

inFig 10.12.

A
VAN N N

Fig 10.12
When A = —1, then Ad= — &, which iz a vector having magnitude cqual to the
magnitude of 4 and direction opposite to that of the direction of &. The vector —d is
called the negative (or aaditive inverse) of vector @ and we always have

q‘f;‘:l

d+(—d)=(-@)+d=0

Alzo,if &= ﬁ, provided @ = 0 i.e. @ is not a null vectar, then
[}

I
IAdl =IAlld] = —|a]|=1

||
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So, A @ represents the unit vector in the direction of 4. We write it as
e

d=r=4

\al
|« Note |For any scalar &, 15—,

10.5.1 Components of a veclor
Let us take the points A(1, 0, 00, B(0, 1, 0) and C(0, 0, 1) on the x-axis, y-axis and
z-axis, respectively. Then. clearly

|IOAl= L, |0B |= 1 and 10C|= |

are called unit vectors along the axes OX, OY and OZ,
respectively, and denoted by [.j and k. respectively
(Fig 10.13).

Now, consider the position vector OP of a point P (x, v, 1)

Fig 10.13
as m Fig 10.14. Let P, be the foot of the perpendicular from P on the plane XOY.

&

£

/. —,
B ()
& A
A
M v
30 £
> P,
X Fig 10.14

We, thus, see that P, P is parallel to z-axis. As i, ] and k are the unit vectors along the
x, v and z-axes, respectively, and by the definition of the coordinales of P, we have
B,P =OR = zk. Similarly, OP, = 08 = y and 0Q = .
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Therefore, it follows that OF =0Q+0QF, =xi +y
and G_F=E}F,+'ﬁ'13=rf+}§+z£
Hence, the position vector of P with reference to O is given by
OF (or F};xf+ﬁ+zﬁ.:
This form of any vector is called its component form. Here, x, v and 7 ure called
as the sealar components of 7, and X, }.}‘ and zk are called the vector COMPONEILLs

of 7 along the respective axes. Sometimes x, y and z are also termed as rectangular
COMPORENs.

The length of any vector r =i+ v+ EE? is readily determined by applying the
Pythagoras theorem twice. We note that in the right angle triangle OQP| (Fig 10.14)

|0, 1= 4/|0Q+|QE]|" =y + -
and in the right angle triangle OP P, we have

U_.'P -] "u'l|ﬁ_i:',f +EE_'|§F - \"({:] + }’1]"'22
Hence, the Iength of any vector r = 2+ ¥+ 7k is given by
7l = |+ 3+ 2k|=rx? + 2 + 2
Il @ and b are any two vectors given in the component form ai +a, ] +a.k and
Byi +b, | +byk , respectively, then
(i) the sum (or resultant) of the vectors & and bis given by
G+b = la, +B)i +lay+by) ] +lag+b)k
(i) the difference of the vector & and b is given by
d—b = (a,~b)i+(a,—b,) ] +(a;—b)k
(i) the vectors @ and b are equal if and only if
a =b|" ty =bz and thy '_"51
{iv) the multiplication of vector @ by any scalar A is given by
hé = (ha )i + (hay) + (hay ok
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The addition of vectors and the multiplication of a vector by a scalar together give
the following distributive Laws:
Let ¢ and b be any two vectors, and k and m be any scalars. Then
(i} ka+ma=(k+m)a
(D) k(ma) = (km)a
() je(d +b) =k + kb

Remarks

(i) One may observe that whatever be the value of A, the vector Ad is always
collinear to the vector @, In fact, two vectors @ and b are collinear if and only if
there exXists a nonzero scalar A such that b = Aa. If the vectors & and b are given

in the component form, Le. @ = aji +ay ] +azk and 5 =b] +b, ] +byk, then the
two vectors are collinear if and only if

Bi +b,+byk = Mai +a,] +ayk)

= Bi+by ] +bk = (ha))f + (hay )] +(hay )k
= b =ha,, by =ha,, B =Aay
a4 a4 &

(i) 1fd=ai+a.j+ak, then a,, a,, a, are also called direction ratios of a,

(i) Incaseililis given that [, m, n are direclion cosines of a vector, then i + m + nk
= (cos {W" +(cosf) j+(cos T:ﬁ? is the unit vector in the direction of that vector,
where o, [} and 7 are the angles which the vector makes with x, ¥ and 7 axes
respectively.

Example 4 Find the values of x, ¥ and z so that the vectors c'f:,rf+2}+zE and
b=2i+y +k are equal.
Solution Note that two vectors are equal if and only if their corresponding components

are equal. Thus, the given veclors @ and b will be equal if and only if
s=2,y=2.z=1
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Example 5 Let =1 +2j and 5 =2 + ], Is|@|=| b|? Are the veetors 7 and b equal?
Solution We have |&|=vI* +2" = J5 and |b|= NE+E =5

So,|@|=|5|. But, the two vectors are not equal since their corresponding components
are distinct.

Example 6 Find unit vector in the direction of vectord =21 +3j + k

v [l ] [ . —_1 " -~ l el
Solution The unil vector in the direction of a veclor & is given by a= —d.

]
Now = 22 437 4+ 12 =f14

N 1 - P & & 3 - Il =
Theref = (2% +3]+k) = P+ I+ K
ol e N i v )

Example 7 Find a vector in the direction of vector =7 -2 that has magnitude
7 units.

Solution The unit vector in the direction of the given vector d is

Therefore, the vector having magnimide equal to 7 and in the direction of g is

74 =72 -1
=T —=f=—— -3
#5)F

Example § Find the unit vectorin the direction of the sum of the vectors, @ = 2{ +2j - 5k
and b =21+ j+3k.
Solution The sum of the given vectors is

G+b(=¢,say)=4i +3] -2k

and 1€]= J& +5% + (-2 =29
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Thus, the required unit vector is

(4f +37-2k)=

I d o, 3 o 2 s
C=—Ff=—— : {+ = k
181 /29 V29 29 & +/29

Example 9 Write the direction ratio’s of the vector & =1 + ] - 2k and hence calculate
its direction cosines.

Solution Note that the direction ratio’s a, b. ¢ of a vector 7 =x+ yj’+£ are just
the respective components x, y and z of the vector. So, for the given vector, we have
a=1,b=1and c = -2 Further, if [, m and n are the direction cosines of the given
vector, then

a —_

1=2 =l =
R

a3 -
E as |r|=-u"g

il
;

"1||'-".|

L

~.|r_
o . 1 L 2

Thus, the direction cosines arg [E.E.‘E] '

10,5.2 Vector foining fwo poinis
If P (x,, v, z,) and P,(x, ¥, z,) are any two 7
points, then the vector jomning P and P, is the 1 LA A
vector PP, (Fig 10.15).
Joining the points P, and P, with the origin
0, and applying triangle law, from the triangle k ST P
OP P,, we have L X 2y)
= > Y
OF, + BT, = OF,
Using the properties ol vector addition, the
above equation becomes Fig 10.15

BE, = OF, ~OF,

ie. BF, = (o + ¥y ] + 2ok) = (f + 3,7 + 2,k)

= (=Xl + 0y~ W)+ (2 —2)k

The magnitode of vector ITP; is given by

PP | = (e, =5 +(yy — ¥ +(2 —2)°
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Example 10 Find the vector joining the points P{2, 3, 0) and Q(— 1, — 2. — 4) directed
from P to Q.

Solution Since the vector is to be directed from P to Q, clearly P is the initial point
and Q is the terminal point. So, the required vector joining P and Q is the vector PQ,
given by

PO = (—1-20 +(-2-3)] + (=40}

ie. PQ = —3i - 5] - 4k.

10.5.3 Section furmula

Let P and Q be two points represented by the position vectors OP and OQ, respectively,
with respect to the origin O. Then the line segment

joining the points PP and Q may be divided by a third Q

point, say R, in two ways — internally (Fig 10.16) 7 n

and externally (Fig 10.17). Here, we intend to find
the position vector OR for the point R with respect
to the origin O, We take the two cases one by one, =r
Case | When R divides PQ internally (Fig 10.16), ! P
If R divides PO such that m RQ = n PR, Fig 10.16

where m and n are positive scalars, we say that the point R divides PQ internally in the
ratio of m : n. Now from triangles ORQ and OPR. we have

RQ=0Q-OR=h-r

and PR =OR -OP=r-g,
Therefore, we have mib—F) =n(F-d) (Why?)
b +nd . :
or i {on simplification)
mEn

Hence, the position vector of the point B which divides P and () internally in the

ratio of m : nis given by
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Casc I When R divides PQ externally (Fig 10.17).
We leave it to the reader as an exercise to verfy
that the position vector of the point E which divides
the line segment PQ externally in the ratio

; moo,
m:n ie =— isgivenby
1

QR

b —nd
Ro= —— s u
O o Fig 10.17
Remark If B is the midpoint of PQ . then » = n. And therefore, from Case 1, the

midpaint R of PQ, will have its position vector as

oR = 4*°
2
Example 11 Consider two points P and Q with position vectors OP =3 - 25 and
OQ = 4 + b. Find the position vector of a point R which divides the line joining P and Q
in theratio 2: 1, {1} internally, and {ii) externally,
Solution
(i) The position vector of the point R dividing the join of P and Q internally in the

rado 2:1 is
OR = d+b)+(3a-28) _-__fff
2+ 3
{ii) The position vector of the point R dividing the join of P and Q externally in the
ratio 2:1 is
Of = a+b)—(3a-2b) —df—7

2-1
Tsample 12 Show that the points A(2f — j+k), B(i —3]—5k), C3i —4j—4k) are
the vertices of a right angled wiangle.
Solution We have
AB = (1-20 +(-34 1) j+(-5-k =—i —2] -6k
BC = (B +(—44+3)J+(—4+5k =2 - j+E&
and CA= (2= +(-1+j+(1+Dk =—T+3]+5k
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Further, note that

|ABf =41=6+35=|BC[ +|CAf

Hence. the triangle is a right angled trangle.

oI ]

| EXERCISE 10.2]
Compute the raagnitude of the following vectors:
- ‘j; i A & i i?.p i ? _Li
a=i+ j+k; =2i-7j=3k; €= 3 37 B

Write two different vectors having same magnitude.
Write two different vectors having same direction.
Find the values of x and y so that the veciors 2?—1—33 and x1 4+ yj are equal.

Find the scalar and vector componenits of the vector with initial point (2, 1) and
terminal point (-3, 7).

Find the sum of the vectorsd = { —2]+k, h=-2{+4]j+5tandE=7 - 6] Tk .
Find the unit vector in the direction of the vector 4 =f+}+2,§.

Find the unil vector in the direction of vector PQ, where P and Q are the points
(1,2,3)and (4, 5, 6), respectively.

For given vectors,d = 2{ — j+ 2k and b=—{ + i — k., find the unit vector in the
direction of the vectord + b,

Find a veclor in the direction of vector 5{ — j + 2 which has magnitude § units,
Show that the vectors 27 —3j+ 4k and —4i + 6 —8k are collinear,

Find the direction cosines of the vector { + 27+ 3k

Find the direction cosines of the vector joining the points A (1, 2, =3) and
B (=1, =2, 1), directed from A to B.

Show that the vector { + 7+ £ is equally inclined to the axes OX, OY and OZ.
Find the position vector of a point R which divides the line joining two points P
and Q whose position vectors are { + 27—k and —1 + ] + k respectively, in the
ratio 2 : |

{i) internally (it} externally
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17.

18.
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Find the position vector of the mid point of the vector joining the points P{2, 3. 4)
and Qr4, 1, -2).

Show that the points A, B and C with position vectors, d =-3f-4}—4f£.

b=2] - j+k and€=] -3} -5k, respectively form the vertices of aright angled

triangle.
In triangle ABC (Fig 10.18), which of the following is not true:

(A) AB+BC+CA=0
(B) AB+BC-AC=0
(C) AB+BC-AC=0

A >B
(D) AB-CB+CA=0 Fig 1018
If @ and b are two collinear vectors, then which of the following are incorrect:
(A) b=ha, for some scalar L
(B) d=+b
(C) the respective components of & and b are not proportional

(D) both the vectors @ and b have same direction, but different magnitudes,

10.6 Product of Two Veclors

So far we have studied about addition and subtraction of vectors. An other algebraic
operation which we intend to discuss regarding vectors is their product. We may
recall that product of two numbers is a number, product of two matrices is again a
matrix. But in case of functions, we may muoltiply them in two ways, namely,
moultiplication of two functions pointwise and composition of two functions. Similarly,
multiplication of two vectors is also defined in two ways, namely, scalar (or dot)
product where the result is a scalar, and vector (or cross) product where the
result is a vector. Based upon these two types of products for vectors. they have
found various applications in geometry, mechanics and engineering. In this section,
we will discuss these two types of products.

10.6.1 Scalar (or dot) product of two vectors

Definition 2 The scalar product of two nonzero vectors @ and b, denoted by @ . b, is
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defined as G.5=|7|]B|cos8, /y
where, 8 is the angle between @ and 5,0<8<r (Eig 10.19), 0 -

i a
Ifeither @=00rb=0 then 8 is not defined, and in this case. we Fig 10.19

define d-b=0
Observations
1. @-b is areal number.
2. Let @and b be two nonzero vectors, then @-&=0 if and only if @ and & are
perpendicular to each other. i.e.
d-h=0c dlh
3. HO=0,then d-b=[d||b
In particular, &-d=a[, as & in this case is 0.
4, If6=m, then 5 .§=_|§|§E§
In particular, §-5=—|4||k]. as B in this case is 7.
5. In view of the Observations 2 and 3. for mutnally perpendicular unit vectors

[, j and k. we have

FE=3 T m Rl
i j=jk=rki=0

6. The angle between two nonzero vectors @ and b is given by

ﬂosB=.?|'bE .ot @ :cos'l[—#—'bi}

Fary @b

=

The scalar product is commutative. i.e.
ab=5b-a (Why?)
Two important properties of scalar product
Property 1 (Distributivity of scalar product over addition) Let &, & and & be
any three vectors, then
- (b+&)=id-b + 4d-8
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Property 2 Let  and b be any two vectors, and 1 be any scalar. Then
(Ad)-b =(Ad)-b =Ma-b)=d-(Ab)

If two vectors @ and b are given in component form as ai +a,j+ak and

.*71? - Eizf - h,,E , then their scalar product is given as

Thus

Il

]

d.b= (o +a,]+ak)(bi+b,]+bE)

af - (i +5, ] + BB +ay - (Bi+By ) +BE) +agk - (B +b, ]+ bk)
ab (i )+ aly (i J)+ by )+ ab (G114 azby (] J)+ ahy(f-k)

+ auby (k1) +ayhy (k- J) -r-ﬂ]b;f_kﬁf}(llstng the above Properties 1 and 2)

= ab +ab, +ab,

b= wh +ayb; +ayby

10.6.2 Prajection of a vector on a line
Suppose a vector AB makes an angle 8 with a given directed line { (sav), in the
anticlockwise direction fFIg 10.20). Then the projection of AB on / is a vector P
(say) with magnitude | AB | |cos 8| and the direction of P being the sare (or opposite)
to that of the line {, depending upon whether cos 8 is positive or negative. The vector P

¢!

8 I

A ;}'_’c "
(0*<e<90"

(i)

A

(180"< 8 < 270"
(i)

Fig 10.20

(Using Observation 3)

===
04
- -]

c" “)‘ A e
{ﬂﬂ‘{ 8<180%

(ii)

-

‘P—*-.L P C g
B
(270'< 8 < 360°)
{iv)
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is called the projection vecior, and its magnitade | 5] is simply called as the projection
of the vector AB on the directed line /.
For example, in each of the following figures (FFig 10.20 (i) to (iv}). projection vector
of AB along the line [ is vecior AC.
Observations
I. If P is the unit vector along a line [, then the projection of a veetor @ on the line
lisgivenbyd.p.

2. Projection of a vector & on other vector 4, is given by

i-b. or &{!%J. or %{a‘-f{)

3. If 8=0, then the projection vector of AB will be AB itself and if 8=, then the
projection vector of AB will be BA.

b4 an =
4. If 8=— or 8=— then the projection vector of AB will be zero vector,

2 2

Remark If o, B and y are the direction angles of vector a= nif -+ a2j+ .:13!5 , then its
direction cosines may be given as

i & a m
— =L cosP=—2, and cosy=—1
lallé] lal I ||

_

cOs0 =

Also, note that | & |cosa, |d|cosP and |d|cosy are respectively the projections of
@ along OX, OY and OZ. i.c., the scalar components a,, @, and a, of the vector &, are
precisely the projections of @ along x-axis, y-axis and z-axis, respectively. Further, ifa
is a unit vector, then it may be expressed in terms of its direction cosines as

& = cos o4 +cos i +cos vk
Fxample 13 Find the angle between two vectors  and b with magnitudes 1 and 2
respectively and when - b=l,
Solution Given &-5=1|d|=1and|b|=2. We have
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Example 14 Find angle '@ between the vectors d = i +j—ﬁ£ and h=i —}+|ﬂ:-.

Solution The angle € between two vectors @ and b is given by

i-h
cosf = I#f.IEI
Hw d.b=(+j-k)-(-j+h=1-1-1=—1,
—1
Therefore, we have cosl = 3
- l
hence the required angle is = O ‘[—5]

Example 15 If =5/~ j-3k and b={+3]~5k, then show that the vectors
d+band d—b are perpendicular.

Solution We know that two nonzero vectors are perpendicular if their scalar product

i3 zero.

Here G+b = (5[—]-3k)+(1+3]—5k)=6i +2] -8k

and d-b=(51-j-30)—(i+3]-5k)y=4i —4j+2k

So (G+B) (F-B)=1{6i+2]—8k)- (4 —4]+2k)=24-8-16=0.
Henge  d+b and @—5 are perpendicular vectors.

Example 16 Find the projection of the vector 8= 2{ 4+ 3] + 2k on the vector
!3=f+2j +k.
Solution The projection of vector & on the vector § is given by

1 L b} 5 (Zx1+3x2+2x1) 10 5

57T i rrrar V6 3
Example 17 Find |d—5 ), il two veclors 7 and & are such that |d(=2, |5I=3
and a@-b=4,

Solution We have
|d—b=(d—b)-(d—h)

_ga—-a-h-b-a+k b
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= |aPF -AE-Bp|B P
= (27 —24) +(3*
Therefore ti—b| = \,Irj_
Example 18 If @ is a unit vector imd {¥ — @) (¥+ @) =34, then find | ¥ |.

Solution Since & is a unit vector, | & =1. Also,
(F=ar(f+d)=8

or P ¥+Td-3-F-a-4 =8
or |#P=1=8 ie |3} =09
Therefore |¥|=73 {as magnitude of a vecior is non negative),

Fxamiple 19 For any two vectors @ and h, we always have |- bl<|al|b] {Canchy-
Schwartz imequality).

Solution The inequality holds tivially when either G = § or & = 0. Actually, in sucha
sitnation we have |G-% |= 0=|a| |5 1. So, let us assume that |7 =015 |.

Then, we have

|d:h|
il lcosBI=<1
Therefore |@b|<|dllb]
Lo 7 .
Example ?._'ll For any Ewu vectors 4 and b, we always X T
have |@+b|=<|d|+|b | (triangle inequality). A = h
Solution The inequality holds trivially in case either @ =
G=0o0rb=0 (How?). So,let |4|# 0+ |, Then,
|d+b [ =(@+b)* =(@+b) (7+5) Tt
_ G-d@+a-b+h-d+h-b
= |af +2a-b+|67 (scalar product is commutative)
< |dR+21-5|+|B]} (since x<lz|Vxe R)
< |aP+2\ad||B|+1EF {from Example 19)

(a|+b[y
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Hence \@+b|<|ad|+|b]

Remark If the equality holds in triangle inequality (in the above Example 20), i.e.
\G+B| = |@i+|5],

then |AC| = |AB|+|BC|

showing that the points A, B and C are collinear.

Example 21 Show that the points A (=27 +37+5k), B( 7 +2]+3k) and C(7{ —k)
are collinear,

Solution We have
AB = (1+2{+Q2-3)j+(3-5k =3 - j -2k,
BC = (T-Di+(0-2)j+(-1-Nk=6/ —2] -4k,
AC = (T+2)i+(0-3)]+(-1-5k =91 -3} -6k
|AB|= 14, |BC|=214 and |AC =314
Therefore | AC|=| AB|+|BC|

Hence the points A, B and C are collinear.

| &= Notc | In Example 21, one may note that although AB+BC+CA=0 but the
points A, B and C do not form the vertices of a triangle,

| EXERCISE 10.3 |

1. Find the angle between two vectors @ and b with magnitudes JE and 2,
respectively having -5 = /5 .

[ ]

Find the angle between the vectors E -2} +3§ and 3?—23 +k
3. Find the projection of the vector { —  on the vector { + j .

Find the projection of the vector {+3j+ 7k on the vector 7{ — j+8&k .

. »

Show that each of the given three vectors is a unit vector:
1 & 4 g 1 7 - K oo b =
5(21 +3 ]+ 6i). ?{3! -6 +2k), EI{E[ +2]=3k)
Also, show that they are mutually perpendicular to each other.
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Pind |&| and |5 | if (+b)-(@-b)=8 and|d /=8| |,
Evaluate the product (38 —55)-(2d + 7).

Find the magnitude of two vectors @ and &, having the same magnimde and such

that the angle between them is 6()° and their scalar product is %

Find | X |, if for a unit vector @, (¥ —d) (X +a)=12.

If G=2+2j+3% h=—i+2j+k and F=3i+ ] are such that@+35 is
perpendicular to 7, then find the value of A,

Show that |d|b+|b|d is perpendicular to |d|5—5|d , for any two nonzero
veclors @ and b,

I a-d=0 and -5 =0, then what can be concluded about the vector 57

If @,b.C are unit vectors such that G+5+é&=0, find the value of
F-h+b E+E-A

If either vector =0 or h=0, then a-5=0. But the converse need not be
true. Justify your answer with an example.

If the vertices A, B, C of a triangle ABC are (1, 2, 3), (-1. 0, 0), {0, 1, 23,
respectively, then find £ ABC. [Z£ABC is the angle between the vectors BA and
BC|.

Show that the points A1, 2, 7), Bi2, 6. 3) and C(3, 10, 1) are collingar.

Show that the vectors 2f — j+ &, { —3] 5k and 3i —4 ] —4k form the vertices
of a right angled triangle.

If 4 is a nonzero vector of magnitude ‘e’ and % a nonzero scalar, then A2 is unit
vector il

(A) A=1 By A==1 (C)a=Iil (D) a=I114l

Ll

10.6.3 Veelor (or cross) produet of two veclors

In Section 10.2. we have discussed on the three dimensional right handed rectangular
coordinate system. In this system. when the positive x-axis is rotated counterclockwise
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into the positive v-axis, aright handed (standard} screw would advance in the direction
of the positive z-axis (Fig 10.22{1)).

In a right handed coordinate system, the thumb of the right hand points in the
direction of the positive z-axis when the fingers are curled in the direction away from
the positive ¥-axis toward the positive v-axis (Fig 10.22(ii)).

7
’iﬁ .
- >
(i
X

Z

x (ii)
Fig 10,22 (i), (ii)
Definition 3 The vector product of two nonzero vectors @ and I::, 15 denoted by 4 x b

and defined as
dxh=|d|b|sinbi, o
~ . (]
where, 8 is the angle between d and b, 0<0<% and A isa

unit vector perpendicular to both @and b, such that

; A
a.band A form aright handed system (Fig 10.23). i.e., the =7
1 ¥ o 1 W ' Ay ¥

right handed system rotated from 4 to & moves in the direction Fig 10.23
of 7.

Ifeither G =10 or b =0 , then 0 is not definad and in thiz case, we define @b =0 .
Observations

l. @=bisavector

2. lLet @and b be two nonzero vectors. Then x5 =0 ifand onlyif @ and b are
parallel (or collinear) to each other, i.e.,

ixb=0=d|b
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In particular, @ x 3 =0 and dx(~ad) =0, since in the first situation, ® = 0 and
in the second one, 8 = ®, making the value of sin 6 to be 0.
T 5 o
3. If == then axh=[75| A
2 k
4. Inview of the Observations 2 and 3, for mutually perpendicular \
unit veciors 7, j and & (Fig 10.24). we have h
ol B P j
ixi = jXj=kxk=0 \-\_,,_..-f'/
ixj=k Jxk=i kxi=} Fig 1024
5. In terms of vector product, the angle between two vectors @ and 5 may be
given as

6. Itis always true that the vector product is not commutative, as @ xb = =5 xa,
Indeed, dxb=|dl|#|sinBn, where 4. band A form a right handed system,

i.e., 8 is raversed [rom & to &, Fig 10.25 (i). While, 5 x4 = 4| »|sin@#, , where

b.aand A form a right handed system i.c. & is traversed from biod.

Fig 10.25(ii).
A
H
8
P - i
(i (ii)

Fig 10.25 (i), (ii)
Thus, if we assume @ and b to lie in the plane of the paper, then /i and i, both

will be perpendicular to the plane of the paper. But, 7 being directed above the
paper while #i; directed below the paper. i.e. f, =—# .



VECTOR ALGEBRRA 165

7|k |sin®n

X
sl

Hence
= —|d||h|sini=-hxa

In view of the Observations 4 and 6, we have
jxi=—k, kxj=—iand ixk=-].

If @ and b represent the adjacent sides of a triangle then its area is given as

1|fi><5|, C

Ey definition of the area of 4 triangle, we have from A
Fig 10.26,

| :
Area of triangle ABC = —ABCD. D 3

But AB=|4] (as given), and CD =|d|sin#.

]

el
2| |

Thus, Area of triangle ABC = — Ih || |sin® =
If @andh represent the adjacent sides of a parallelogram, then its arsa is given

by |dxB|, D c

From Fig 10.27, we have
Areq of parallelogram ABCD = AB. DE.
But AB=|4| (as given), and

L_E > B
DE =|d |zin@, E 2
Thus, Fig 10.27
Area of parallelogram ABCD = |E||&|Si.n9=|3><5|.
We now state two impaortant properties of vector product.

Property 3 (Distribativity of vector product over addition): If a. b and
are any three vectors and A be a scalar, then

() dx(b+&)=dxb+axé
(i) AMdxb)=(Ai)xh=adx(hb)
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Let dand b be two veclors given in component form as & +a,j+ ak and

f;ﬁ' + sz' +b, i, respectively. Then their cross product may be given by

i J k
ixh=a ay a
by by By

Explanation We have
dxb = (af+a,]+ak)x(Bi +by ] +bk)

= ayb (i %)+ a,by (1% J)+a,bs (0 )+ agh, (7x7)
+ Ay (X 1+ ayby (F3 k)
4 aab Xt )+ ayhy (k% 1)+ ayba (KX E) (by Property 1)

= abyli X [)—aby (kX 1)— agh (7% )
4 ayhy (X k) +agh (kxi)—ah,(fxk)

(as ixi=jxf=kxk=0 and ixk=—kxi, jxi=—ix] and kxj=—7ixk

= abyk —aby ]~ bk + aybal +agh - agbu

(as ixj=k, Fxk=i and kxi=]

= (ayhy —agby)i —(ajby —agb) [ +{ab; — b))k

S

i J k
= 4y i
b B b

Example 22 Find |dx5 |, if d=2{+ j+3%k and b=31+5) -2k
Solution We have

i ]k
-:ixE: R | 3
E3 5 -2

= {(~2-15) ~ (=4 =93] + (10 - Dk =—17F +13]+ 7k

Hence |axb| = \)"l{—l?'}2 +(132 4 (77 =+/507



VECTOR ALGEBRRA 167

Example 23 Find a unit vector perpendicular to each of the vectors (@+5) and
(@—b), where d=i+ j+k, b=1+2j+3k.

Solution We have &+b = +3;+4k gnd G—h==j~ 2k

A vector which iz perpendicular to both 5 +5 and -5 18 given by

i 7k
G+B)x(G-F) = 2 3 4|=-2+4j-2k (=F.say)
0 -1 -2

Now &)= q'4+|6+-=1=-dr2_4=2£

Therefore, the required onit vector is
€ —L > o e

6~ V6 I V6
There are two perpendicular directions to any plane. Thus, another unit
vector perpendicular to a+5 and 35 wﬂlb& 1 T;-I- E.' But that will
be a consequence of (d—b)X(d+5)

Example 24 Find the area of a triangle having the points A(l, 1, 1), B(1, 2, 3)
and C(2, 3, 1) as its vertices.

Solution We have AB=j+2k and AC=/+2/. The area of the given triangle
) et =t
is = |ABxAC|.
2
i

J
Now, ABXAC =0 | 2/=—a4i+2j-k
L E

= 3 A

Therefore |ABXAC| = f[6+4+1=+21

1
Thus, the required area is EN"’E—l
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Example 25 Find the area of a parallelogram whose adjacent sides are given
by the vectors @=3/+ j+4k andb=i— j+k

Solution The area of & parallelogram with & and bas its adjacent sides is given

by |@x5],
i? ik

Now ixh=03 1 4=5+)-4k
!1 -1 1

Therefore lixh| = 2541+ 16 =42

and hence, the required area is V42 .

EXFERCISE 10.4

. Find |d@xb|, if @={-7j+7kand b=37-2j+2k,

[

Find a unit vector perpendicular to each of the vector @+# and @ —F, where
d=3i +2E+2,k‘ and E:f+2j'—2!;.
3. If a umit veclor & makes angles %with i g with j and an acute angle 8 with

i . then find 8 and hence, the components of d,
4. Show that

(G—byx(d+b)=2(dxb)
5. Find A and pif (27 + 6+ 27k) x (7 + 4 +pk) =0,
6. Given that -5=0 and dxb=0, What can you conclude about the vectors
gand b ?
7. Let the vectors &5, be given as alz'"+azf+a3?;_. .E.-I:=+bij+b3.i§,
¢ +¢,]+¢;k . Then show that & (5 +8) = xb +a % &.
8. If either @a=0 or h=0, then @xh=0. Is the converse true? Justify your

answer with an example.
. Find the area of the triangle with vertices A(L, 1, 2), B(2. 3. 5) and C{ 1. 5, 5).
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10, Find the area of the parallelogram whose adjacent sides are determined by the
vectors G=i~-j+3k and b=2i =T} +k.

11. Let the vectors 4 and b be such that | =3 and iﬁl:% ., then @ & is a unit

vector, if the angle between & and b is
(A) T (B) m'd (C) w3 (D) m2
12. Area of a rectangle having vertices A, B, C and D with position vectors

—f+l}+4f3, f+l}+-¢§. f—lj+4f and —?—£}+4E,rﬂﬁpﬂﬂti\'ﬂh’ is
2 2 2 2
1

(A) 3 (B) 1

() 2 (D) 4

Miscellaneons Examples
Example 26 Write all the unit vectors in XY-plane.

Solution Let 7 =xi+¥7 be a unit vector in XY-plane (Fig 10.28). Then, from the
figure, we have r = cos 0 and y = gin 0 (since |7 = 1). So, we may write the vector ¥ as

F(=OF) = cosB i +sind ; e (1)

Clearly, 71 = Joos® B+sin? @ =1

Y

A Pleosh. sind)
il —
A | OP" = cosB?

5V M
B I'¥ . ﬁ*_ &
ra II"' X PP=xin@f

X'e ||| O

v

Fig 10.28

Also, as 8 varies from 0 to 2, the point P (Fig 10.28) traces the circle x+ 3 = |
counterclockwise, and this covers all possible directions. So, (1) gives every unit vector
in the XY-plane.
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Example 27 If {+j+k 2/+57. 3{+2j-3k and {—6j-k are the position

Deduce that AB and CD are collinear.
Solution Note that if 8 is the angle between AB and CD, then 8 is also the angle
between AR and CD.
Now AB = Position vector of B — Position vector of A
= (A +5)-(+j+k)=i+4]—k

Therefore IABl= (0 + (47 +(-1? =32

Similarly CD=-2i-8]+2k and |CDE6G2
AB-CD

Thus cosf = ABCD|

o ) e e 1102 W Y
N VA TN 36

Since 0 <0 <, it follows that § = 7. This shows that AR and CD are collingar.

Alternatively, AB=- 51 CD which implies that AR and CD are collinear vectors,

Example 28 Let @6 and ¢ be three vectors such that |d=3,|F =4, ¢ =5 and
each one of them being perpendicular to the sum of the other two, find |4+ b+¢|,
Solution Given G.(h+&)=0, b (F+d)=0, é-(@+5b)=0.
Now |G+b+Ef=(A+b+c) =(d+b+0) (G+B+0)

= G-d+a-b+a)+h-b+b-1a+7)

+ Ela+h)+¢E8

= |aP+|bf +|EP

=94+ 164+25=50
Therelore d+b+¢| = 50 =52
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Example 29 Three vectors 4, b and ¢ satisfy the condition &+ & +Z=0. Evaluate
the quantity W=d-b+b-&+¢-d, if |d=3, |bj=4 and |&}=2.

Solution Since d+h+a=0 . we have

ot Gg-g+a-b+d-c =)
Therefore ErE+E-E:-|Ei1:—9 (1)
Again, 5-(G+5+2) =0
or d-b+be=-|b[ =-16 . (2)
Similady i-F+hE —_ 4, o (3)

Adding (1), (2) and (3), we have
2(d-b+b-c+a-8) =-129

. —29
or 2 .—_—J_,ELL&.,}L:T

-

Example 30 If with reference to the right handed system of mutually perpendicular

unit vectors i, jand k, =3 —j. f=2{+ j—3k, then express B in the form

B=p +f,. where B isparallelto & and B, is perpendicular to &-

Solution Let B, =A@, A is ascalar, ie., B, =3M - A

Now Ba=P—P = (2=30)7 +(1+ A) ] -3k,

Now, since Ez is to be perpendicular to g, we should have @-§,=0. Le..
3(2-3)—(l+h) =0

Therefore fi= %f -
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Miscellaneous Exercise on Chapier 1)

Write down a unit vector in X'Y-plane, making an angle of 30° with the positive
direction of x-axis.

Find the scalar components and magnitude of the vector joining the points
Pul‘ Ky zl} and Q{'fz’ ¥p "-z-j

A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of
north and stops. Determine the girl’s displacermient from her initial point of

depariure.

IEd =k +7, then is it true that |8|=|B|+] €] 7 Justify your answer.

Find the value of x for which x(f + j+k) is a unit vector.

Find a vector of magnitode 5 units, and parallel to the resultant of the vectors
G=21+3]—k and B=7-2j+F.

If =i+ j+k, b=2i—j+3k and €=i-2]+k, find a unit vector paralle]

to the vector 2d — b +3E.
Show that the points A(1,-2,-8), B(5,0,-2) and C(11, 3, 7) are collinear, and
[ind the ratio in which B divides AC.

Find the position vector of a point R which divides the line joining two points

P and Q whose position vectors are (2a + fj] and (a — 3E}ﬂxwma_1_1}' in the ratio
I : 2. Also, show that P is the mid point of the line segment R().

The two adjacent sides of a parallelogram are 2{ —4 j+ 5k and -2 -3k
Find the unit vector parallel to its diagonal. Also, find its area.
Show that the direction cosines of a vector equally inclined to the axes OX, OY

and OZ are i["la— ""!"' "I'“].

Letd=i+47+2k B=3-27+7k and &=27 - j+4k. Find a vector d which
is perpendicular to both and », and #. d =15.
The scalar product of the vector § + j+k with a unit veetor along the sum of

vectors 27 +47— 5k and Al +27+ 53k is equal to one. Find the value of L.
If @, h.T are rutually perpendicular vectors of equal magnitudes, show that the

vector 74 =15 is equally inclined to 4, b and &,
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15. Provethat(@+h)-(d+b)=ldf +b |2.ifandnrﬂy1'f&, b are perpendicular, given
d#0,b#0.
Choose the correct answer in Exercises 16 w0 19,

16, If 8is the angle between Lwo vectors d and b, then 7.5 >0 only when

T T
(A) D=<— N=f=<—
A) D< <5 (B) >
(C) OD<bB<m D)y O0=8=n

17. Let @und b be two unit vectors and 0 is the angle between them. Then d+5 is
a unit vector if

s s T n
(A) B=— B) 8=— C) B=— (D) g="—
J m (B) S (C) 5 ) 3
18, Thevalueof i.(jxk)+ (I xk)+k-(Ix ) is
(A) O (B) -1 (€)1 (D} 3
19. If 8 is the angle between any two vectors & and b, then|a-h|=|a@xh | when 8
is equal to
(A) 0 ®) ~ © = D
) ) 4 ) 3 )T
Sumunary

@ Position vector of a point P(x, ». 2) is given as D_ﬁ{= Fl=xi +37+ zk, and its

magnitude by sz._kf 7%,

# The scalar components of a vector are its direction ratios, and represent its
projections along the respective axes.

4 The magnitude (r), direction ratios (a, b, ¢} and direction cosines ([, m, 1) of
any vector are related as:
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The vector sum of the three sides of a triangle taken in order is 0.

The vector sum of two coinitial veclors is given by the diagonal of the
parallelogram whose adjacent sides are the given vectors.

The multiplication of a given veetor by a scalar A. changes the magnitude of
the vector by the multiple A1 and keeps the direction same (or makes it
opposite) according as the value of A 1s positive (or negative),

For a given vector 2, the vector d= i{_l gives the unil vector in the direction
(T

of 4,
The position vector of a point R dividing a line segment joining the points

P and ) whoze position vectors are 4 and b respectively, in the ratio m @ i

(i) internally.is given by ad m‘ﬁ :
m+n
(i) externally, is given by i
' Tomen

The scalar product of two given vectors & and b having angle B between
them is defined as

a.b=\a| b cosb.
Also, when d-& is given, the angle ‘0" between the vectors 4 and & may be
determined by
- i-b
R T
IF @ is the angle between two vectors & and &, then their cross product is
given as
dxb=|d|b|sin0h
where 7 is a unit vector perpendicular to the plane containing @ and 5. Such
that &. b, /i form right handed system of coordinate axes.
If we have two vectors dandb, given in component form as

ﬁ=-’f!11{+a1f+ cLE.!.'l and5=blf+ﬁlj+é§kh and ) any scalar,
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then  @+5 = (@ +B) 4 (ay +by) J+(ay +by)k
A = (ha)i + (hay) ] +(hay)k

E F
and @xh=la B g
dy by e

Historical Note

The word vecfor has been derived from a Latin word vectuy, which means
“to carry™. The germinal ideas of moderm vector theory date from around 1800
when Caspar Wessel (1745-15818) and Jean Robert Argand (1768-1822) described
that how a complex number g + & could be given a geometric interpretation with
the help of a directed line segment in a coordinate plane. Williara Rowen Hamilton
(1805-1865) an Irish mathematician wag the first to use the term vector for a
directed line segment in his book Lectures on Quaternions (1853). Hamilton's
method of quaternions (an ordered set of four real numbers given as:

a+hi+ci+ diz, I, j+ k following certain algebraic rules) was a solution to the

problem of multiplying vectors in three dimensional space. Though, we must
mention here that in practice, the idea of vector concept and their addition was
known much earlier ever since the time of Aristotle (384-322 B.C.), a Greek
philosopher, and pupil of Plato (427-348 B.C.). That ime il was supposed o be
knowmn that the combined action of two or mare forces could be seen by adding
them according to parallelogram law. The cerrect law for the composition of
forces, that forees add vectorially, had been discovered in the case of perpendicolar
forces by Stevin-Simon (1548-1620). In 1586 A.D.. he analysed the principle of
geometric addition of forces in his treatise DeBeghinselen der Weeghconst
(“Principles of the Art of Weighing”), which caused a major breakthrough in the
development of mechanics. Bat it took another 200 years for the general concept
of vectors to form.,

In the 1880, Josaih Willard Gibbs {1839-1903), an American physicist and
mathematician, and Oliver Heaviside (1850-1925), an English engineer, created
what we now know as vector analysis. essentially by separating the real (scalar)
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part of quaternion from its imaginary (vector) part. In 1881 and 1884, Gibbs
printed a treatise entitled Element of Veetor Analysis. This book gave a systematic
and concise account of vectors. However, much of the credit for demonstrating
the applications of vectors is dus to the D. Heaviside and P.C. Tait (1831-1901)
whe contributed significantly to this subject.

_@_
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THREE DIMENSIONAL GEOMETRY

¢ The moving power of mathematical invention is nof

reasoning but imagination. — A. DEMORGAN +

11.1 Intreduction

In Class X1, while studyving Analytical Geometry in two ok
dimengions, and the mtroduction to three dimensional
geometry, we confined to the Cartesian metheds only. In
the previous chapter of this book, we have studied some
basic concepts of vectors. We will now use vector algebra
to three dimensional geometry. The purpose of this
approach to 3-dimensional geomelry is thal it makes the
study simple and elegant®,

In this chapter, we shall study the direction cosines
and direction ratios of a line joining two points and also
discuss about the equations of lines and planes in space
under different condidons, angle between two lines. two
planes, a line and a plane, shortest distance berween two (1707-1783)
skew lines and distance of a point from a plane. Most of
the above results are obtained in vector form. Nevertheless, we shall also translate
these results in the Cartesian form which, at times, presents a more clear geometric
and analytic picture of the situnation,

11.2 Direction Cosines and Direction Ratios of a Line
From Chapter 10, recall that if a directed line L passing through the origin makes
angles o, [ and ywith x, y and z-axes, respectively, called direction angles, then cosing
of these angles, namely, cos o, cos P and cos 7y are called direction cosines of the
directed line L.,

T wee reverse the direction of L, then the direction angles are replaced by their supplements.
Le. ;—a, &— 3 and 7 — y. Thus, the signs of the direction cosines are reversed

* For various activities in thiee dimengional geometry, one may refer to the Book
“A Hand Book for designing Mathemaiics Laborarory in Schools”, NCERT, 2005
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X

Fig 11.1

Note that a given line in space can be extended in two oppaosite directions and so it
has two sets of direction cosines. In order to have a unique set of direction cosines for
a given line in space, we must take the given line as a directed line. These unique
direction cosines are denoted by [, #t and 1.

Remark If the given line in space does not pass through the origin. then, in order to find
its direction cosines, we draw a line through the origin and parallel to the given line.
Now take one of the directed lines from the origin and find its direction cosines as two
parallel line have same set of direction cosines.

Any three numbers which are proportional to the direction cosines of a line are
called the direction ratios of the line. If {, m, n are direction cosines and a, b, ¢ are
direction ratios of a line, then a = Al. b=Am and ¢ = An, for any nonzero A € R.

Some authors also call direction ratios as direction numbers.

Let a, &, ¢ be direction ratios of a line and let {, m and n be the direction cosines
id.c's) of the line, Then

.S el =By {say), k being a constant

a b c ' '
Therefore f=ak.m=5bk n=1ck e i)
But PF+rmr+ni=1
Therefore B@+br+c=1

or e
1‘||HE +BE A
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Hence, from (1), the d.c."s of the line are

d b o

e =1 =t
@ +b+c Jat+bi+ Ja? 8 47

where, depending on the desired sign of k, either a positive or a negative sign is o be
taken for /[, m and n.

For any line, if a, &. ¢ are direction ratios of a line, then &a, kb, ko, k= 0isalsoa
set of direction ratios. So, any two sets of direction ratios of a line are also proportional.
Also, for any line there are infinitely many sets of direction ratios.

11.2.1 Direction cosines of a line passing through two poinis

Since one and only one line passes through two given points, we can determine the
direction cosines of a line passing through the given points P(x, v, 7} and Qix,, v, z,)
48 lollows (Fig 11.2 (a)).

z Z

-~ 4

=

X () X (b)
Fig11.2
Let 4, mr, n be the direction cosines of the line PQ and let it makes angles ¢z, fand vy
with the x, y and z-axis, respectively.

Draw perpendiculars from P and ) to XY-plane to meet at R and 5. Draw a
perpendicular from P o QS to meet at N. Now, in right angle triangle PNQ, ZPON=y
(Fig 11.2 (b).

N Ty —3
Therefore, cosy= -i;g = -EF_EL
' i -
Similari costh = ——L and cosf="2—=1L
! PQ P PQ

Hence, the direction cosines of the line segment joining the points Plx , y, 2, ) and
Qix,, y,. z,) are
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X=X Y= ¥ T

PQ ~ PQ ° PQ

where PQ = -J(Ig 5 + -y + (2 - ?-l]l

|~ Note | The direction ratios of the line segment joining Plx,, y,. z,) and Q(x;. ,, z,)
may be taken as

A=A Y= P o 5 B = O =V 5y
Example 1 If a line makes angle 90°, 60" and 307 with the positive direction of x, ¥ and
z-axis respectively, find its direction cosines.

Solution Let the 4. ¢.'s of the lines be 7, m. n. Then T = cos ¥M)* =0, m=cos 60" =

V3

= = —,
it =cos 30 >

Example 2 If a line has direction ratios 2, — 1, — 2, determine its direction cosines.

B | =

Solution Direction cosings are
2 -1 -2
V2 D2 2 0P 2 2+ P 2
2 =1 =2
£ T =
Example 3 Find the direction cosines of the line passing through the two points
(—2.4,—5)yand (1, 2, 3).

Solution We know the direction cosines of the line passing through two points
Pz, ¥, 2) and Q(x,, »,, 2.} are given by

. Yl O ikt s .|

PQ PQ PQ

where PQ = .J{.x:! = ;rl]n2 + iy —wit+ {-Eq —H}E
Here Pis (— 2,4. — 5) and Q is (L. 2, 3).
S0 PQ = U= (=20 + (2~ 4% + 3= (=) = /77
Thus, the direction cosines of the line joining two points iz

3 -2 8

V77 NI AT



THREE DIMENSIONAL GEOMETRY im

Example 4 Find the direction cosines of x, y and z-axis.

Solution The x-axis makes angles 0%, 90° and 90° respectively with x, y and z-axis,
Therefore, the direction cosines of x-axis are cos (°, cos 20°, cos 90° i.e., 1.0,0,
Similarly, direction cosines of v-axis and z-axis are 0, 1, 0 and 0, 0, 1 respeciively,

Example 5 Show that the points A (2,3, - 4}, B (1, — 2. 3) and C (3. 8. — 11) are
collinear,
Solution Direction ratios of line joining A and B are

=2 =2 -3 3F+d1e,=1,=5T

The direction ratios of ling joining B and C are

3-1,8+2,-11-3.1ie,2, 10.-14.

Tt 1s clear that direction ratios of AB and BC are proportional. hence, AR is parallel
to BC. But point B is common to both AB and BC. Therefore, A. B, C are
collinear points.

| EXERCISE 11.1|

1. Ifaline makesangles 90°, 135°, 45° with the x, y and z-axes respectively, find its
direction cosines.

Find the direction cosines of a line which makes equal angles with the coordinate
axos.

If a line has the direction ratios — [ 8, 12, — 4, then what are its direction cosines 7
Show that the points (2, 3, 4). (— 1.— 2, 1}, (5. 8, 7} are collinear.

Find the direction cosines of the sides of the friangle whose vertices are
(3,5, -4),(-1,1,2) and (- 5, - 5, - 2).

11.3 Equation of a Line in Space

We have studied equation of lines in two dimensions in Class XI. we shall now study
the vector and cartegian equations of a line in space.

I

iy b fe
.. Ta - F

A line is uniguely determined if

(i) 1t passes through a given point and has given direction, or

(it} it passes through two given points.
11.3.1 Eguation of a line threwgh a given poine and parallel to a given vecrer b
Let @ be the position vector of the given point A with respect to the origin O of the
rectangular coordinate system. Let ! be the line which passes through the point A and
is parallel to a given vector b.Let 7 bethe position vector of an arbitrary point I' on the
line (Fig 11.3),
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Then AP is parallel to the vector b, i.e., 4 ’_,;i-i,/"
AP =X b, where A is some real number, oi
—_— = A
AP = OF - DA
But 2 ="
ie. Ab= F-a i 2
Converzely, for each value of the Sy
parameter A, this equation gives the position 0
vector of a point P on the line. Hence, the i
vector equation of the line is given by X Fig 11.3
F=d+nb e (1)

Remark If b = ai + bj + ok, then a, b, ¢ are direction ratios of the line and conversely,
if a, b, ¢ are direction Tatios of a line, then b = ai + A + ck will be the parallel to
the line. Here, b should not be confused with 1.

Derivation of cartesian form from vector form

Let the coordinates of the given point A be (x, y,. z) and the direction ratios of
the line be 4, b, ¢. Consider the coordinates of any point P be (x, ¥, 2). Then

T=xi+y+zki=xi1+yi+tz k

and 5=rjf+b_}+c§
Substituting these values in (1) and equating the coefficients of £ } and i, we get
x=x+ha y=y, +Ab =2+ ke w2

These are parametric equations of the line. Eliminating the parameter A from (2),
we gel

= = . (3)
This is the Cartesian equation of the line.
If I, m, nare the direetion cosines of the line, the equation of the line is

Example 6 Find the vector and the Caresian equations of the line through the point
(5, 2, —4) and which is parallel to the vector 37 + 2 — 8k
solution We have

G=5i+2j-4kand h=3i+2 -8k
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Therefore, the vector equation of the line is
F=5i+27-4k+A(3i+2]-8Kk
Now, 7 is the position vector of any point P(x, y, z) on the line.
Therefore, Nty 4k =5i+2]-4k+A(37+2]-8K)
= (54+30) 1+ (2424) j+(—4-BL) k

Eliminating A , we get

-5 y-2 z+4

37 2 -8

which i the equation of the line in Cartesian form.

1.4 Angle between Two Lines 7
Let L, and L, be two lines passing through the origin
and with direction ratios a,, b. ¢, and a,, b, c,.
respectively. Let Pbe a pointon L and Q be a point

r
>

on L,. Consider (he directed lines OP and OQ as 0 L
given in Fig 11.6. Let © be the acute angle between ‘L
OP and OQ. Now recall that the directed line o P . :
segments OP and OQ are vectors with components =X
a, E:rj, c and a,, bz. Cys respectively. Therefore, the
angle 0 between them is given by X Fig 114
| a, +bb, +egc
cos = | i‘”z'i - . (1)
J"’l +by +¢ ‘J“z +by +c;
The angle between the lines in terms of sin @ is given by
sin@= ./l —cos*
_ e (g + By +c,c,)°
(af +b7 +c} ) (a} +B] +])
_ Jlad 4b? ) (a2 +83 + )~ (o, +Biby +aicy)’
Wat +6 +ct) (e +; .3)
_\(i‘-albz‘“zbl’l‘”xblﬁz‘bzci P+ (e 8- 6 ) 2)

Jaf-rbf+::f‘ Ja§+b§+c§_
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Tn case the lines L, and L, do nol pass through the origin. we may take

lines 1.} and L5 which are parallel to L, and L, respectively and pass through
If instead of direction ratios for the lines L, and L. direction cosines, namely.

[,mn for L and L, m,, n, for L, are given, then (1) and (2) takes the following form:

cosB=IL L +mm +nnl (as Pam’+n?=l=2+mi+n2) .. (3

and sin f = Jl[fiml—fimi}z—{m,ﬂz—mj n\,}2+{u1 L—n F1]|‘z (4
Two lines with direction ratios a, b, ¢, and a,, b,, ¢, are
(i} perpendiculari.e. if 8=90°by (1)
aa, +bb +ee, =0
(i) parallel ie.if 8=0by (2)
= L
& b ey
Now, we find the angle between two lines when their equations are given. If 0 is
acote the angle between the lines

F=d+hb and T =dg,+pb,

then cosfl = &
) [pa ]
In Cariesian form. if 8 is the angle between the lines
e i I B (1)
a ) Cy T
=X = -z
il #] = PV g 2 " (2}
iy by )

whete, @, b, ¢ and g, b,. c,are the direction ratios of the lines (1) and (2), respectively,
then
e %ﬂzﬁibz +E0
Na +b? +cf o +b3 +c}
Example 7 Find the angle between the pair of lines given by
F=3i42]-4k+ M +2]+2K)
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and F=5i-2j+pn03i+2j+6k)

Solution Here § = {+2 j+2k and b, = 37 +2 j+6k
The angle @ between the two lines i3 given by

Bi-by | |GG+2j+28)-G3i+2]+6k)
cos O =|=m7=7I=
15[5,] +4+49+44+36
|3+4412| 19
ax7 | 21
H 6 =cos't (E]
ence =03 21

Example 8 Find the angle between the pair of lines
x+3F  w=1 z+3
3 T 5 4
x+l _
and .]_. = l_._ = ; :
Solution The direction ratios of the first line are 3, 5, 4 and the direction ratios of the

second line are 1, 1, 2. If € 45 the angle between them, then

| 31451442 __ 161683
iJ31+52+42«fl‘1+1"+12 V506 54246 15

cos B =

843
Hence, the required angle is ms"[ I{J

11.5 Shortest Distance between Two Lines

If two lines in space intersect at a point,

then the shortest distance between them is Z

zero. Also, if two lines in space are parallel,

then the shortest distance berween them

will be the perpendicular distance, i.e. the ~lg
.~

>

length of the perpendicular drawn from a

point on one line onto the other line, D \\ P
Further, in a space, there are lines which oS =
are neither intersecting nor parallel. In fact, ~ C >Y
such pair of lines are non coplanar and A B
are called skew lines. For example, let us
consider a room of size 1, 3, 2 units along Fig 11.5

x, ¥ and z-axes respectively Fig 11.5.
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The line GE that goes diagonally across the ceiling and the line DB passes through
one comer of the ceiling directly above A and goes diagonally down the wall. These
lines are skew becanse they are not parallel and also never meet.

By the shortest distance between two lines we mean the join of a point in one line
with one point on the other line so that the length of the segment so obtained is the
smallest.

For skew lines, the line of the shortest distance will be perpendicular to both
the lines.

11.5.1 Disiance between two skew lines
We now determine the shortest distance between two skew lings in the following way:
Let [ and , be two skew lines with equations (Fig, 11.6)

F=a+Mb il
and P=d+ph, v (2)

Take any point 5 on [, with position vector § and T on [, with position vector g,.
Then the magnitude of the shortest distance vector T
will be equal o that of the projecuon of ST along the
direction of the line of shortest distance (See 10.6.2).

If PQ is the shortest distance vector between [,
and [, then it being perpendicular o both b and ,,

the unil vector 4 along PO would therefore be
sctor i along PQ Fig 11.6
b, % b.
pe—tXh. - (3)
| & x by |

where, d iz the magnitude of the shortest distance vector. Let O be the angle between
ST and PT} Then

PQ = 8T lcos Bl
But {:us'El:! EE:@-ST
[IPQ ||ST|

ldna(a, — a) ’ —

= rJ'TST : (since ST = &4, —a,)

b x by (3, — @&
:“ p oty —~ ) |Frem (3)]

ST [ % 5|
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Hence, the required shortest distance is
d=P0 = 8T |cos 61

i< Bixb). @ xa)|
b, Byl

or

Cartesian form
The shortest distance between the Tines
A= x y¥=H = I

Yo by g

X—x ¥ ¥ B

and : =T = T
4 Gy by “3

X=%H B-h L4
a4 by |

| b, € |

is \[(f'l"z ~bye,) + (e, —e,a,) +(a b, —ab,)

11.5.2 Distance between parallel lines

ar

If two lines [, and [, are parallel, then they are coplanar. Let the lines be given by

F=d, + Ab (1)
and r=d; + IJE R, (98
where, 3 is the position vector of apoint S on/ and g, ()
is the position vector of a point T on [, Fig 11.7, L
As 1, arc coplanar, if the foot of the perpendicular
from T on the line | is P, then the distance between the
lines / and I,= ITPI. 0 P N
I S(a@) :
Let 8 be the angle between the vectors ST and &,
Fig 11.7
Then
b % ST =(|b||ST|sin 8)4 .. (3)

where 7 is the unit vector perpendicular to the plane of the lines | and I,

But ET: r;_i'2 -E,
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Therefore, from (3), we get

b x(dy—&)=kE|PT#  (since PT = ST sin @)

ie., |Bx(d,—a)| =|b|PT-1  (aslil=1)
Hence, the distance hetween the given parallel lines is
= |bxa,-a
d = (P28
|b

Example 9 Find the shortest distance between the lines I and I, whose vector
cguations are

=i+j+r@i-j+&) (1)
and F=2+j—k+pu(3i-5]+2k) k)

e £

Solution Comparing (1) and (2) with # =3 + 2 b and ¥ = &, + u b, respectively,

we get g=i+j. B=2i-j+k
§!=2f+j—éand§2=3f—5j+2£
Therefore Gy - =1—k
and B xby= (21 - j+&)x(3T=5F+2k)
i J ok
=2 -1 1|=37-7-Tk
3 5 12
S0 b, % By| = 0 £1+49 = /59

Hence, the shortest distance between the given lines is given by

= {EleJJ-{aj_'EIJI =]3_D+T!: 10

| b, b, | | V59 Va9

Example 10 Find the distance between the lines [ and I, given by
F=i{+2]-4k+A(2{+3]+6k)

d

sl F=3+3]=SkE+p(2i43]+6k)
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Solution The two lines are parallel (Why? ) We have
d,=i+2j-4k,a,=31+3]-5k and b= 21 +3j+6k
Therelore, the distance between the lines is given by

i
2
2

‘ bx(a,—a) aﬂ
B

| *||'4+9+36

|-9i+14 j-4 k| 203 293

. ) Jas Ji 7

| EXERCISE 11.2

1. Show that the three lines with direction cosines

12 -3 4 4 12 3 3412

3 BB RB'E IRl

2. Show that the line through the points (1,— 1, 2), (3. 4. — 2) is perpendicular to the
line through the points (0, 3, 2) and (3, 5, 6.

A, Show that the line through the points (4, 7, 8), (2. 3. 4) is parallel to the line
through the points {— 1, — 2, 1), (L, 2, 3).

4. Find the equation of the line which passes through the point (1, 2, 3) and is
parallel to the vector 37 +2 j -2 k.

. Find the equation of the line in vec‘tm and In cartesian form that passes ﬂm:rugh
the point with position vestor 21— j + 4k and is in the direction [ +2 ] -k .

6. Find the cartesian equation of the line which passes through the point (- 2, 4. - 5)
x+d y-4  z+3

5 6
‘t__j = E_;j = Eu_i-E . Write its vector form.

8. Find the angle between the following pairs of lines:
W F=2i-5i+k+0(37+2]+6k) md
F=Ti—Gk+p{f+2]+2k)

are mutually perpendicular.

LF 1]

and parallel (o the line given by

7. The cartesian equation of a line is
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() 7=3]+j—2&+r(i—j—2k)and
F=2f—j-56k+W(337-5]-4k)
Find the angle between the following pair of lines:
.r—E«: y—1 i z+3 and J+2: _1-'—4= 2=
2 3 =3 =1 " 4

(i)
z _5 el L
.x 3 ]x y=2 =5

=—an
2 1 B | g

(i)

2

Find the values of p so that the lines 1-% :.?}, _14= z-3
ip 2

and Jisia = y=3 — [t are at right angles.

ip l

; =5 y+2 1 L .
Show that the lines ——= =— and —=-—=— are perpendicular lo
7 =5 l 1 2 3

each other,

Find the shartest distance between the lines
F=(i+274+k)+ M(i—j+k) and

F=2i—j—k+p(2i+j+2k)
Find the shortest distance between the lines
x+1_y+l_ z+l d =3 y=35 z~=7

an:
7 -6 1 I -2 1

Find the shortest distance between the lines whose veclor equations are

Fe(f+2743k) + L(i—-3]+2k)

and F=4{ 457 +6k+pn@i+37+5)

Find the shortest distance between the lines whose vector equations are

F=(l—-0i+{-2)]+(3—21)k and

F=(s+D) i+ (2s-1)j-(2s+ D)k

Miscellaneous Exercise on Chapter 11

Find the angle between the lines whose direction ratios are a, b, ¢ and
b—c,c—a,a—h,
Find the equation of a line parallel 1o x-axis and passing through the origin.
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oy T e SO kP e AT d S0 B
-3 2 2 3k 1 =5
find the value of k.

are perpendicular,

Find the shortest distance between lines =67 +2 74+ 25+ AT -2 j+25)

and 7 = 47— k+p@3i-27-24&):
Find the vector equation of the line passing through the point (1. 2, — 4) and
perpendicalar to the two lines:
r—8 y+19 z-10 xr—15 y-29 z-5
= = and = = '

3 -16 7 3 8 -5

Summaiy

Direction cosines of a line are the cosines of the angles made by the ling
with the positive directions of the coordinate axes.
If I, m, n are the direction cosines of a line, then B+ m? +n=1,
Direction cosines of a line joining two points P(x . y .2 Jand Q(x,, v.. 2 ) are
e S D ey B |

PQ ' PQ  PQ
where PQ = (- 1) +(y, ~ ¥ + (5~ 2 )

Direction ratios of a line are the numbers which are proportional to the
direction cosines of a line.

If . m. n are the direction cosines and a, b, ¢ are the direction ratios of a line
then

i a (o] o
= L= =
Ja*+b*+¢*' .J'ra1+b1+c2 .jai+b"‘+c2
Skew lines are lines in space which are neither parallel nor intersecting.
They lie in different planes.

Angle between skew lines is the angle between two intersecting lines
drawn from any point (preferably through the erigin) parallel to each of the
skew lines.

If 1, my,n and L, m,, n, are the direction cosines of two lines; and 8 is the
acute angle between the two lines; then

cosB = L +mm +nnl
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Ifa, b, c and a, b, c, are the direction ratios of two lines and § is the
acule angle between the two lines: then

g a+bh bt g
Jai + B+ Ja + i+
VYector equation of a line that passes through the given point whose position
vector is @ and parallel to a given vector b isy = 54+ 1.5 -
Equation of a line through a point (x,, ¥,, z,) and having direction cosines [, m, n is

cost =

A-hH _¥=N _I—4

{ mn n
The vector equation of a line which passes through two points whose position

vectors are @ and b EF=F+X (G —2a)
If © is the acute angle between 7 =g + Ak and 7 =4, +id,. then

b
by |

cosl =

_bhy

14|

It X=X _ F =N _:Z_Ei ) M _ Nl _ o=y
h it h fa iy n)

are the equations of two lines, then the acute angle between the two lines is
given by cos © =l [, +mm +nn,

Shortest distance between two skew lines is the line segment perpendicular
to both the Tines.

Shortest distance between 7= &, + Ab_and 7 =&, + 1.4, is

(b, % %j-@ - &)
| B xh |

Shortest distance between the lines; ©— L = ‘F; A B8y
ay i ©y

X=X Y~¥ ETh
ay by Ca
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A 731 Chapter 12
LINEAR PROGRAMMING

4+ The mathematical experieace of the student s incomplete if ke never had

the vpportunity to solve a problem invented by himself. — G. POLYA +»

12.1 Introduction

In earlier classes, we have discussed systems of linear
equations and their applications in day to day problems. In
Class X1, we have studied linear inequalities and systems
of linear inegualities in two variables and their solutions by
graphical method. Many applications in mathematics
involve systems of inequalities/equations. In this chapter,
we shall apply the systems of linear inequalities/equations
to solve some real life problems of the type as given below:
A furniture dealer deals in only two items—tables and
chairs. He has Rs 50,000 to invest and has storage space
of at most 60 pieces. A table costs Rs 2500 and a chair
Rs a0(). He estimates that from the sale of one table, he
can make a profit of Rs 250 and that from the sale of one L. Kantorovich
chair a profit of Rs 75. He wants to know how many tables and chairs he should buy
from the available money s0 a8 (o maxirise his total profit, assuming that he can sell all
the items which he buys.

Such type of problems which seek W maximise (or, minirise) profit (or, cost) form
4 general class of problems called optimisation problems, Thus, an oplimisation
problem may involve finding maximum profit, minimum cost. or minimum use of
resources elc.

A special but a very important class of optimisation problems is linear programming
praoblem. The above stated optimisation problem is an example of linear programming
problem. Linear programming problems are of much inferest because of their wide
applicability in indaostry, commerce, management science elg.

I this chapter, we shall study some linear programming problems and their solutions
by graphical method only, though there are many other methods also to solve such
problers,
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12.2 Linear Programming Problem and its Mathematical Formulation

We begin our discussion with the above example of furniture dealer which will further
lead to a mathematical formulation of the problem in two variables. In this example, we
observe

{i} The dealer can invest his money in buying tables or chairs or combination thereof.
Further he would earn different profits by following different investment
strategies.

{iiy There are certain overriding conditions or constraints viz., his investment is
limited to a2 maximum of Rs 50,000 and so is his storage space which is for a
maxinmum of 60 pieces.

Suppose he decides to buy tables only and no chairs, s0 he can buy 30000 + 2500,
i.e.. 20 tables. His profit in this case will be Rs (230 x 20), i.e.. Rs 5000.

Suppose he chooses to buy chairs only and no tables, With his capital of Rs 50,000,
he can buy 50000 = 500. i.e. 100 chairs. But he can store only 60 pieces. Therelore, he
is forced to buy only 60 chairs which will give him a total profit of Rs (60 x 75), ie.,
Rs 4500,

There are many other possibilities. Tor instance, he mav choose 1o buy 10 tables
and 30 chairs, as he can store only 60 pieces. Total profit in this case would be
R (10 x 250 + 50 x 75), i.e., Rs 6250 and s0 on.

We, thus, find that the dealer can invest his money in different ways and he would
earn different profits by following different investment strategies,

Now the problem i3 : How should he invest his money in order to get maximuom
profit? To answer this question, let us try to formulate the problem mathematically.

12.2.1 Maithematical formulation of the problem
Let x be the number of tables and v be the number of chairg that the dealer buys.
Obviously, x and v must be non-negative, i.e.,

y=0 (No — it8) v (1}
n-ne Ve I
y=0 & L (2

The dealer is constrained by the maximum amount he can invest (Here it is
Rs 50,000} and by the maximum nomber of items he can store (Here it is 60).

Stated mathematically,

2500x + 500y < 50000 (investment constraint)
or Sx+y <100 o B
and x+y <60 (storage constraint) e )
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The dealer wants to invest in such a way s0 as to maximise his profit, say, Z which
stated as o function of x and v is given by
Z = 250x + 75y (called objective function) ... (3}
Mathematically, the given problems now reduces to:
Maximise £ = 250x + 75y
subject to the constraints:
Sx+y= 100

i+ y=60
x=0, y20

S0, wehave to maximise the linear fimction Z subject to certain conditions determined
by a get of linear inequalities with variables as non-negative. There are also some other
problems where we have to minimise a linear function subject to certain conditions
determined by a set of linear inequalities with variables as non-negative, Such problems
are called Linear Programming Problems.

Thus, a Linear Programming Problem is one that is concerned with finding the
optimal value (maximum or minimum value) of a linear function (called objective
function) of several variables (say xand y), subjectwo the condilions that the variables
are non-negative and satisfy a set of linear inequalities (called limear constraints),
The term linear imphes that all the mathematical relations used in the problem are
linear relations while the term programming refers to the method of determining a
particular programme or plan of action.

Before we proceed further, we now formally define some terms (which have been
used above) which we shall be using in the linear programming problems:

Objective function Linear funclion Z = ax + by, where a, b are constants, which has
1o be maximised or minimized i5 called a linear objective function,

In the above example, £ = 250x + 75y is a linear objective function, Variables x and

v are called decision variables.
Constraints The linear inequalities or equations or restrictions on the variables of a
linear programming problem are called constraints. The conditions x = 0, y = 0 are
called non-negative restrictions. In the above example. the set of inequalities (1) to (4)
are constraints.

Optimisation problem A problem which seeks to maximise or minimise a linear
function (say of two variables x and y) subject to cerlain consiraints as determined by
a set of linear inequalities is called an optimisation problem. Linear programming
problems are special type of optimisation problenis. The above problem of investing a
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given suri by the dealer in purchasing chairs and tables is an example of an optimisation
probler as well as of alinear programming, problem.

We will now discuss how to find solutions to alinear programming problem. In this
chapter, we will be concerned only with the graphical method.

12.2.2 Graphical methed of solving lincar programming problems

In Class XL we have learnt how to graph a system of linear inequalities involving two
variables x and y and to find its selutions graphically. Let us refer to the problem of
invesiment in tables and chairs discussed in Section 12.2. We will now solve this problem
graphically. Letus graph the constraints stated as linear inequalities:

Sx+y= 100 (1)
a4+ y=060 o (2}
=0 o (3)
y=0 o (4)

The graph of this system (shaded region) consists of the points comimon to all half
planes determined by the inequalities (1) to (4) (Fig 12.1). Bach point in thig region
represents a feasible choice open to the dealer for investing in tables and chairs. The
region, therefare, is called the feasible region Tor the problem, Every poimnt of thiz
region is called a feasible solution to the problew. Thus, we have,

Feasible region The common region determined by all the constraints including
non-negative constraints x, ¥ = 0 of a linear programming problem is called the feasible
region (or solution region) for the problem. In Fig 12.1, the region OABC (shaded) is
the feasible region for the problem. The region other than feasible region is called an
infeasible region.

Feasible solutions Points within and on the
boundary of the feasible region represent
feasible solutions of the constraints. In
Fig 12.1, every point within and on the
boundary of the feasible region OABC
represents feasible solution to the problem.
For example, the point (10, 50) is a fzasible
solution of the problem and so are the points
(0, &0y, (20, 0) etc.

Any point outside the feasible region is
called an infeasible solution. For example,
the point {25, 40) is an infeasible solution of iﬁ, Sy 4 =100 X+ =60
the problem. Fig 12.1

X'¢
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(Optimal (feasible) solution: Any point in the feasible region that gives the optimal
valne {maximum or minimom) of the objective function is called an optimal solution.

Now, we see that every point in the feasible region DABC satisfies all the constraints
as given in {1) to (4), and since there are infinitely many peints, il is not evident how
we should go about finding a point that gives 4 maximum value of the objective function
Z = 250x + 75y. To handle this situation, we use the following theorems which are
fundamental in solving linear programuming problems. The proofs of these thearems
are beyond the scope of the book,

Theorem 1 Let R be the feasible region (convex polygon) for a linear programming
problem and let Z = ax + by be (he objective [unction. When Z has an optimal value
{maximum or minimum), where the variables x and y are subject to constraints described
by linear inequalities, this optimal value must occur at a corner point* (vertex) of the
feasible region.

Theorem I Let R be the feasible region for a linear programming problem, and let
Z = ax + by be the objective function. If R is bounded**, then the objective function
Z haz both a maximum and & minimum value on R and each of these occurs at a
corner point (vertex) of R.

Remark If R is unbounded, then a maximun or a minimurm value of the objective
function may not exist. However, if it exists, it must occur at a corner point of R.
(By Theorem 1).

In the above example, the comer points (vertices) of the bounded (feasible) region
are: 0, A, B and C and it 15 easy to find their coordinates as (0, 0), (20, 00, (10, 50) and
(0, 60) respectively. Let us now compute the values of Z at these points.

We have

Vertex of the Corresponding value
Feasible Region of Z (in E=)
0 (0,0) 0
C (0,60} 4500 :
B(10.50) 6250 &— | Maximum
A(20,0) 5000

* A commers point of a feasible region i3 4. point in the mgion which is the intersection of bwo boundany lines.

** A feasibiaregion of a system of linear incgnalities 15 said tobe bonnded if it can be enclozed within a
ciecle. Otherwige, it is called unbounded. Unbounded means that the feasible region does extend
indefinitely in any direction,
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We observe that the maximuom profit to the dealer results from the mvestment
strategy (10, 50), i.e. buying 10 tables and 50 chairs.

This method of solving linear programming problem is referred as Corner Point
Method. The method comprises of the following steps:

l. Find the feasible region of the linear programming problem and determine its
comer points (vertices) either by inspection or by solving the two equations of
the lines intersecting at that point.

2. Evaluate the objective function Z = ax + by at each corer point. Let M and m,
respectively denote the largest and smallest values of these points.

3. (i) When the feasible region is bounded, M and m are the maximum and
minimum values of 2Z.

(ii) In case, the feasible region is unbounded, we have:
4, (a) M is the maximum value ol 2, il the open hall plune determined by

ax + by > M has no point in common with the Teasible region. Otherwise, 2
has no maximum valoe.

(b) Similarly. mis the minimurm value of Z, if the open hali plane determined by
ax + by < m has no point in common with the feasible region. Otherwise. Z
has no minimum value.
We will now illustrate these steps of Comer Point Method by considering some
examples:

Example | Solve the following linear programaming problem graphically:

Maximise Z = 4x + ¥ (1)
subject to the constrainis:

T+y= 50 e (8)

Ix+ve N ool )

rz0,y= 0 e £

Solution The shaded region in Fig 12.2 i3 the feasible region determined by the system
of constraints (2) to (4). We observe that the feasible region OABC is bounded. So,
we now use Comer Point Method to determine the maximum value of Z,

The coordinates of the comer points O, A, B and C are (0, 0}, (30, 0}, (20, 30) and
(0, 30) respectively. Now we evaloale Z al each comer point.
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X Corner Point | Cormresponding value
of Z
(0,0) 0
(30,0) 120 €&
(20, 30 110
(0, 50} 50

(50,)

Fig 12,2

Hence, maximum value of Zis 120 at the point (30, 0).

Example 2 Solve the following linear programming problem graphically:

Miniraise 2 = 200 5 + 500 »
subject 1o the constraints:
r+2y =10
Jr+d4y <M
rz0yz0

Maximum

- (1)

. (2)
T
L (4)

Solution The gshaded region in Fig 12.3 is the feasible region ABC determined by the
system of constraints (2) to (4), which is bounded. The coordinates of corner points

b Corner Point | Corresponding value
of Z
(0, 5) 2500
» (4,3) 2300 €— |Mmnimum

Al (0,6) 3000
a4
2
1 4
X'i—"*n

Y Jc+dy =24
Fig 12.3

x+2y =10
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A.B and C are (0,5), (4.3) and (0,6) respectively. Now we evaluate Z = 200x + 500y
at these points.

Hence, minimum value of Z s 2300 attained at the point (4, 3)

Example 3 Solve the following problem graphically:

Minimise and Maximise Z = 3x + 3y o B b
subject to the constraints: x+ 3w =60 - (2)
X+ ¥ =10 - (3)

XSy - (4)

xz0yvz0 - (3)

Solation First of all, let us graph the feasible region of the system of linear inequalities
(2) to (5). The feasible region ABCD is shown in the Fig 12.4. Note that the region is
bounded. The coordinates of the comer points A, B, Cand D are (0, 10}, (5, 5). (15,15}

and (0. 20) respectively.

Corner Corresponding value of
% Point Z=3x+9
A (0. 10) 90
Bi5 5 60 <€— |Mnimum
C(15,15) 180 }<_ M
D (0, 20 180 fMuin'zTJe
optima
e 3 (60,0) sofutions)

s

35 50 ;
x+ 3P =060

x+y=10

Fig 12.4

We now find the minimum and maximum value of Z. From the table. we find that
the minimum value of Z is 60 ai the poinl B (5, 5) of the feasible region.

The maximum value of Z on the feasible region occurs at the two cormer points
C (15, 15) and D (0, 20) and 1t is 180 in each case.

Remark Observe that in the above examgple, the probler has multiple optimal solutions
at the corner points C and D, i.e. the both points produce same maximum value 180. In
such cases, you can see that every point on the line segment CD joining the two comer
points C and D also give the same maximum value. Same is also true in the case if the
two points produce same minimoum value,
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Example 4 Determaine graphically the minimim value of the objective function

Z=—50x+ 20y e (1)
subject to the constraints:

2x-y==5 z:42)

Jx+y23 v (3

Ay —3p=12 w (d)

xz0,y20 i )

Solution First of all, let us graph the feasible region of the system of inequalities (2) to
(5). The feasible region (shaded) is shown in the Fig 12.5. Observe that the feasible
region 13 nnboonded.

We now evaluate £ at the comer points,

Comer Point | Z = — 50x + 20y
) (0,3) 100
N (0,3) 60
(1.0) -50

(6,0 300 €— |smallest

1'? 5910
¥ (6,0)

Fig 12.5
From this table, we find that — 300 is the smallest value of Z at the corner point
(6, {0). Can we say that minimum value of Z 15 — 3007 Note that if the region would
have been bounded, this smallest value of Z is the minimum value of Z (Theorem 2).

But here we see that the feasible region is unboanded. Therefore, — 300 may or may
not be the mimimum value of Z. To decide this izsue, we graph the inequality

— 50w + 20y < — 300 (see Step 3(ii) of corner Point Method.)
ie., —Sx+2y<-30
and checl whether (he resulting open half plane has points in common with feasible

region or nol. I it has common points, then ~300 will not be the minirmum value of Z.
Otherwise, =300 will be the minimum value of Z,
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As shown in the Fig 12.5, it has commen points. Therefore, Z = -50 x + 20 ¥
has nominimum value subject to the given consiraints,

In the above example, can you say whether z = — 50 x + 20 ¥ has the maximurm
value 100 at (0,57 For this, check whether the graph of — 50 x + 20 y > 100 has points
in commeon with the feasible region. (Why?)

Example 5 Minimise Z = 3x + 2y

subject to the constraints:

x+y=8 v 01}
Sy 4+5p=15 o £2)
£20,y=0 v (3)

Solution Let us graph the inequalities { 1) to (3) (Fig 12.6). 1s there any feasible region”
Why is so?

From Fig 12.6, you c¢an see that
there is no point satisfying all the
constraints simultangonsly. Thus, the
problem is having no feasible region and
hence no feasible solution.

Remarks From the examples which we
have discussed so [ar. we notice some
general features of lincar programming

problers:

(i) The feasible region is always a / (5.0)
CONYEX region.

(i The maximum (or minimum) Fig 12.6

solution of the objective function occurs at the vertex (corner) of the feasible
region. If two comer points produce the same maximum (or minimum) value
of the objective function. then every point on the line segment joining these
points will also give the same maxirum (or minimum) value.

| EXERCISE 12.1|

Solve the following Linear Programming Problems graphically:
1. Maximise Z = 3x+ 4y
subject to the constraints : x +y<4,x = 0,y 20,
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Minimise Z=—-3x+4 ¥

subjecttox +2y =8, 3x+2v< 12, x = 0,»20.
Maximise Z = 5x + 3y

subjectto 3x+ 5y <15, 5x+2y<10,x 20,y 20,
Minimise Z = 3x + 5y

suchthatx+ 3y 23, x+y =2, x, y =0

Maximise Z = 3x + 2y

subjectto x + 2y =10, 3x +y <15, 5, v 20
Minimise £ = x + 2y

subjectto Zx+y =23, x4+ 2y =6, x, y=10.

show that the minimum of 2 occurs al more than two points,

7

L.

. Minimise and Maximise Z =5y + 10y

subjecttox+2y <120, x+y 2060, x - 2y20,x. v 20,
Minimise and Maximige Z = x + 2y

subjecttox + 2y = 100, 2x - y= 0, 2x + y = 200; x, y 2 0.
Maximise Z = — x + 2y, subject to the constraints:

2l x+y2Sx+y26,y210.

Maximise Z=x+ y. subjecttor —v<-l,—x+y= 0, x,¥ 20,

Summary

A linear programming problem s one that is congerned with finding the optimal
value (maximum or minimum) of a linear function of several variables (called
objective function) subject to the conditions that the variables are
non-negative and satisfy a set of linear inegualities (called linear constraints).
Variables are sometimes called decision variables and are non-negative.

Historical Note

In the World War II, when the war operations had to be planned to economise
expenditure, maximise damaye W the enemy, linear programming problems
came 1o the forefront.

The first problem in linear programming was formulated in 1941 by the Russian
mathematician, L, Kanlorovich and the American economist, E L. Hitchcock,
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both of whom worked at it independently of each other. This was the well
known transportation problem. In 1945, an English economist, G.Stigler,
described yet another linear programming problem — that of determining an
optimal diei.

In 1947, the American economist, G B. Dantzig suggested an efficient method
known as the simplex method which is an iterative procedure to solve any
linear programming problem in a finite number of steps.

L. Katorovich and American mathematical economist. T. C. Koopmans were
awarded (he nobel prize in the year 1975 in economics [or their pioneermg
work in lingar programming. With the advent of computers and the necessary
softwares, it has become possible to apply linear programming model (o
inereasingly complex problems in many areas.

_é_
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(PROBABILITY )

ol The theory of probabilities is simply the Scieace of logic
guantitatively treated. — C.S. PEIRCE +»

13.1 Introduction

In earlier Classes, we have studied the probability as a
measure of uncertainty of events in a random experiment.
We discossed the axiomatic approach formulated by
Rusgzian Mathematician, AN. Kolmogoroy (1903-1987)
and treated probability as a function of outcomes of the
experiment. We have also estublished equivalence between
the axiomatic theory and the classical theory of probability
in case of equally likely outcomes. On the basis of this
relationship, we oblained probabilities of evenls associated
with discrete sample spaces. We have also studied the
additiom rule of probability. In this chapter, we shall discuss
the important concept of conditional probahility of an event
given that another event has occurred, which will be helpfil Yy
in understanding the Bayes' theorem, multplication rule of Pierre de Fermat
probability and independence of events. We shall also learn (1601-1665)

an important concept of random varable and its probability

distribution and also the mean and variance of a probability distribution, In the Tast
section of the chapter, we shall study an important discrete probability distribution
called Binomial distribution, Throughout this chapter, we shall take up the experiments
having equally likely outcomes, unless stated otherwise.

13.2 Conditional Probabitity
Uptill now in probability, we have discussed the methods of finding the probability of
events. If we have two events from the same sample space. does the information
dbout the occurrence of one of the events affect the probability of the other event? Let
us Gy to answer this question by taking up a random experiment in which the outcomes
are equally likely to occur,

Conzider the experiment of lossing three fair coins. The sample space of the
experiroent is

s = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
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1
Since the coins are fair. we can assign the probability 3 to each sample point. Let

E be the event “at least two heads appear” and F be the event “first coin shows tail".
Then
E = {HHH, HHT, HTH,; THH}

il F = {THH, THT, TTH, TTT}
Therefore  P(E) = P ({HHH}) + P ({HHT}) + P ({HTH}) + P ({THH})
S L% I T
=3'8'8 s 2z ey D
arind P(F) = P ([THH}) + P ({THT}]) + P ({TTH}) + P ({TTT})
I 1111
= =
38 8 8 2
Also E~F={THH}

1
with PE mn F) =P({THH}) = 3

Now, suppose we are given that the first coin shows tail, i.e. F occurs, then what is
the probability of occurrence of E7 With the information of oceurrence of F, we are
sure that the cases in which first coin does not result into a tail should not be considered
while finding the probability of E. This information reduces our sample space from the
sl S to its subset F for the event E, In other words, the additional information really
amounts to telling us that the situation may be considered as being that of a new
random experiment for which the saumple space consists of all those outcomes only
which are favourable to the occorrence of the event F

Now, the sample point of F which is favourable to event E 1s THH.

I
Thus, Probability of E considering F as the sample space = i

1
or Probability of E given that the event F has occurred = 1

This probability of the event E is called the conditional probability of E given
titar F has already occurred, and is denoted by P (EIF).

1
Thus MEIF) = a

Note that the elements of F which favour the event E are the comimon elements of
E and F, i.e. the sample points of EM E
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Thus, we can also write the conditional probability of E given that F has occurred as

Numberof elementary eventsfavourableto EmF
Mumber of elementary events which are favourable to F

PEIF)

n{EmF)
n(F)
Dividing the numerator and the denominator by total number of elementary events
of the sample space. we see that P(EIF) can also be written as

mEAF)
n(S) P(ENF)
PEIF) = n(F) =T PE . (1)
s

Note that (1) is valid only when P(F) 0 i.e., F# ¢ (WhyT)

Thus, we can define the conditional probability as follows

Definition 1 If E and F are two events associaled with the same sample space of o
random experiment, the conditional probability of the event E given that F has occurred,
Le. P (EIF) is given by

P(EIF) = % provided P(F) = 0

13.2.1 Properties of conditional probability
Let E and F be events of a sample space S of an experiment, then we have
Property 1| P(3|F) = P(FIF) = |

We know that
P{SnF) P(F)
P(SIF) = = =]
CR="pm @
B(FmF) P(F)
? TO="p® P®
Thus P(SIF) = P(FIF) = |

Property 2 Jf A and B are any mwo events of a sample space § and F is an event
of 8 such that PIF) # 0, then

Pi(A U B)IF) = P(AIF) + P(BIF) — P(tA m B)IF)
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In pariicular, f A and B are disjoinr evenls, then

P{{AUB)IF) = P{AIF) + P(BIF)
We have

PllAWB)NF]
P(F)
_ P[{AnF) u (BnF)]
P(F)
(by distributive law of union of sels over intersection)
~ PIANF+PBNF)-P(AnB NF)

Pi(AUB)F) =

P(F)
_ P(AnF) P(BnF) PIANB) nT]
- PF)  PF P(F)

= P(AIF) + P(BIF) — P({A nB)IF)
When A and B are disjoint events, then
P({{A nB)F) =0
= P({A w B)IF) = P(AIF) + P(BIF)
Property 3 P(E'IF} = 1 — P(EIF)
From Property 1, we know that P(SIF) =1

= PIEwEIF=1 gince S=EuE
= PEF +P(E'F =1 since E and E’ are disjoint events
Thus, P(E'IF) =1 - P(EIF)

Let us now take up some examples.

7 9 4
Example | I[[ P{A) = 3 PiB)= 3 and P(An Bi= 3 evaluale P(AIR).

P(ANB)
P(B)

Solutien We have P(AIB)=

= el |-
W s

Example 2 A family has two children. What is the probability that both the children are
boys given that at least one of them is a boy ?
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Solution Let b stand for boy and g for girl. The sample space of the experiment is
S={(b B), (g b}, (b, £), (2. 8)}

Let E and F denote the following events :

E : *both the children are boys’

F : “at least one of the child is a boy’

Then E={(bb)} and F = {(b.b), (g.b), (b.£)}
Now EnF={bbl}
= 8 e |
Thus P(Fi = 1 and P (EnF )= 3
1
_PENE _4 _1
Therefore P(EIF) = P(F) 373
4

Example 3 Ten cards numbered 1 to 10 are placed in 3 box, mixed up thoroughly and
then one card is drawn randomly, Tf it is known that the number on the drawn card is
maore than 3. what is the probability that itis an even number?

Solution Let A be the event ‘the number on the card drawn is even® and B be the
event ‘the nurmber on the card drawn is greater than 3°. We have to find PLAIB).

Now, the sample space of the experimentis S={1,2.3,4,5,6,7. 8,9, 10}

Then A=1{2.4,6.8 10}, B=1{4,5.6.7, 8.9, 10]
and A B=1{46510}
3 7 4
=—,P(Bl=—and PIANB)=—
Also PiA) 0 (B) mﬂﬂ { } 0

Then FIAIB) = ———=

4
P(AnB) 0
PB) 7

=
7
10

Example 4 In a school, there are 1000 students, out of which 430 are girls. It is known
that out of 430, 10% of the girls study in class X11. What is the probability that a student
chosen randomly studies in Class X1 given that the chosen student 1% a girl?

Solution Let E denote the event that a student chosen randomly studies in Class XI1
and F be the event that the randomly chosen student is a girl. We have to find P (EIF).
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430 43
N = ——=043 and P(En F=—=004 i
oW P(F) Taoo and PLEn P i 0.043 (Why?
P(EmRF) 0043
= = =01
Then P(EIF) PR 013

Example 5 A die is thrown three times. Events A and B are defined as below:
A s 4 on the third throw
B : 6 on the first and 5 on the second throw
Find the probability of A given that B has already occurred.

Solution The sample space has 216 ontcomes,

114 (124 ..(1L64) (2,14) (2.24) .. (264)
Now A=403.14) 324 ..(3.64) 4,14) (4,24) ..(4,64)
(3.1.4) (3.24) .. (5,64) (6,14) (6,2,4) ..(6,6.4)

B = {(6.5,1).(6,5,2),(6,5,3), (6,5.4),16,3.3),(6,3.6}}
and AN B={(654].

6 1
Now P{B}zﬁlzandP{Ar'\E,lz 216

I
P(ANB) 216 _1
PB) 6
216

Then P{AIB) =

o

Example 6 A die 18 thrown twice and the sum of the numbers appearing is observed
to be 6. What 1s the conditional probability that the nomber 4 has appeared at least
once?

Solution Let E be the event that ‘number 4 appears at least once’ and F be the event
that ‘the sum of the numbers appearing is 6",

Then. E = {(4,1),(42), (4,3), (4,4), (4,5), (4,6}, (1,4), (2,4), (3,4), (5.4), 16,4) }
and F={(1,3).(2:4),(3.3), (4.2), (5.1)}

11 ; 3
We have P(E) = '%ami P(F)= 16

Also EnF = {{2.4), (4,2)}]
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2
Therefore PENF) = 26
Hence. the required probability
2
_PEAD _36_2
P(EIF) = P 5 %
36

For the conditional probability discussed above. we have considered the elemen-
tary events of the experiment to be equally likely and the corresponding definition of
the probability of an event was nsed. However, the same definition can also be used in
the general case where the elementary events of the sample space are not equally
likely, the probabilities PtEF) and P(F) being calculated accordingly. Let us take up
the following example.

Example 7 Consider the experiment of tossing a coin, If the coin shows head, toss it
again but if it shows tail, then throw a die. Find the
conditional probability of the event that *the die shows

Head (I) <
a number greater than 47 given that “there is at least < (H,T)

one tail".
(L.1)
Solution The outcomes of the experiment can be (T.2)
represented in following diagrammatic manner called Tail (T) gﬂ;
i : 3 b
the “tree diagram’, (T.5)
The sample space of the experiment may be (T.6)

described as
§={(H.H), (H.T), (T, 1), (T,2), (T.3). (T.4), (T.5). (T.6) }

where (H, H} denotes that both the losses result into

head and (T. ) denote the first toss resualf into a tail and Head (H) §

the number 7 appeared on the die fori = 1,2,3,4,5,6, e (

Thus, the probabilities assigned to the 8 elementary

evenlts Ve
[H.- H}s [Hr T'}s rI‘s I}i le 2:'} {.T! 3.:' {T: 4}! t'r: 5}! (T! ﬁ} Tﬂ.i] m
111 1 1 111 ; TR

e 12121212 12 respectively which is

clear from the Fig 13.2. Fig 13.2
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Let F be the event that ‘there is at least one tail” and E be the event ‘the die shows
a number greater than 4°. Then

F={(HT) (T.1) (T.2). (T3 (T.4). (T5L(T.6)}
E = {(T.5). (T.6)} and E~F = {(T.5), (T.6)}
Now P(F) = P{(H.T)}) + P({(T.1)}) + P ({tT.2)}) + P ({(T.3)})
+ P{(TAHD +P{(T.5H + PH(T.6)}

= =ttt —F—+
412 12 1212 12 12 4

and PEENF) =P{(T5)P + P({(T.60}) =

P
Hence HEIF) =

EXERCISE 13.1

I. Given that E and F are events such that P{E) = 0.6. P(F) = 0.3 and
P(E m F) = 0.2, find P(EIF) and P(FIE)

2. Compute P(AIB), if P(B) = 0.5 and P (A ~B)=0.32

3. If P(A)=08, P(B)=0.5 and P(BlA) = 0.4, find

(i) P(ANB) (i) PLAIB) (i) PeA B
5 2
4. Evaluate P(A w B), if 2P(A) = PiR) = I and P(AIB) = 5
G 5 T
5. IIPAY= ﬁ JP(B)= ﬁ and PiA v B) =ﬁ’ find
i) PrAmB) (i) PLAIB) (i) PIBIA)

Determine P(EIF) in Exercises 6 to 9.
6. A coin is tossed three times, where
(i) E: head on third toss ,  F heads on [i1s) two 105585
(i) E - at least two heads ,  F:oat most two heads
(i) E:atmostowo tails ., F - at least one tail
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(1)
(i)
8.

11.

13.
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Two coins are tossed once, where
E : tail appears on one coln, F : one coin shows head
E: no tail appears, F: no head appears
A die is thrown (hree times,
E : 4 appears on the third toss, F: 6 and 5 appears respectively
on first two tosses
Mother, father and son line up at random for a family picture
E : son on one end, F : father in middie
A black and a red dice are rolled,
(a) Find the conditional probability of obtaining a sum greater than 9, given
(hat the black die resulted in a 5.
{h) Find the conditional probability of obtaining the sum 8, given that the red die
resulted in a number less than 4,

A fair die ig rolled. Considerevents E= {135}, F={23}and G={23.4.5}
Find

(iy P(EIF) and P(FIE} (iiy P(EIG) and P({GIE)

{iii) P{(E «w F)IG) and P((E m F)IG)

Assume that each born child is equally likely to be a boy or a girl. If a family has
two children, whal is the conditional probability that both are girls given that
(i) the youngest is a girl, (1) at least one is a girl?
An instructor has a question bank consisting of 300 easy True / False questions.
200 difficult True / False questions, 500 easy multiple choice questions and 400
difficult multiple choice questions. If a question is selected at random from the
question bank, what is the probability that it will be an easy question given that il
is a multiple choice question?
Given that the two numbers appearing on throwing two dice are different. Find
the probability of the event “the sum of numbers on the dice is 4°.
Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the
die again and if any other mumber comes, tss a coin. Find the conditional probability
of the event ‘the coin shows a tail’, given that *ai least one die shows a 3",

In cach of the Exercises 16 and 17 choose the correct answer:

16.

1
If P(A)= . P(B) =0, then P(AIB) is

|
(A) 0 (B) 2

(C) not defined (D} 1
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17. If A and B are events such that P{AIB) = P{BIA), then
(A) AcBbutA#B (B) A=B
) AnB=9¢ (D) P(A) = P(B)

13.3 Multiplication Theorem on Probability
Let E and F be two events associated with a sample space S, Clearly, the set En F
denotes the even| that both E and F have occurred, In other words, E rm F denotes the
simultaneous occurrence of the events E and F. The event E m Fis also written as EE
Very often we need to find the probability of the event EE For exumple, in the
experiment of drawing {wo cards one after the other, we may be interes{ed in finding
the probability of the event "a king and a queen’. The probability of event EF 15 obtained
by using the conditional probability as obtained below :
We know that the conditional probability of event E given that F has occurred is
denoted by P(EIF) and is given by

P(E NE
PIEIF) = l’ﬂ—;}},]"ﬂ:'hﬁﬂ

From this result, we can write

P{(E m F) =P(F} . P(EIF) e (1)
Alzo, we know that
. PEME)
= ———~ PE}£0
P(FIE) P(E) (E}
P(ENF
or P(FIE) = P(E) {since EmMF=F mE)

Thus, PE n F) = P(E). F(FIE} e [2)
Combining (1) and {2). we find that
P(E n F) = P(E) P(FIE)
= P(F) P(EIF) provided P(E) # 0 and P(F) = 0.
The above result 15 known as the multiplication rule of probabiliny,
Let us now take up an example.
Example § Anurn containg 10 black and 5 white balls. Two balls are drawn from the

urn one after the other without replacement. What is the probability that both drawn
balls are black?

Solution Let E and F denote respectively the events that first and second ball drawn
are black. We have to find P(E m F) or P(EF).
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10
Now P(E) = P (black ball in first draw) = 5

Also given that the first ball drawn is black, i.e., event E has occurred, now there
are 9 black balls and five white balls left in the urn. Therefore, the probability that the
second ball drawn is black, given that the ball in the first draw is black, is nothing but
the conditional probability of F given that E has occurred.

; 9
ie. P(FIE) = 7
By multiplication rule of probability, we have

P(E n F) =P(E) P(FIE)

1 _9 3
=== e
15 14 7
Multiplication rule of probability for more than two events If E. F and G are
three events of samiple space, we have
PiE m F m G} =PIE) P{FIE) PIGHE m F)) = P(E) P(FIE) P(GIEF)
Similarly, the multiplication rule of probability can be extended for four or
mare events.
The fellowing example illustrates the extension of mulliplication rule of probability
for three events.

Example 9 Three cards are drawn successively, without replacement from a pack of
52 well shuffled cards. What is the probability that first two cards are kings and the
third card drawn is an ace?

Solution Let K denote the event that the card drawn is king and A be the event that
the card drawn is an ace, Clearly, we have to find P (KKA)

4
Now PEK) = E

Also, P(KIK) is the probability of second king with the condilion that one king has
already been drawn. Now there are three kings in (52 — 1) = 5] cards.

3
Therefore P(KIK) = 31

Lastly, PLAIKK } is the probability of third drawn card to be an ace, with the conditon
that two kings have alréady been drawn, Now there are four aces in left 30 cards,
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4
Therefore PiAlKK) = 50

By multiplication law of probability, we have
PIKKA) =P(K) P(KIK) P{AIKK)
4.8 4 %
~ 52751750 5525
13.4 Independent Events

Consider the experiment of drawing a card from a deck of 52 playing cards, in which
the elementary events are assumed to be equally likely. If E and F denote the evenis
'the card drawn is a spade’ and "the card drawn is an ace' respectively. then

13 1 4
=—=—gnd PiIFj=—=—
ER=m ™ g
Also E and F is the event ' the card drawn is the ace of spades' so that
1
P{E nF) = 52
I
_PENFH_s53 1
Hence P(EIF) = P 17
13
Since P(E) = E = P (EIF). we can say that the occurrence of event F has not
affected the probability of occorrence of the event E.
We also have
|
 PEMNE s |
= e T P
P(FIE) P(E) IRE (F)
4
|
Again, P(F) = 7= = P(FIE) shows thal occomence of evenl E has not affected

=15
the probability of occurrence of the event F.

Thus, E and F are two events such thal the probability of occurrence of one of
them is not affected by occurrence of the other.

Such events are called independent ¢vents.
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Definition 2 Two events E and F are said to be independent, if

and

P(FIE) = P (F) provided P (E) # 0
P(EIF) =P (E) provided P (F) =0

Thus, in this definition we need to have P (E) # 0 and P(Fy=0
Now, by the multiplication rule of probability, we have

P(ENF) =PE) . P (FE) e (D)

If E und F are independent, then (1) becomes

P(E nF)=PE) . P(F) v {2

Thus. using (2), the independence of two events is also defined as follows:

Definifion 3 Let E and F be two events associated with the same random experiment,
them E and F are said to be independent if

P(EnF) =P(E).P(F)

Remarks

(i

(1)

(1)

(iv)

Two events E and F are said to be dependent if they are not independent. i.e. if
FEnFi12P(E .P(F)

Sometimes there is a confusion between independent events and mumally
exclusive events. Term “independent” is defined in terms of “probability of events’
whereas muinally exclusive is defined in term of events (subset of sample space).
Moreover, mutually esclusive evenls never have an outcome common, but
independent events. may have common outcome. Clearly, ‘independent’ and
‘mutually exclusive” do not have the same meaning,
In other words, two independent events having nonzero probabilities of occurrence
can not be mutually exclusive, and conversely, Le. two mutually exclusive events
having nonzero probabilities of occurrence can not be independent,
Two experiments are said to be independent if for every pair of events E and F,
where E iz associated with the first experiment and Fwith the second experiment,
the probability of the simultaneons occurrence of the events E and F when the
two experiments are performed is the product of P(E) and P(F) calculated
separately on the basis of two experimenis, ie,. P(EnF)=P(E). P(T)
Three events A, B and C are said to be mutually independent. if

PAnBY=P(A) P(B)

FiA m C)=PiA) PIC)

P(B mnC)=P(B) PLC)
and P(A n B n C)=P(A) P(B) P(C)
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If at least onge of the above is not true for three given events, we say that the
events are not independent.

Example 10 A die is thrown. I E is the event ‘the number appearing is a multiple of
3' and F be the event ‘the number appearing is even’ then find whether E and F are
independent ?

Solution We know that the sample space is S ={1. 2, 3, 4. 5. 6}

Now E={36},F={2.4,6}and EnF={6}

T P(E) = 2_1 P{Fr—g-—l and P(Em Fj~l
1em (Ey= 6 3 6 2 5

Clearly P(E nF)=ME). P (F)

Hence E and F are independent events.

Example 11 An unbiased die is thrown twice. Let the event A be ‘odd number on the
first throw” and B the event *odd number on the second throw’. Check the independence
of the events A and B.

Solution If all the 36 elementary events of the experiment are considered to be equally
likely, we have

18 1 12 1
PIA) = === and P(B)=——=—

36 2 6 2
Alzo P(A m B) = P {odd number on both throws)
.1
T 36 4
N F({A) P(B) = lx“!‘_l
o VR = =0
Clearly P(A nB)=P(A) x F(B)
Thus, A and B arc independent events

Example 12 Three coins are tossed simultaneously, Consider the event E *three heads
or three tails’, F ‘at least two heads’ and G ‘at most two heads’, Of the pairs (E.F).
(E.G) and (F,G), which are independent? which are dependent?
Solution The sample space of the experiment is given by

S ={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Clearly E = {HHH. TTT}. F= {HHH, HHT, HTH, THH}
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and G = {HHT, HTH. THH, HTT. THT, TTH, TTT}
Also EnF={HHH), E n G= {TIT}, F n G= {HHT, HTH, THH}
2 1 4 1 e |
e, PEEySTs PHGYES
Therefore P(E) ! ( 5 2 ( 3
1 i 3
and P(ERF) = -ﬁ:,PlEﬁGJ:g, PtFr“LG]=§
| | | O
= —X==—, PE) P(G)= > X ==
Also P(E) . PiF) 4x2 2 (E)-PiG) 4><E )
P U0 B0
an {F}I,P{I}—E E_lﬁ
Thus P{E n F) = P(E) . P(F)
P(E m G) = P(E) . P(G)
and PFA G #P(F.PG)

Hence, the events (E and F) are independent, and the events (E and G) and
(F and G) are dependent.

Example 13 Prove that if E and F are independent events, then so are the events
E and F.

Solution Since E and F are independent. we have
P(E m F) =P(E) . P(F) =a1)
From the venn diagram in Fig 133, it is clear

thatE " Fand ENF" are mutually exclusive events | g (E'NE’) 5
and also E=(EnF)u(EnF’). E)

Therefore PIE)=PEEnF)+PEANF)
or P(E n F) =P(E) - P(E n F}
=PE) - P(E) . P(F)
(by (1)) Fig 13.3
=E) (1-P(F}))
= E). FF)
Hence, E and F" are independent

(EMF) (EAF) (E'nF)
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In a similar manner, it can be shown that if the events E and F are
independent, then

(a) E’andF are independent,

{b) E’and F’ are independent

Example 14 I A and B are (wo independent events, then the probability of occomrence

of at least one of A and B is given by 1- P(A") P(B')

Solution We have

Piat least one of A and B) = P(A w B)

=P{A) + P(B) - P(A n B)
= P(A) + P(B) — P(A) P(B)
=P(A) + P(B) [1-P(A)]
=PA) + P(B). P(A")
=1- P(A") + P(B) P(A"}
= = P(A") [1-P(B)]
= |- P(AD P(B"

|EXERCISE 13.2]

3 |
1. I P(A) =§ and P (B) -——5, find P (A m B)if A and B are independent events.

[¥]

Two cards are drawn at random and without replacement from a pack of 52
playing cards. Find the probability that both the cards are black.
A box of oranges is inspected by examining three randomly selected oranges
drawn without replacement. If all the three oranges are good, the box is approved
for sale. otherwise, it is rejected. Find the probability that a box containing 15
oranges out of which 12 are good and 3 are bad ones will be approved [or sale.
4. A fair coin and an unbiased die are tossed. Let A be the event “head appears on
the coin” and B be the event ‘3 on the die’. Check whether A and B are
independent events or not.
5. Adiemarked 1. 2. 3 in red and 4, 5, § in green is tossed. Let A be the event,
‘the number 15 even,” and B be the event, ‘the number is red’, Are A and B
independent?

e

3 3 1
fi. Let E and F be avents with P(E) :E' PFy=""mdP(EnF = <. Are

10 5
E and F independent?
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1 3
Given that the events A and B are such that P{A) = 2" P(AUB)= 3 and

P(B) =p. Find p if they are (i) mutually exclusive (ii) independent.
Let A and B be independent events with P(A) = 0.3 and P(B) = 0.4, Find
i) PtA mB) i) Praw B)
(i) PLAIB) {iv) P{BIA)

1 | |
If & and B are two evenls such that P(A) = 3 Pi(B)= 5 and PIANB) =3
find P (not A and not B).

=

| 7
Events A and B are such that P(A) = 7 P(B) = 12 and PlnotAornol B =
State whether A and B are independent 7

Given two imdependent events A and B such that P(A) = 0.3, P(B) =0.6.
Find

(i) P(A and B) (i} P(A and ot B)
fiii) P{A or B) itv) P(oeither A nor B)
A die is tossed thoce. Find the probability of getting an odd number at least once.

Two balls are drawn at random with replacement from a box contaiming 10 black
and & red balls. Find the probability that

1) both balls are red.
(ii) first ball is black and second is red.
{iii) one of them is black and other i5 red.

I

l
Probability of solving specific problem independently by A and B are 2 and 3

respectively. If both try to solve the problem independently, find the probability
that

(i) the problemis solved (i} exactly one of them solves the problem,

One card is drawn at random from a well shuffled deck of 52 cards. In which of
the following cases are the events E and F independent ?

(i) E: ‘the card drawn is a spade’
F ¢ *the card drawn is an ace’
(ii) E: 'the card drawn is black’
F : 'the card drawn Is a king'
(iii)y E: ‘the card drawn is a king or queen’
F : *the card drawn is a queen or jack’.
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16. In a hostel, 60% of the students read Hindi newspaper. 40% read English
newspaper and 20% read both Hindi and English newspapers. A student is
selected at random.

{a) Find the probability that she reads neither Hindi nor English newspapers.

(b) If she reads Hindi newspaper, find the probability that she reads English
NEwspaper.

{(c) If she reads English newspaper, find the probahbility that she reads Hindi
Newspaper.

Choose the correct answer in Exercises 17 and 18,
17. The probability of obtaining an even prime number on each die, when a pair of
dice isrolled is
| _ 1 |
(A) 0 B) 3 © 12 (D) 35
18. Twoevents A and B will be independent, if
{A) Aand B are mutually exclusive
(B) P(A'B") = [1 = P(A)] |1 — F(B)]
(C) P(A) = P(B)
(D) PlAY+ P(B) =1
13.5 Baves' Theorem

Consider that there are two bags I and II. Bag 1 contains 2 white and 3 red balls and
Bag II contains 4 white and 5 red balls. One ball iz drawn at random from one of the

L
bags. We can find the probability of selecting any of the bags (i.e. 2 ) or probability of

drawing a ball of a particular colour (say white) from a particular bag (say Bag I). In
other words, we can find the probability that the ball drawn is of a particular colour, if
we are given the bag from which the ball is drawn. But, can we find the probability that
the ball drawn is from a particular bag (say Bag L), il the colour of the ball drawn is
given? Here, we have to find the reverse probability of Bag 11 to be selected when an
event oceurred after it is known., Famous mathematician, John Bayes' solved the problem
of linding reverse probability by using conditional probability. The formula developed
by him is known as ‘Bayes theorem’ which was published posthumously in 1763.
Belore stating and proving the Bayes' theorem, let us first take up a definition and
some preliminary results.

13.5.1 Partition of a sample space
Asetofeventis E_E, ... E iszaid to represent a partition of the sample space S if
(@) ENE=¢,i#jij=123%..n
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(b B, wE w..wE=3 and
(¢c) P(E)>0foralli=1,2,.. n

In other words, the events E, E,, .... E_ represent a partition of the sample space
S if they are pairwise disjoint, exhaustive and have nonzero probabilities,

As an example, we see that any nonempty event E and its complement E' form a
partition of the sample space S since they satisfy ENE' =dand E LW E =8,

From the Venn diagram in Fig 13.3. one can easily observe that if E and F are any
two events associated with a sample space S, then the set {ENF.ENEE NnEE nF}
is 4 partition of the sample space 5. [L may be mentionad that the partilion of a sample
space is not unique. There can be several partitions of the same sample space.

We shall now prove a theorem known as Theorem of total probability.

13.5.2 Theorem of total probability

Let {E_,E,,..E | bea partition of the sample space S, and suppose that each of the
events E, E,,.... E, has nonzero probability of occurrence, Let A be any event associated
with 5. then

P(A) = P(E)) P(AIE)) + P(E,) P(AIE,) + ... + P(E) P(AIE)

[~=

P(E)P(AIE,)

=
Proof GiventhatE, E,,....E isa partition of the sample space S (Fig 13.4). Therefore,
S=BuVEu..VE g (D)
and ENE=0i#),5j=1,2..n
Now, we know that for any event A,
A=AnS
=An({(E VE W..UE)
=(ANE)UANE)U. . UANE) Fig 13.4

Also ANE, and AN E, are respectively the subsets of E, and E,. We know that
E, and E are disjoint, for i # j, therefore, A N E and A N E, are also digjoint for all
£ i O il Bl A
Thus, PA)=P[(ANE)UlAnER . ..U{ANE)]
=PANE}+PANE)+..+P(ANE)
Now, by multiplication rule of probability, we have
PIANE)=PE)PAIE) as P(E)#0¥vi=12,..n
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Therefore, P (A)=P (E,) P (AIE)) + P (E,) P (AIE,) + ... + P (E)P(AIE,)

or P(A) = > P(E )P(AIE )

Ji=l
Example 15 A person has undertaken a construction job. The probabilities are 0.65
that there will be strike, 0.80 that the construction job will be completed on time if there
is no strike, and 0.32 that the construction job will be completed on time if there is a
strike. Determine the probability that the construction job will be completed on time.

Solution Let Abe the event that the construction job will be completed on time, and B
be the event that there will be a strike. We have to find P{A).
We have

P(B) = 0.63, P(no strike) = P(B") = 1 —P(B) = 1 — 0.65 = 0.35
P(AIB) = 0.32, P(AIB) = 0.80

Since events B and B form a pastition of the sample space S, therefore, by theorem
on total probability, we have

P(A) = P{B) P(AIR) + P(B") P(AIR")
=065x0324035x0.8
=0.208+0.28=0.488
Thus, the probability that the construction job will be completed in time is 0.488.
We shall now state and prove the Bayes' theorem.

Bayes’ Theorem IfE | E, ..... E_are n non empty events which constitute a partition
of sample space §, i.e. E . E, ..., E, are pairwise disjoint and E, W E, . W E =5 und
Ais any event of nonzero probability, then

P(E,) P(AIE;)

MEJA) = foranyi=1,2,3,...,n

> P(E;)P(AIE;)
el

Prool By formula of conditional probability, we know that
PIANE,)
P(A)

P(E IP{AIE
= —’;{i)—f—i {by multiplication rule of probability)

P(E,) P(AIE,)

P(EJA)

{by the result of theorem of total probability)

_ElPl:E_r )P(AIE,)
||_
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Remark The following terminology is generally used when Bayes' theorem is applied,

The eventis E. E,. ..., E are called hypotheses.

The probability P(E ) is called the priori probability of the hypothesis E.

The conditional probability PIE A} is called a posteriori probability of the
hypothesis E .

Bayes' theorem is also called the formula for the probability of "causes”. Since the
E's are a partition of the sample space S, one and only one of the events E_occurs (i.e.
one of the events E, must occur and only one can occur). Hence, the above formula
gives us the probability of a particular E, (i.¢. a "Cause”). given that the event A has
occurred.

The Baves' theorem has its applications in variety of situalions, few of which are
illustrated in following examples.
Example 16 Bag I contains 3 red and 4 black balls while another Bag 1T contains 3 red
and 6 black balls. One ball is drawn at random from one of the bags and it is found to
be red. Find the probability that it was drawn from Bag 1L

Solution Let E, be the event of choosing the bag I, E, the event of choosing the bag I1
and A be the event of drawing a red ball.

|

Then P(E) =P(E,) = 3
; 3
Also P(AIE,) = Pldrawing a red ball from Bag I = 7
3
and P{AIE,) = P(drawing a red ball from Bag IT) = 11

Now, the probability of drawing a ball from Bag 1, being given that it is red,
is P(E,JA)
By using Bayes' theorem, we have

| ]
BE L P(E,) P(AIE, ) S T -
#Y = BE, )\ P(AIE, )+ P(E, ) P(AE,) 1335 68
27T 21

Example 17 Given three identical boxes 1, IT and II1, each containing two coins. In
box 1, both coins are gold coins, in box 11, both are silver caing and in the box [IL there
is one gold and one silver coin, A person chooses a box at random and takes out a coin.
If the coin is of gold, what is the probability that the other coin in the box is also of gold?
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Solution LetE,, E; and E, be the events that boxes I, L and 1Tl are chosen, respectively.

Then PE) =PE,)) =PE) =

a2

Also, let A be the event that ‘the coin dravim is of gold’

Then P(AIE,)) = P(a gold coin from bag I) = !

L
3=
P(AIE,)) = P{a gold coin from bag 11} =0

|
P(AIE,) = Pla gold coin from bag I1I) = 5

Now, the probability that the other coin in the box is of gold
= the probability that gold coin is drawn from the box L.
= P(E |A)

By Bayes' theorem, we know that

P(E, ) P(ALE, )
P(E, ) P(AIE, )+ P(E; ) P(AIE; ) + P(E; ) P(AIE; )

P(E,lA)

Example 18 Suppose that the reliability of a HIV test is specified as follows:

Of people having IV, 90% of the test detect the disease but 109 go undetected. Of
people free of HIV, 99% of the test are judged HIV-ive but | % are diagnosed us
showing HIV+ive. From a laige population of which only 0.1% have HIV, one person
is selected at random, given the HIV test, and the pathologist reports him/her as
HIV+ive. What is the probability that the person actually has HIV?

Solution Let E denote the event that the person selected is actually having HIV and A
the evenlt that the person's HIV test is diagnosed as +ive. We need 1o find P(EIA).
Also E" denotes the event that the person selected is actually not having HIV.

Clearly, {E. E'} is a partition of the sample space of all people in the population.
We are given thal

0.1
= =—=(,001
PE) =0.1% (00
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P(E) = | - P(E)= 0999

P(AIE) = P(Person tested as HIV+ive given that he/she
18 actually having HIV)

90
= =——={).9
0% 100
and P{AIE") = P{(Person tested as HIV +ive given that he/she
iz actually not having HIWV)
I
=1%= 00> 0.0
Now, by Bayes' theorem
P(EIA) = P(E)P(AIE)
() = BE P(AIE)+ PE) P(AE")
0.001x0.9 20

= 0.001x0.9+0.999x0.01 1089
= (083 approx.

Thus, the probability that a person selected at random is actoally having HIV
given (hat he/she is tested HIV+ive is 0,083,

Examiple 19 In a factory which manufactures bolts, machines A, B and C manufaciure
respectively 23%, 35% and 40% of the bolts. OF their outpuis, 3, 4 and 2 pérceni arg
respectively defective bolts. A bolt is drawn at random from the product and is found
to be defective. What is the probability that it is manufactured by the machine B?

Solutien Let events B, B,, B, be the following :
B, : the bolt is manufactured by machine A
B, : the bolt is manufactured by machine B
B, : the boltis manufactured by machine C

Clearly, B . B,, B, are mutually exclusive and exhaustive events and hence, they
represent a partition of the sample space.

Let the event E be ‘the bolt is defective”.
The event E occurs with B | or with Bi or with B,. Given that,
P(B,) =25% =0.25, P (B,)=0.35 and P(B,) = 0.40
Again P(EIB,) = Probability that the bolt drawn is defective given that it is manu-
factured by machine A = 5% =0.05
Similady, P(EIB,) = 0.04, P(EB,) = 0.02,
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Hence, by Bayes” Theorem, we have
P(B,)P(EIB,)
P(B,)P(EIB)+P(B,)P(EIB,)+P(B ;) P(EIB,)

B (.35x0.04
T 0.25x0.05+0.35x0.04 +0.40%0.02

_ 00140 28
= 0.0345 A9

Example 20 A doctor is Lo visil a patient. From the past experience. it is known that

the probabilities that he will come by train, bus, scooter or by other means of transport
2

o' lIﬂ dj The probabilities that he will be late are l ; iﬂd;tlz'-

if he comes by train. bus and scooter respectively, but if he comes by other means of

transport, then he will not be late. When he arrives. he is late. What is the probability

that he comes by train?

Solution Let E be the event that the doctor visits the patient late and let T, T,, T,. T,
be the events that the doctor comes by train, bus, scooter, and other means of transport
respectively.

P(B,IE) =

are respechivelv

1 2
Then P(Tl = Sa P{'Tl)__ =Eﬂ-ﬂd PtTd']_g {givm}

|
P(EIT,) = Probability that the doctor arriving late comes by train = —

Y

| |
Similarty, P(EIT,) = 3 P(EIT,) = T and P(EIT,) = 0, since he is not late il he

comes by other means of tansport.
Therefore, by Bayes' Theorem, we have
P(T [E) = Probability that the doctor arriving lale comes by train

) P(T,)P(EIT,)

" P(T,)P(EIT,) +P(T, ) P(EIT, )+ P(T; ) PLEIT, 4+ P (T, )P (EIT, )
¢, S|

_ 1074 _ 3,01

- 8.1.10. 1 1 | - 40 18 2

102553 0 570

Hence, the required probability is % .
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Example 21 A man is known to speak truth 3 out of 4 times. He throws a die and
reports that it is a six. Find the probability that it is actually a six.

Sulution Let E be the event that the man reports that six occurs in the throwing of the
die and let §, be the event that six occurs and §, be the event that six does not occur.

1

Then P(S) = Probability that six occurs = 6

5
P(8,) = Probability that six does not oceur = P

P(EIS,) = Probability that the man reports that six occurs when six has
actually eccurred on the die

3
= Probability that the man speaks the tuth = 1

P(EIS,} = Probability that the man reports that gix occurs when six has
not actually occurred on the die

= Probability that the man does not speak the truth =1—

b | w2
B

Thus, by Bayes' theorem, we get
P(S [E) = Probability that the report of the raan that six has occurred is
actually a six
B PiS, ) PEIS,)
~ P(S,)P(EIS;)+P(S,)P(EIS;)

24
- e—=
8

B | L | -
Oy | L | L
o | —
oo |

L=l
O

: o g B
Hence, the required probability is Fy
Remark A random variable is a real valued function whose domain is the sample
space of a random experiment.
For example, let us consider the experirnent of tossing a coin two times in suceession.

The sample space of the experiment is 5 = {HH, HT, TH. TT}.
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IF X denotes the number of heads obtained, then X i3 a random variable and lor

each outcome, its value is as given below :

X{HH) =2, X (HT)= L, X(TH) = 1, X (TT) =0,

More than one random variables can be defined on the same sample space. For

example, let Y denote the number of heads minus the number of 1ails for each outcome
of the above sample space S.

Then
Thus, X and Y are two different random variables defined on the same sample

YHH) =2, YHD)=0Y(TH =0.Y(TT)=-2,

space S5,

[ B

EXERCISE 13.3

Anurn containg 5 red and 5 black balls. A ball is drawn at random, it3 colour is
noted and is returned o the um. Moreover, 2 additional balls of the colour drawn
are put in the urn and then a ball is drawn at random. What is the probability that
the second ball is red?

A bag contains 4 red and 4 black balls. another bag contains 2 red and 6 black
balls. One of the two bags is selected at random and a ball is drawn from the bag
which iz found to be red. Find the probability that the ball iz drawn from the
first bag.

Of the students in a college, it is known that 60% reside in hostel and 40% are
day scholars (not residing in hostel). Previous vear results report that 30% of all
students who reside in hostel attain A grade and 20% of day scholars attain A
grade in their annual examination. At the end of the year. one student is chosen
al random from the college and he has an A grade, what is the probability that the
student is a hostlier?

In answering a question on a multiple choice test, a student either knows the

3 1
answer or guesses, Lel a be the probability that he knows the answer and m

be the probability that he guesses. Assuming that a student who guesses at the

1
answer will be correct with probability 1 What is the probability that the stu-
dent knows the answer given that he answered it correctly?

A laboratory blood Lest is 99% effective in detecting a certain disease when il is
in fact, present. However, the test also yields a false positive result for 0.5% of
Lhe healthy person tested (i.e. if a healthy person is tested, then, with probability
0.005, the test will imply he has the disease). If 0.1 percent of the population
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actually hag the disease, what is the probability that a person has the disease
given that his test result is positive 7

There are three coins. One 18 a two headed coin (having head on both faces),
another is a biased coin that comes up heads 75% of the time and (hird is an
unbiased cotn, One of the three coins is chosen at random and lossed. it shows
heads, what is the probability that it was the two headed coin ?

An insurance company insured 2000 scooter drivers. 4000 car drivers and 6000
truck drivers. The probability of an accidents are 0.01, 0.03 and 0.15 respectively.
One of the insured persons meets with an aceident, What is the probability that
he is a scooter driver?

Afactory has bwo machines A and B, Past record shows that machine A produced
60% of the items of output and machine B produced 40% of the items. Further,
2% of the items produced by machine A and | % produced by machine B were
defective. All the items are put into one stockpile and then one item is chosen at
random from this and is found to be defective. What is the probability that it was
produced by machine B?

Two groups are competing for the position on the Board of directors of a
corporation. The probabilities that the first and the second groups will win are
0.6 and 0.4 respectively. Further, if the first group wins, the probability of
introducing a new product is 0.7 and the corresponiding probability is 0.3 if the
second group wins, Find the probability that the new product introduced was by
the second group,

Suppose a girl throws a die. If she gets a 5 or 6, she (osses a coin three tirnes and
notes the number of heads, If she gets 1. 2. 3 or 4, she tosses a coin once and
notez whether a head or tail is obtained. If she obtained exactly one head, what
is the probability that she threw 1, 2, 3 or 4 with the die?

A manufacturer has three machine operators A, B and C. The first operator A
produces 1% defective items, where as the other (wo operators B and C pro-
duce 5% and 7% defective iterns respectively. A is on the job for 50% of the
time, B is on the job for 30% of the time and C is on the job for 20% of the time.
A defective item is produced, what is the probability that it was produced by AT
A card from a pack of 52 cards is lost. From the remaining cards of the pack,
two cards are drawn and are found to be both diamonds. Find the probability of
the lost card being a diamond.

4
Probability that A spealcs truth is 5 A coin is tossed. A reports that a head

appedrs. The probability that actually there was head iz
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14. If A and B are two evenis such that A ¢ B and P(B) # 0, then which of the

following is correct?

P(B) :
(A) P(AIB)=—— (By P{AIE) < P(A)
S | J P(A) | (
{C) P{AIB) = P(A) (D} MNone of these

Miscellaneous Examples

Example 22 Coloured balls are distributed in four boxes as shown in the following table:

Box Colour
Black White Red Blue
1 3 4 5 &
Il 2 2 2 2
I 1 2 3 I
LV 4 3 1 5

A box is selected al random and then a ball is randomly drawn from the selected
box. The colour of the ball is black, what is the probability that ball drawn iz from the
box 1?7
Solution Let A, E, E; E, and E, be the events as defined below :

A : ablack ball is selected E, : box L iz selected
E, : box IT s selected E, : box TIT is selected
E,: box TV is selected

Since the boxes are chosen at random,

1

Therefore P(E) =PE)=PE)=PE)= y
Al P(AIE —iPﬁIE —EF'J!’«J.'E'—l d P{AIE P
50 { !}—LE} i E,J_Es { 3:’_'}'3'" { JJ_]B

P{box I is selected, given that the drawn ball is black) = P(E,|A}). By Bayes'
theorem,
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. P(E,) PIAE;)
EA) = 5B, JP(AIE, )+ P(E, ) PCAIE, )+ P(E, ) P(AIE, )+ P(E, ) P(AE,,)
1 1
_x_
a’7 e
=13111114_D'1ﬁ5
ey ¥ i ol WY ol e, v

4 18 4 4 4 7 4 13
Example 23 A and B throw a die alternatively till one of them gets a *6" and wins the
game. Find their respective probabilities of winning, if A starts first.

Solution Let S denote the success (getting 4 *6") and F denote the failure (not getting
a'e’).

| 5
= — P(F)=2
Thus, P(S) = o PF)==

!
P{A wins in the first throw) = P(8) = F:

A gets the third throw, when the first throw by A and second throw by B result into
Tailures.

i T
Therefore, P{A wins in the 3rd throw) = P(FF5) = F(F)P(F)P(5)= EK EK P

(&
== [ R
6/ 6

5Y'(1
PiA wins in the 5th throw) = P (FFFFS) :[E) [“J and s on,

6
: v (3 ()
ence, (A wing) = 6 6 I3 6 G
1
E_.8
2
-3
36

P i 1-P (A wi 1—£—i
(B wins) =1 -P (A wing) = 111

Remark Wa+ar+ar + ... + ar" + ... where | rl < 1, then sum of this infinite GP.

a
is given by T (Refer A.1.3 of Class XI Text book).
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Example 24 If a machine is correctly set up, it produces 90% acceptable items. If it is
incorrectly set up, it produces only 40% acceptable iteras. Past experience shows that
80% of the set ups are correctly done. If afier a certain set up, the machine produces
2 acceptable items, find the probability that the machine is correctly setup.

Solution Let A be the event that the machine produces 2 acceptable items.

Also let B, represent the event of correct set up and B, represent the event of
meorrect setup.

Now P(B)) =0.8, P(B,) =02
P(AIB,) =0.9x 09 and P(AIB,) = 0.4 x 0.4

P(B,) P @EL},

Therefore P(B IA) = —P{B|J P(AR, )+ P(By) P_{A[sz

0.8x09=0.9 648

_ =2° _0.95
08x09x09+02x04x04 680

Miscellancous Exercise on Chapter 13

1. Aand B are two events such that P (A) # 0. Find PiBIA), if
(1) A iz asubset of B iy AnB=29

A couple has two children,

(i) Find the probability that both children are males, if it is known that at least
one of the children is male.

(i} Find the probability that both children are females, if it is known that the
elder child is a female.

3. Suppose that 5% of men and 0.25% of women have grey hair. A grey haired
person is sclected al random. What is the probability of this person being male?
Assume that there are equal number of males and females.

4. Suppose that 90% of people are right-handed. What is the probability that
at most 6 of a random sample of 10 people are right-handed?

5. 1If a leap year is selected al random, what is the chanee that it will contain 33
mesdays?

Bt

fi. Suppose we have four boxes A B,C and D containing coloured marbles as given
below:
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Box Marble colour
Red White Black
A 1 6 3
B & 2 2
C 2 | |
D o 6 4

One of the boxes has been selected at tandom and a single marble is drawm from

it. If the marble is red, what is the probability that it was drawn from box A7, box B?,
box C7

7.

Assume that the chances of a patient having a heart attack is 40%. It is also
assumed that a meditation and yoga course reduce the risk of heart attack by
30% and prescription of certain drug reduces its chances by 25%. At a time a
patient can choose any one of the two options with equal probabilities. It is given
that after going through one of the two options the patient selected at random
suffers a heart attack. Find the probability that the patient [ollowed a course of
meditation and yoga?

If each element of a second order detenninamt is either zero or one, what is the
probability that the value of the determinant is positive? (Assume that the indi-
vidual entries of the determinant are chosen independently. each value being

i
assumed with probability — ).

An electronic assembly consists of two subsystems, say, A and B. From previ-
ous lesting procedures, the following probabilities are assumed to be known:
P(A fails)= 0.2

P(B fails alone) = 0.15

P(A and B fail) = 0.15
Evaluate the following probabilities

(i) PtA lailslB has failed) (i) P(A fails alone)

Bag I contains 3 red and 4 black balls and Bag IT contains 4 red and 5 black balls.
One ball is transferred frorn Bag 1 wo Bag Il and then a ball is drawn from Bag 11
The ball so drawn is found to be red in colour. Find the probability that the
transferred ball is black,

Choose the cotrect answer in each of the following:

Il A and B are two events such that PUA) # 0 and P(B | &) = 1, then
(A) AcB (B BcA iC) B=4¢ iD) A=¢
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12. ITP(AIB) = P(A), then which of the following is correct :

(&) PIBIA) < P(B) (By PIA M B) <P({A) . P(B)
(C) P(BIA) > P(B) (D) P(BIA) = P(B)
13, If A and B are any two events such that PLA) + P(B) — PLA and B) = P(A), then
(A) P(BIA) = | (B) P(AIB) = I
(C) P(BIA) =0 (D) PAIBY=0
Sunumary

The salient features of the chapter are —
# The conditional probability of anevent E, given the occiirence of the eventF

is giveni by P(E(E) =P‘§g}“ P(F) £0

¢+ 0=P(EIF) =l P (E'TF)= 1 - P (EIF)
P {{E «. F)IG) = P (EIG) + P {FIG) — P {({E n FIIG)
¢ P(EnF)=P(E)P(FIE),P(E)#0
PIEnF)=P(F) P (EIF),P(F)+0D
4 IfE and F are independent, then
PEATF) =P(E)P(F)
P(EF)=P(E),P(F)=0
P (FIE}=P (F), P(E) # 0
4 Theorem of total probability
Let |[E,. E,, ....E,) be a partition of a sample space and suppose that each of

E. E. .. E has nonzero probability. Let A be any event associated with 5,
then

P(A) = P(E,) P (AIE)) + P (E,) P (AIE,} + ... + P (E) P(AIE)

4 Bayes' theorem IT Er l:"f.2 Eﬂ are events which constitute a partition of
sample space 8, ie. E, E, ..., E, are pairwise disjomtand E, UE,U .. UE =8
and A be any event with nonzero probability, then

2 P(E,)P(AE,))

7
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Hisiorical Note

The earliest indication on measurement of chances in game of dice appeared
in 1477 in a commentary on Dante's Divine Comedy. A treatise on gambling
named liber de Ludo Aleae, by Geronimo Carden (1501-1576) was published
posthumously in 1663, In this treatise, he gives the number of favourable cases
for each event when two dice are thrown.

Galileo (1564-1642) gave casual remarks concerning the correct evaluation
of chance in a game of three dice. Galileo analysed that when three dice are
thrown, the sum of the number that appear is more likely to be 10 than the sum 9,
because the number of cases favourable to [0 are more than the number of
cases for the appearance of number 9.

Apart from these early contributions, it is generally acknowledged that the
true origin of the svience of probability lies in the comespondence between two
great men of the seventeenth century, Paseal (1623-1662) and Pierre de Fermat
{1601-1665). A French gambler, Chevalicr de Metre asked Pascal lo explain
some seeming contradiction between his theoretical reasoning and the
observation gathered from gambling. In a series of letters written around 1654,
Pascal and Fermat 1aid the first foundation of science of probability. Pascal solved
the problem in algebraic manner while Fermat used the methoad of combinations.

Great Dutch Scientist, Huygens (1629-1693), became acquainted with the
content of the correspondence between Pascal and Fermat and published a first
book on probability, "De Rativeiniis in Lido Aleae” containing solution of many
interesting rather than difficult problems on probability in games of chances,

The next great work on probability theory is by Jacob Bernoulli (1654-1703),
in the form of a great book, "Ars Conjectendr” published posthumously in 1713
by his nephew, Nicholes Bernoulli, To him is due the discovery of one of the most
important probability distribution known as Binomial distribution. The next
remarkable work on probability lies'in 1993, A N. Kelmogorov (1903-1987) is
credited with the axiomatic theory of probability, His book, Foundations of
probability” published in 1933, introduces probability as a set function and is
considered a ‘classic!”.

._{4,._
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E]
lt1+2xz1ﬂ +C 9,
6
2
?r‘x+4{x—8}+c

L 3k
—(x =1 +—(xr -1} +C
?( ) 4fx )

(logx)"™ |
Y = — A,
= 15. ElﬂgiQ 4x° |+C
] -L
_'_Ee_;:' +C 13. er:,u. _:'+C
%lug{ehﬂ“’“')ﬂ?
1
—~tan{7-44)+C
4
%lﬂg|25inx+3msr§+c
| ES
2sinafx+C 27, (sin20)? +C
1 2 2
-z—ﬂugsmx} +C 30, —iug|‘l+m5.t|+[:‘

£ llﬂg|~:ns X +siux| +C
i 2

Lfltanx +C

!
——CDa (lan
~cos(

35, %Uﬂﬂg O4C

L4 C

B

13.

19.

38.

211rg|~J; —I|+C

1
e U
18(2+3:°)

1
—e¥iyc
2

logle*+e " )+C
|
Etamflx—3}—x+(:

%{sin TR 3C

1

{1=tan x)

21 +sinx+C

1
l4cosx

+C

—z——%lngkm x—-si_n,r|+C

gl{x+lug xP+C

D
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|[EXERCISE7.3

%_isi'n l_4‘x+'lc|)+[: z. —ﬁms?x+ém&x+c

-

l[lsin121'+x+lsln3x+lsin4x:|+ﬂ
4112 8 4
= F o 1 o

1 1 3
== 08 (2x+ 1) +=cos” (Zx+1)+C 5. —cos x——cos x+C
2 E ) G ! 6 4

l[l cogbir— %cns dx— éms Ex]-f-('.'

46

{1 . 1 . X
~| —sindx——sin12x |[+C 2ttt C
2[45111 X usm x} 8. 5 it

x Jx 1 1
—fan—+C 1. ———sindx+——sin4x+C
S § 4 g
3L e Laigiec 12. x—sinx+C
8 8 64 )

L e
2 (sinx + x coso) + C 14. —er
oy B 2
—ger” 2x =——sec2x+C 16. itan x=tanx+x+C
. Se¢ x—cosec x+ C 18. lanx+C
|

lug|ranx|+5mn1x+(‘. 20. loglcos x+sina|+C

2 1 -
22 Joos—a)
) sinta—f) |ms{,c—br|
A 24. B

|EXERCISE 7.4

tan” X +C 2. ]Elng‘lx+ﬂl+4x1[+ﬂ

4417
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lug| l |+C

' |2—x+asz—4x+5|

i‘Lu.n gAY,

22
Vat —1-log

N P ‘+c

Tog

log

x—%hlﬂxz —3x+2
x——ﬂ-ljhf‘{x-* a){x—b)

-

z,,‘thx-s +C 1

log +C

32

o P +4sit|"['rT_2)+C
,/f +2r+34 log

£ élﬂglf —2);-—5|+%10g

tanx+1||tani.x+4‘+c 10.

1[8.11_I e +C 12
6 2 -

+CE 14.

-]

V2

l
Elug[f +1fx'5 +a®
tng|x+1+ -.,f‘:r.j +2x+ 2‘ +C

sin 1[—”3)+C
4

; -.,||':|:2 —1+2log

%11:||g|3::}—|-?..1r-£*l|-i tan l(ﬁ]ﬂf

L9 /—‘
61.|||x3 —0x+20 +34'lﬂgix—'£+ 2% —9x+20/+C

x+l+-.,‘x2+2x+5 L

x—1-4/6
x—1+JE

+C

Ex=37 . ..
in" | = [+C
gin (m]

.x.+q.,|||_1;l -l|+C
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Syxt+4x+10-Tlog

K244 +4x+lﬂ" S

B 25. B
| EXERCISE7.5|
732 i
g2 ¢ T Lt
|x+1 6 “|a+3

log|x— 1| —Slog|x— 2|+ 4loglx—3+C
élﬂgh ~1|-2loglx—2| +%log x=3+C

& 3 ]
Hloglx+2|-2logx +1|+C 6. 5 +logld~—log|i~24f+C

élng|x -Jl-ailugl_’rz +|}+J2-mn",=+c

Eug|x-l gt +HC 9, lI::u[;x—-‘-i—i%‘.f
9 “x+2| 3x-1) 2 Tlx-1 x-1
3 J 12
Elﬂg|x+ll—Elug|x—lﬁ—~j—logilx+3{+c
5 5 5
5 gtx+],!-Elﬂg|_r+2i+glng|x—21+c
z
%+%lﬂgEx+ﬂ+%ing|x—l|+C

L
- log ix—l]a—ilug(l +@) +tan'x+ C

? | I—I ] -1

—_ 5. —log|——|—=tan" x+C
310g]x+2{+x+2+c 15, -l |73 X
I : 2—sin x
._1 — +C =
Hﬂgx"+1 7. 4 I—sinx s
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L, |x*—1 e — |
—lo +C lo +C
4 OB -~ 21, g[ = ]
B 23. A
|EXERCISE 7.6
. x I ;
—xcosx+smr+C Z. “ECHS3X+§EIH 3x+C
# e
e (- 2x+2) + C 4. x?lugx—T-FC
2 xj. A xs
X X
—log2y——+C o =log gm——rC
2 0g =4 3 6 1 0gx 3
2
31— ]
l [2.\'2 —1)sin ™’ x+ﬂ+ﬂ 5. J|r—lazm't x—-ivl-—tnn" x+C
4 4 2 2 2
|
22 - ‘-% -2 +C

(s’m '.:}"Z: + 21— 2 sin Tl x —2x4C

— Yl costx+x +C 12,
1 L
xlan x—ElnguH’*H{.‘ 14.
3 I
[%+x)10gx—x?—r+ﬂ 16.
E'n'
+C
T+x 18
f.'i.;c 20.
X
i
?{Esinx—mu]-b{: 22,
A 24,

xtan x + log |cos x|+ C

2 2
%{‘mgxlz —%Ingx+T+C

gsinx+C

x
. e'tan=+C
2

el’

C
G-

xtan'x—log(l +28+ C
B



N

6.

10.

ANSWERS

EXERCISE7.7|
%JJ4—xZ+Zsin"§+C 2. ésm'lix+%x\il—4xi+c
VB Hax+6+loglit 24+ 12 +4x+6 ‘+C
E:—Zn)—-.,fxz +4x+l —%lng!x+2+ N+l ‘+C
P e M0 S0 8 e
Ssin [2?5}' 5 V-4 4L
{x;2:1ilx2+4x—5—%Ii:rgllx+.?:+quzi+4x—5|+c
L St ) PO Yo L ORI .
1 l+31x+ssm[ﬁ]+{‘
E‘f—_%\ff +3x —g—lug A:+-%+-|.||x2 +3x

X +-.,||':J;:2 +'§‘+C

(x+2)
2

+C

£ x* +9 +Elﬂg
31 2

A 1. D
|[EXERCISE7.8
2 2 lq:ngE 3 s
) - 2- =t _3
: 5. 0 . e 1
= 5 ki =
3 (e - 1)
= log 21 N 2
B log2 8 2. s

|
-2
ra
|
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L
7 '8

:
7 =1

n-t

bis
-2
1024 2

iingz

Iﬁﬁfﬁﬂ}

15

Hooala

A

1!
—log2
3 g

14,

16.

L
v

b

ol

—-mtlogd 17.

J5
5 5 .3
5-2[9log > -log~
z( &3 °Ez]
0 19. 3Ing2+3?ﬂ
D 2. C
EXERCISE7.9
G0d m
A 1 e
231 3. 5 lee2
n & |]Dg_21+5J1_?
4 JI7 4
et -2) :
o e - ). D
4
[EXERCISE 7.10]
E 3 E 4
4 "4 .
. =4 -
- 2 " A 2)
1642 s 1
habot S Zlog=
= 10. log 11.
0 14. 0 15,
L. 15. 5 20
. : 20.

ke
%logﬁ+—_—tan "5

A

2okala
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Miscrrianeous Exercise ow CHAPTER 7

1 | 1

(]

Zﬂ—?s,xi + 6 —blog(l+ x'_ﬁ}+{1

1 1 4 d: =
==logir+l+—=log (x" +9) +=tan
5 log|x+1+ - log (¢ +9) +7

sinaloglsin (x—a)|+ xcosa+C 8.

siu"(-'“"—“u’f}rc
2

] |cus{x +-b]1

+C

- og
sinig— b |m5{:+a}]
I+ET
log| —— |+C
[
——cog" x +C
4

1
[/ (ax+b)T* ‘O
a 1)

1.

16,

18.

21— x+eos ' +yx— 2 +C

eftanx + C

jEI:.TCUG b fl-3? ]+C

1

3 3
3a-b) [{x+a}3 —{'x+.|'.r}‘ii|+ﬂ

+C

G |

-—tsin 2x+C
2

isin']{x‘ Y+ C

-;-r-]ug{_r“'ﬂj +C

~2

sin {x+ &)
- - +C
S1N & sinox

—210g|x+!|—ﬁ+3]-:rg]x+2[+C
X

1(,. 1} 1) 2
= 1+—=] |1og| l+— |—= |+
3( xl] I:DE( _‘,2) 3]
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24,

.

38,
44).

W= =1 th

11.

11.

MATHEMATICS

= oA

=|g,

T = =

12x

2.

T
25, —
8
27 Zsm"—{ﬁ_ﬂ
27. 5
29 : log9
© a0 B
31 E
)
3. B
EXERCISE 8.1 |
(i 1A 4.

Miscellaneous Exercise on Chapter 8

.|
e’
L | =

Order 4; Degree not defined

Order 2; Degree 1
Order 2; Degree 1
Order 3; Degree 1
Order 2; Degree 1
D

(i) 624.8
4. D

bl

EXERCISE9.1

Order |; Degree |

Order 2; Degree not defined
Order 3; Degree 2

Order 1; Degree |

Order 2; Degree |

A

[ 5]

o 08 T =

I[EXERCISE9.2 |
12, D

B
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11.

y=llog[f—.*l]—£lugé 13 ms[}i]za
) 2 x 2 o x

14.
16.

ANSWERS

EXERCISE 9.3

[ =]

y=2tan§—x+c . y=2sin{x +C)

y=14 Ae” 4. tnzxany=C

[ x?
y=logl(e+e*)+C 6. Laﬂ'}*=x+?+{'1
Rt 8. e yt=C

}l=rsin"x+..h_x3+ﬂ 10, tanvy=C(1—-¢e%

y=%1ug[:;x+1f {x? +1}3]—%1m' ' x4

4
y=5eC X 15, Zv-1=¢'(sinx—cosx)
y—x+2=log (¥ (y+20% 17, ¥ =-at=4
1
c (x+4P=y+3 19, (631+27)°
6.U3% 11. RslodR
—E—Mff 23. A
lug(ﬁ
|EXERCISE 9.4/
(x—v)=Cx et , y=xlug§.r|+{:x
tan ‘[i)zémg(ﬁwlhc 4. 2+ =Cx
X -
|
1 IJ.:+ME}r|_ .
22 I':'ggj__ﬁ}lrlﬂghhc f. }:+m=ﬂxz
|
el
. ,rycos!x =i 8. x|: cus[x :| sin| =

445
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¥

9, cy=log li—L 1y, ye' +x=C
X

1. Jog (32 +y) + 2 tan? i = -;E+iagz

12, y+2x=3x"y 13. ml[%]ﬂug!eﬂ.
14. cos -'?-. :]_Dgtgxt 15. y=il,.r-#|lx$ f]
X 1-log|a]
16. C 17. D
|EXERCISEY.5|
1
1. _yzg{lsinx-—cusx]+(3€“ 2. y=e¥+Ce¥
&
3. xy=T+C 4. ylsecr+tamx) =secx+tanyr—-x+C
" % -2
5. v=(tanx— 1) + Cea 6. y=E(4lﬂg[.r|—l}+Cx
-2 -1 S | .
T ylugx=T{l+logix1)+C 8. y=(l+x)" loglsin &+ Cil+x")
—1—i:1:|tx+ &
9, ¥ 2 " 10, (x+v+ 11 =Ce
. .
C
1, x=2+= 12, $=3P+Cy
3 ¥
T
13. y=cosx—2cos?x 14. }rf1+.r2‘,i:t.au"x—“'1*
15. y=4sin*x—2ginlx 16. x+y+1=¢
17. y=d-x-2¢ 13, C 19. D

Miscellancous Exercise on Chapter 9

1. (1) Order 2: Degree | {ii} Order |; Degree 3
(in) Order 4; Degree not defined
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sin'y +5in'x=C 6. cosy il
== 5. ==
’ i
o X
tan1y+t£m1{e‘]l:§ 8. e?=y+C
log |x—y=x+y+1 10. }rez"r; =(2Jx +C)
2 2x+1
: — 2 _T[_ i = .E.D‘ * x # _I
ysin x=2x 5 (zin x #0) 12, ¥=IO0E Pee)
C 4. C
C
EXERCISE 10.1|
In the adjoining figure. the vector OP represents the required displacement.
N Scale
+* F—-i
1 0kny
P
40km
3
W sT.
W
5
(i) scalar (i} wvector (iii} scalar (iv) scalar (v) scalar
{vi}) wvector
i) scalar (i) scalar (i) wvector (V) wector (v) scalar

(i) Vectors @ and b are coinitial

(iiy Vectors b and d are equal

(iid)
i)y True iit) False
. la|=+B, [p|=+62, le|=1

(i) False

Vectors @ and € are collinear but not equal

iv) False

EXERCISE 10.2

An infinite nuraber of possible answers.
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T

An infinite nuraber of possible answers,

1. 5=2,y=3 5. —Tand6: -Tiand 6
. L) 2
6 -4}-—3{ 9 EI-I-E}-'__E;C
T R (9 GRS, f
—i b J ke —swi K
5. B Bh > "
A0, 8 . 16, o2 3
N T M ET R CT) 2. Aa 2’ Via
13, 22 5. @ —Ldnle G s
s 3! 3!3 - _l]' 3 3.-il ﬂ ‘:]]J "3E+3
16, 3{+2j+k 18. (C) 19. (B), (C), (D)
|EXERCISE 10.3
L. E 2. nas’[g] i 0
60 162 242 ) "
4, —T— h. — =T 7. Glal #1185 35}k
Jia WT 3T 4 dl
5. la=1p|=1 9. JI3 10. 8
~ -3
12, Vector b can be any vector L3. 7

14. Take any two non-zero perpendicular vectors @ and b

i '[ﬁ] 15. (D)

—
L

EXERCISE 10.4|
2x 2a 1 1 1 1
o ] e SR
L 192 2250 31 7 % 3l
27 <
5. 3— 6. Either [8]=0 or [|=0
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MNo; take any two nonzero collinear vectors

Aol 1. 1542 1. (B) 12. (C)

Miscellaneous Exercise on Chapter 10

55 = YT =2 =5 P (=9 )P+ (- P

—_55+£j
2 2
No; take @ b and  to represent the sides of a triangle.
1 3 " -Jﬁ 3 s i T 2 -
e = ) M ially pe + k
7 o WOl T B mE
. P 9. 3 +5b 10. ?(JE-—EJ—I-EH:HJE
Looe unmas
Eflﬁﬂi—5}+'?ﬂk} 13, k=1 16, B)
. (D) 18. (C) 19. (B)
EXERCISE 11.1|
gt 2 g wld g1 .1 o Hi62
2 "2 B O T £ 1 nu

-2 2 3 -2 =3 -2 4 3 -1

7 N7 17 T AT & e R
EXERCISE 11.2|

+2}+3.’r+li31+"j 24 ) , where A is a real number

b
[

2f—j+4k+ A ({42 j—k) and cartesian form is
x=2_y+1 z-4
o2 -l
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10.

14.

Ftt

. Maximmam £ = ——— at

31y
. MinimamZ=Tat| 5-5

MATHEMATICS

A2 p—4  FF
3 5 6
F=(Si—4j+6k)+\(37+7]+2F)

i

Coo o af 26 I
. (i) B=rcos (91(3'_3:} {ii} ©= cos (3

70
p=— 1, M2 13. 229
11 2
3 I
Jis 2
Miscellumeous Exercise on Chapter 11
X v T -10

i Y T=r= 3, A=
H 1 0 0 7
9 5. F=i+2j-4k+A(2i+3]j+6k)

. Maximum Z = 16 at (0, 4)
. Minimum Z=- 12 at (4, 0)

235 (20 45]

19 i1

2°2

. Maximum Z= 18 at (4, 3)
0.

Minmmum Z = 6 al all the points on the line segment joining the points (6, 0)
and (10, 3),
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Minimum Z =300 at (60, 0);

Maximuom Z = 600 at all the points on the line segment joining the points (120, 0)

and (60, 30).

Minimum Z = 100 at all the points on the line segment joining the points (0. 50)

and (20, 40);
Meaximuom Z = 400 at (0, 2000

Z haz no maximumn value

. No feasible region, hence no maximum value of Z,

EXERCISE 13.1|

2 1 16
PlEF)=—,P(FE)=— 2. PIAB)=—
(EIF)= 3. P(FEE)= 5 (aB) =2

. (i) 032 (i) 064 (i) 0.98
1
26
. B Lo 4 e 30
L) {1 (i) 5 (i) 3
& X G X a2 B
© 5 i - (i) =
(i 1 (i) 0
= 9. 1 10. (@)= .
pix g L 2 o3l
{1:' 2. 3 U'I'JII 2!' .3 {!“JII 4# 4
- q o 5
© 3 W 3 % 5
4
e 15. 0O 16. C 17
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3

25

EXERCISE 13.2
2 , 4
Lo2 |
5. Aand B are not independent

4. A and B are independent
E and F are not independent

L) 018

.
(i) F'—m

(iy 0.12

3 10
3 :

(i) 0.12

10.
14.

Miscellaneous Exercise on Chapter 13

(i 0.3

I !
16. (a) :J:.{tu 3 €

(@) o
(ii) %

.. _1
(M) P=3
(i) 0.58
A and B are not independent
i) 072 (iv) 028
16 20 40
(i) 31‘{‘” 2l il 21
. B
|EXERCISE 13.3|
2 9
3 * 1
4 o <L
g 52
3 5
11 1. 3
G

12.

(ivi 04

|

2

12
13

11
50



h.

‘mifaa fomr, mifgaraar w3 dre farsst feaer, daa)

1
1-Y °c 0.9y (0.0"""
128 )
15° 5715 ©29
(i) 0.5 (i 0.05
A i

Pulm alw e
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