# JEE Main 2024 Mock Test 5

Time Allotted: 3 Hours Maximum Marks: 300

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

#### **Important Instructions:**

- 1. The test is of 3 hours duration.
- 2. This test paper consists of 90 questions. Each subject (PCM) has 30 questions. The maximum marks are 300.
- 3. This question paper contains **Three Parts. Part-A** is Physics, **Part-B** is Chemistry and **Part-C** is Mathematics. Each part has only two sections: **Section-A** and **Section-B**.
- Section A : Attempt all questions.
- 5. **Section B :** Do any 5 questions out of 10 Questions.
- 6. **Section-A (01 20)** contains 20 multiple choice questions which have **only one correct answer**. Each question carries **+4 marks** for correct answer and **–1 mark** for wrong answer.
- 7. **Section-B** (1 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries **+4 marks** for correct answer and **–1 mark** for wrong answer.

# PART - A (PHYSICS)

## **SECTION - A**

(One Options Correct Type)

This section contains **20 multiple choice questions**. Each question has **four choices** (A), (B), (C) and (D), out of which **ONLY ONE** option is correct.

from a single drop. In the process the released surface energy is -

If 1000 droplets of water of surface tension 0.07N/m, having same radius 1mm each, combine to

The initial speed of a projectile fired from ground is u. At the highest point during its motion, the

(B) 7.92×10<sup>-6</sup> J

(D)  $9.68 \times 10^{-4}$  J

Q1.

Q2.

(Take  $\pi = \frac{22}{7}$ )

(A)  $8.8 \times 10^{-5}$  J

(C)  $7.92 \times 10^{-4}$  J

|     | speed of projectile is $\frac{\sqrt{3}}{2}$ u. The time of flight of the projectile is:                                                                                                                                                                                                                                                                                                                          |                                                                                                                                  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | (A) $\frac{2u}{g}$<br>(C) $\frac{\sqrt{3}u}{g}$                                                                                                                                                                                                                                                                                                                                                                  | (B) $\frac{u}{g}$                                                                                                                |  |  |  |  |  |
|     | (C) $\frac{\sqrt{3}u}{g}$                                                                                                                                                                                                                                                                                                                                                                                        | (D) $\frac{u}{2g}$                                                                                                               |  |  |  |  |  |
| Q3. | The amplitude of 15 $\sin(1000\pi t)$ is modulated                                                                                                                                                                                                                                                                                                                                                               | by 10 $\sin(4\pi t)$ signal. The amplitude modulated                                                                             |  |  |  |  |  |
|     | signal contains frequency (ies) of<br>A. 500 Hz<br>B. 2 Hz<br>C. 250 Hz<br>D. 498 Hz<br>E. 502 Hz                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                  | Choose the correct answer from the options given below:                                                                          |  |  |  |  |  |
|     | (A) A and B Only<br>(C) A Only                                                                                                                                                                                                                                                                                                                                                                                   | (B) B Only<br>(D) A, D and E Only                                                                                                |  |  |  |  |  |
| Q4. |                                                                                                                                                                                                                                                                                                                                                                                                                  | Am <sup>2</sup> is placed in parallel position relative to a d work done in turning the magnet from parallel to (B) 2 J (D) zero |  |  |  |  |  |
| Q5. | Given bellow are two statements: One is labelled as <b>Assertion A</b> and the other is labelled at <b>Reason R Assertion A:</b> The beam of electrons show wave nature and exhibit interference and diffraction. <b>Reason R:</b> Davisson Germer Experimentally verified the wave nature of electrons.  In the light of the above statements, choose the most appropriate answer from the options given below: |                                                                                                                                  |  |  |  |  |  |
|     | <ul> <li>(A) Both A and R are correct but R is Not the correct</li> <li>(B) Both A and R are correct and R is the correct</li> <li>(C) A is correct but R is not correct</li> <li>(D) A is not correct but R is correct</li> </ul>                                                                                                                                                                               |                                                                                                                                  |  |  |  |  |  |

- Q6. At a certain depth "d" below surface of earth, value of acceleration due to gravity becomes four times that of its value at a height 3R above earth surface. Where R is Radius of earth (Take R = 6400km). The depth d is equal to
  - (A) 640 km

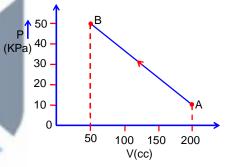
(B) 4800 km

(C) 2560 km

- (D) 5260 km
- Q7. Spherical insulating ball and a spherical metallic ball of same size and mass are dropped from the same height. Choose the correct statement out of the following {Assume negligible air friction }
  - (A) Time taken by them to reach the earth's surface will be independent of the properties of their materials
  - (B) Metal ball will reach the earth's surface earlier than the insulating ball
  - (C) Both will reach the earth's surface simultaneously.
  - (D) Insulating ball will reach the earth's surface earlier than the metal ball
- **Q8.** If R,  $X_L$ , and  $X_C$  represent resistance, inductive reactance and capacitive reactance. Then which of the following is dimensionless:

(A) 
$$\frac{R}{\sqrt{X_L X_c}}$$

(B) 
$$R \frac{X_L}{X_C}$$


(C) R 
$$X_L X_C$$

(D) 
$$\frac{R}{X_L X_c}$$

Q9. The pressure of a gas changes linearly with volume from A to B as shown in figure. If no heat is supplied to or extracted from the gas then change in the internal energy of the gas will be



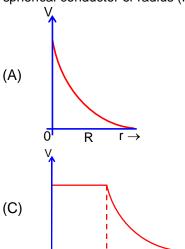
- (B) -4.5 J
- (C) zero
- (D) 4.5 J

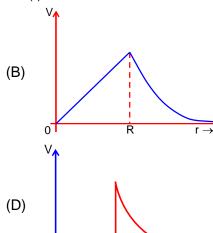


- **Q10.** The correct relation between  $\gamma = \frac{C_p}{C_v}$  and temperature T is :
  - (A)  $\gamma \alpha \frac{1}{\sqrt{T}}$

**(B)** γαΤ

(C)  $\gamma \alpha \frac{1}{T}$ 


- (D) γα T°
- **Q11.** If a source of electromagnetic radiation having power 15kW produces  $10^{16}$  photons per second, the radiation belongs to a part of spectrum is. (Take Plank constant h =  $6 \times 10^{-34}$  Js)
  - (A) Radio waves


(B) Micro waves

(C) Gamma rays

(D) Ultraviolet rays

Q12. Which of the following correctly represents the variation of electric potential (V) of a charged spherical conductor of radius (R) with radial distance (r) from the centre?





- Q13. The effect of increase in temperature on the number of electrons in conduction band (n<sub>e</sub>) and resistance of a semiconductor will be as:
  - (A) n<sub>e</sub> decreases, resistance increases
- (B) Both ne and resistance increase
- (C) Both n<sub>e</sub> and resistance decrease
- (D) n<sub>e</sub> increases, resistance decreases
- **Q14.** A free neutron decays into a proton but a free proton does not decay into neutron.

This is because

- (A) neutron is an uncharged particle
- (B) proton is a charged particle
- (C) neutron is a composite particle made of a proton and an electron
- (D) neutron has larger rest mass than proton
- Q15. Two polaroide A and B are placed in such a way that the pass-axis of polaroids are perpendicular to each other. Now, another polaroid C is placed between A and B bisecting angle between them. If intensity of upolarized light is  $I_0$  then intensity of transmitted light after passing through polaroid B will be:
  - (A)  $\frac{I_0}{4}$

(B)  $\frac{I_0}{2}$ 

(C) zero

- (D)  $\frac{I_0}{8}$
- **Q16.** As shown in figure, a 70kg garden roller is pushed with a force of  $\vec{F} = 200 \,\text{N}$  at and angle of  $30^\circ$  with horizontal. The normal reaction on the roller is (Given  $g = 10 \,\text{ms}^{-2}$ )



- (A)  $200\sqrt{3}$  N
- (B)  $800\sqrt{2}$  N
- (C) 800 N
- (D) 8000 N

| Q17. | A rod with circular cross-section area $2\text{cm}^2$ and length 40cm is wound uniformly with 400 turns an insulated wire. If a current of 0.4 A flows in the wire windings, the total magnetic flux producinside windings is $4\pi \times 10^{-6}$ Wb. The relative permeability of the rod is (Given : Permeability of vacuum $\mu_0 = 4\pi \times 10^{-7} \text{ NA}^{-2}$ ) |                    |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|
|      | (A) 12.5                                                                                                                                                                                                                                                                                                                                                                        | (B) $\frac{32}{5}$ |  |  |  |  |

**Q18.** The drift velocity of electrons for a conductor connected in an electrical circuit is  $V_d$ . The conductor is now replaced by another conductor with same material and same length but double the area of cross section. The applied voltage remains same. The new drift velocity of the electrons will be

(D) 125

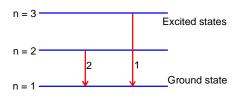
(A)  $2V_d$  (B)  $\frac{V_d}{2}$  (C)  $V_d$  (D)  $\frac{V_d}{4}$ 

(C)  $\frac{5}{16}$ 

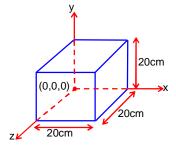
Q19. 100 balls each of mass m moving with speed v simultaneously strike a wall normally and reflected back with same speed. In time t s. The total force exerted by the balls on the wall is

(A)  $\frac{\text{mv}}{100 \text{ t}}$  (B)  $\frac{100 \text{ mv}}{\text{t}}$  (C) 200 mvt (D)  $\frac{200 \text{ mv}}{\text{t}}$ 

Q20. The maximum potential energy of a block executing simple harmonic motion is 25J. A is amplitude of oscillation. At  $\frac{A}{2}$ , the kinetic energy of the block is


(A) 18.75 J (C) 12.5 J (B) 9.75 J (D) 37.5 J

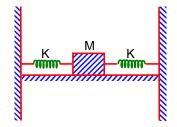
### **SECTION - B**


#### (Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. For hydrogen  $atom \lambda_1$  and  $\lambda_2$  are the wavelengths corresponding to the transitions 1 and 2 respectively as shown in figure. The ratio of  $\lambda_1$  and  $\lambda_2$  is  $\frac{x}{32}$ . The value of x is \_\_\_\_\_.




- Q2. A lift of mass M = 500 kg is descending with speed of 2 ms<sup>-1</sup>. Its supporting cable begins to slip thus allowing it to fall with a constant acceleration of 2ms<sup>-2</sup>. The kinetic energy of the lift at the end of fall through to a distance of 6m will be kJ.
- Q3. A solid sphere of mass 1 kg rolls without slipping on a plane surface. Its kinetic energy is 7×10<sup>-3</sup>J. The speed of the centre of mass of the sphere is \_\_\_\_\_\_cm s<sup>-1</sup>.
- Q4. Expression from an electric field is given by  $\vec{E} = 4000 \, x^2 \, \hat{i} \, \frac{V}{m}$ . The electric flux through the cube of side 20cm when placed in electric field (as shown in the figure) is V cm.



- Q5. An inductor of 0.5 mH, a capacitor of  $20 \, \mu\text{F}$  and resistance of  $20 \, \Omega$  are connected in series with a 220 V ac source. If the current is in phase with the emf, the amplitude of current of the circuit is  $\sqrt{x}$  A. The value of x is –
- Q6. In a medium the speed of light wave decreases to 0.2 times to its speed in free space. The ratio of relative permittivity to the refractive index of the medium is x : 1. The value of x is \_\_\_\_\_. (Given speed of light in free space =  $3 \times 10^8$  ms<sup>-1</sup> and for the given medium  $\mu_r = 1$ )
- Q7. A thin rod having a length of 1m and area of cross-section  $3\times10^{-6}\text{m}^2$  is suspended vertically from one end. The rod is cooled from  $210^{\circ}\text{C}$  to  $160^{\circ}\text{C}$ . After cooling, a mass M is attached at the lower end of the rod such that the length of rod again becomes 1m. Young's modulus and coefficient of linear expansion of the rod are  $2\times10^{11}$  N m<sup>-2</sup> and  $2\times10^{-5}$  K<sup>-1</sup>, respectively. The value of M is  $\frac{\text{kg}}{(\text{Take g} = 10 \text{ ms}^{-2})}$
- **Q8.** Two identical cells, when connected either in parallel or in series gives same current in an external resistance  $5\Omega$ . The internal resistance of each cell will be \_\_\_\_\_ $\Omega$ .
- Q9. The speed of a swimmer is 4km h<sup>-1</sup> in still water. If the swimmer makes his strokes normal to the flow of river of width 1km, he reaches a point 750m down the stream on the opposite bank.

  The speed of the river water is \_\_\_\_\_km h<sup>-1</sup>

**Q10.** In the figure giver below, a block of mass M = 490g placed on a frictionless table is connected with two springs having same spring constant ( $K = 2 N m^{-1}$ ). If the block is horizontally displaced through 'X' m then the number of complete oscillations it will make in14  $\pi$  seconds will be\_\_\_\_\_.





# PART - B (CHEMISTRY)

### **SECTION - A**

#### (One Options Correct Type)

This section contains **20 multiple choice questions**. Each question has **four choices** (A), (B), (C) and (D), out of which **ONLY ONE** option is correct.

| 04  | The            |          |             |           |          | : _ |
|-----|----------------|----------|-------------|-----------|----------|-----|
| Q1. | The correct of | order or | Dasicity of | oxides of | vanadium | ıs  |

(A)  $V_2O_3 > V_2O_5 > V_2O_4$ 

(B)  $V_2O_3 > V_2O_4 > V_2O_5$ 

(C)  $V_2O_5 > V_2O_4 > V_2O_3$ 

(D)  $V_2O_4 > V_2O_3 > V_2O_5$ 

#### Q2. Match List I with List II

| List-I |                              |      | List-II        |  |  |
|--------|------------------------------|------|----------------|--|--|
| A.     | XeF <sub>4</sub>             | I.   | See-saw        |  |  |
| B.     | SF <sub>4</sub>              | II.  | Square planar  |  |  |
| C.     | NH <sub>4</sub> <sup>+</sup> | III. | Bent T- shaped |  |  |
| D.     | BrF <sub>3</sub>             | IV.  | Tetrahedral    |  |  |

Choose the correct answer from the options given below:

(A) A- IV, B-I, C-II, D- III

(B) A-II, B-I, C-IV, D-III

(C) A-II, B-I, C-III, D-IV

(D) A-IV, B-III, C-II, D-I

#### Q3. Choose the correct set of reagents for the following conversion

Trans (Ph-CH=CH-CH<sub>3</sub>)  $\rightarrow$  cis(Ph-CH=CH-CH<sub>3</sub>)

(A) Br<sub>2</sub>.alc.KOH,NaNH<sub>2</sub>,Na(LiqNH<sub>3</sub>)

(B) Br<sub>2</sub>, aq. KOH, NaNH<sub>2</sub>,H<sub>2</sub> Lindlar Catalyst

(C) Br<sub>2</sub>,aq.KOH,NaNH<sub>2</sub>,Na(LiqNH<sub>3</sub>)

(D) Br<sub>2</sub>,alc.KOH,NaNH<sub>2</sub>,H<sub>2</sub>Lindlar Catalyst

## Q4. Which of the following artificial sweeteners has the highest sweetness value

in comparison to cane suagr?

(A) Aspartame

(B) Saccharin

(C) Alitame

(D) Sucralose

#### **Q5.** Consider the following reaction

$$\begin{array}{c} \text{Propanal} + \text{Methanal} \xrightarrow{\text{(i) dil NaOH} \atop \text{(ii) AlocN} \atop \text{(iii) NaCN} \atop \text{(iv)H}_3O^+} \\ \end{array} \rightarrow \begin{array}{c} \text{Product} \atop \text{($C_8H_8O_3$)} \\ \end{array}$$

The correct statement for product B is. It is

- (A) Racemic mixture and is neutral
- (B) Racemic mixture and give a gas with saturated NaHCO<sub>3</sub> solution
- (C) Optically active and adds one mole of bromine
- (D) Optically active alcohol and is neutral

#### **Q6.** The methods NOT involved in concentration of ore are

- A. Liquation
- B. Leaching
- C. Electrolysis
- D. Hydraulic washing
- E. Froth floation

Choose the correct answer from the options given below:

(A) A and C only

(B) B, D and E only

(C) B, D and C only

(D) C, D and E only

$$\frac{\text{NO}_2}{\text{C}_2\text{H}_5\text{OH}} \text{[A]} \quad \frac{(\text{CH}_3\text{CO})_2\text{O}}{\text{Pyridine}} \text{[B]}$$

Consider the above reaction and identify the product B.

$$(B) \begin{array}{c} O \\ \parallel \\ C \\ CH_2NH_2 \\ O \\ \parallel \\ C \\ NH_2 \\ (D) \end{array}$$

#### A protein'X' with molecular weight of 70,000 u, on hydrolysis gives amino acids. One of these Q8. amino acids is

#### Q9. The correct increasing order of the ionic radii is

(A) 
$$K^+ < S^{2-} < Ca^{2+} < Cl^-$$
  
(C)  $Cl^- < Ca^{2+} < K^+ < S^{2-}$ 

(B) 
$$Ca^{2+} < K^+ < Cl^- < S^{2-}$$
  
(D)  $S^{2-} < Cl^- < Ca^{2+} < K^+$ 

$$(C) Cl^{-} < Ca^{2+} < K^{+} < S^{2-}$$

(D) 
$$S^{2-} < Cl^{-} < Ca^{2+} < K$$

#### Q10. Which one of the following statements is correct for electrolysis of brine solution?

(A) H<sub>2</sub> is formed at anode

(B) O<sup>2</sup> is formed at cathode

(C) Cl<sub>2</sub> is formed at cathode

(D) OH is formed at cathode

#### Q11. Identify X,Y and Z in the following reaction (Equation not balanced)

$$CIO^{\bullet} + NO_2 \rightarrow \underline{X} \xrightarrow{H_2O} \underline{Y} + \underline{Z}$$

(A) 
$$X = CINO_2$$
,  $Y = HCI$ ,  $Z = HNO_3$ 

(B) 
$$X = CINO_2$$
,  $Y = CI_2$ ,  $Z = NO_2$ 

(C) 
$$X = CIONO_2$$
,  $Y = HOCI$ ,  $Z = NO_2$ 

(B) 
$$X = CINO_3$$
,  $Y = CI_2$ ,  $Z = NO_2$   
(D)  $X = CIONO_2$ ,  $Y = HOCI$ ,  $Z = HNO_3$ 

Q12. Cobalt choride when dissolved in water forms pink colored complex 
$$\underline{X}$$
 which has octahedral geometry. This solution on treating with conc. HCl forms deep blue complex.  $\underline{Y}$  which has a  $\underline{Z}$  geometry, X, Y and Z, respectively, are

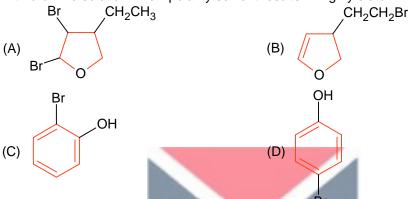
(A) 
$$X = \left[Co(H_2O)_{6}\right]^{2+}$$
,  $Y = \left[CoCI_{4}\right]^{2-}$ ,  $Z = Tetrahedral$ 

(B) 
$$X = \left[Co(H_2O)_4 CI_2\right]^+$$
,  $Y = \left[CoCI_4\right]^{2^-}$ ,  $Z = Tetrahedral$ 

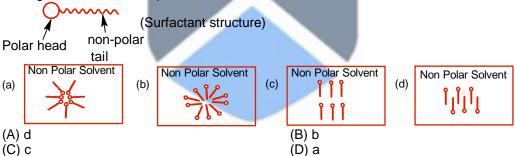
(C) 
$$X = \left[Co(H_2O)_6\right]^{3-}$$
,  $Y = \left[CoCI_6\right]^{3-}$ ,  $Z = Octahedral$ 

(D) 
$$X = \left[Co(H_2O)_6\right]^{2+}$$
,  $Y = \left[CoCI_6\right]^{3-}$ ,  $Z = Octahedral$ 

- Q13. Which transition in the hydrogen spectrum would have the same wavelength as the Balmer type transition from n = 4 to n = 2 of He+ spectrum
  - (A) n = 2 to n = 1
  - (C) n = 1 to n = 3


- (B) n = 1 to n = 2
- (D) n = 3 to n = 4

- Q14.
  - (A) 4f<sup>4</sup>

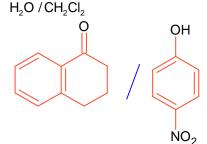

(B) 4f<sup>2</sup>6s<sup>2</sup>

(C) 4f46s2

- (D)  $4f^3$
- Q15. An organic compound 'A' with empirical formula C<sub>6</sub>H<sub>6</sub>O gives sooty flame on burning. Its reaction with bromine solution in low polarity solvent results in high yield of B. B is



Q16. Adding surfactants in non polar solvent, the micelles structure will look like




- Q17. H<sub>2</sub>O<sub>2</sub> acts as a reducing agent in
  - (A)  $2NaOCl + H_2O_2 \rightarrow 2NaCl + H_2O + O_2$ (C)  $2Fe^{2+} + 2H^+ + H_2O_2 \rightarrow 2Fe^{3+} + 2H_2O$
- (B)  $Mn^{2+} + 2H_2O_2 \rightarrow MnO_2 + 2H_2O$
- (D)  $Na_2S + 4H_2O_2 \rightarrow Na_2SO_4 + 4H_2O$

Q18. Match items of column I and II

#### Column- I ( Mixture of compounds) A.

B.



- Column-II (Separation Techique) i.
  - Crystallization
- ii. Differential solvent extraction

- C. Kerosene / Naphthalene
- iii. Column chromatography

 $C_6H_{12}O_6$  /NaCl

iv. Fractional Distillation

Correct match is:

(A) A- i, B-iii, C-ii, D- iv

(C) A-ii, B-iii, C-iv, D-i

(B) A-iii, B-iv, C-ii, D-i

(D) A-ii, B-iv, C-i, D-iii

Q19. The correct order of melting points of dichloroenzenes is

When Cu<sup>2+</sup> ion is treated with KI, a white precipitate, X appears in solution. The solution is titrated Q20. with sodium thiosulphate, the compound Y is formed. X and Y respectively are.

(A)  $X = Cu_2I_2$   $Y = Na_2S_4O_6$ (C)  $X = CuI_2$   $Y = Na_2S_2O_3$ 

(B)  $X = CuI_2$   $Y = Na_2S_4O_6$ (D)  $X = Cu_2I_2$   $Y = Na_2S_4O_5$ 

#### **SECTION - B**

#### (Numerical Answer Type)

This section contains **10** Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. How many of the transformations given below would result in aromatic amines?

(A) 
$$NH_2 + Br_2 + NaOH$$

(B)  $NK$ 

(C)  $H_2$ 

Pd / C

NH COCH<sub>3</sub>

(D)  $dil H_2SO_4$ 
 $\Delta$ 

- Q2. On complete combustion, 0.492 g of an organic compound gave 0.792 g of CO<sub>2</sub>. The % of carbon in the organic compound is (Nearest integer)
- Q3. The total pressure of a mixture of non- reacting gases X (0.6g) and Y (0.45g) in a vessel is 740 mm of Hg. The partial pressure of the gas X is\_\_\_\_\_ mm of Hg. (Nearest Integer) (Given: molar mass X = 20 and Y = 45 g mol<sup>-1</sup>)
- **Q4.** The oxidation state of phosphorous in hypophosphoric acid is +\_\_\_\_\_.
- Q5. For reaction:  $SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$   $K_p = 2 \times 10^{12}$  at  $27^{\circ}$ C and 1 atm pressure. The  $K_C$  for the same reaction is \_\_\_\_\_  $\times 10^{13}$  (Nearest integer) (Given R = 0.082L atm  $K^{-1}$  mol<sup>-1</sup>)
- Q6. At  $27^{\circ}$ C, a solution containing 2.5g of solute in 250.0 mL of solution exerts an osmotic pressure of 400 Pa. The molar mass of the solute is \_\_\_\_\_ g mol<sup>-1</sup> (Nearest integer) (Given: R = 0.083 L bar K<sup>-1</sup> mol<sup>-1</sup>)
- Q7. A  $\rightarrow$ B
  The rate constants of the above reaction at 200 K and 300K are 0.03 min<sup>-1</sup> and 0.05 min<sup>-1</sup> respectively. The activation energy for the reaction is \_\_\_\_\_\_J (Nearest integer)

(Given :  $\ln 10 = 2.3$ ) R = 8.3 JK<sup>-1</sup> mol<sup>-1</sup>  $\log 5 = 0.70$   $\log 3 = 0.48$  $\log 2 = 0.30$ )

Q8. Zinc reacts with hydrochloric acid to give hydrogen and zinc chloride. The volume of hydrogen gas produced at STP from the reaction of 11.5 g of zinc with excess HCl is \_\_\_\_\_ L (Nearest integer)

(Given: Molar mass of Zn is  $65.4g \text{ mol}^{-1}$  and Molar volume of H<sub>2</sub> at STP = 22.7L)

**Q9.** The logarithm of equilibrium constant for the reaction  $Pd^{2+} + 4CI^{-} \rightleftharpoons PdCI_{4}^{2-}$  is \_\_\_\_\_(Nearest integer)

Given:  $\frac{2.303RT}{F} = 0.06V$  $Pd_{(aq)}^{2+} + 2e^{-} \rightleftharpoons Pd(s)$   $E^{0} = 0.83V$ 

 $PdCl_4^{2-}(aq) + 2e^- \rightleftharpoons Pd(s) + 4Cl^-(aq)$   $E^0 = 0.65V$ 

**Q10.** The enthalpy change for the conversion of  $\frac{1}{2}Cl_2(g)$  to  $Cl^-(aq)$  is (-)\_\_\_\_kJ mol<sup>-1</sup> (Nearest integer)

Given:  $\Delta_{dis}H^0_{Cl_{\bar{2}(g)}} = 240 \text{ kJmol}^{-1}, \ \Delta_{eg}H^0_{Cl_{(g)}} = -350 \text{ kJmol}^{-1}$ 

 $\Delta_{\text{hyd}} H^0_{\text{Cl}^-_{(g)}} = -380\,\text{kJmol}^{-1}$ 

# PART - C (MATHEMATICS)

## **SECTION - A**

#### (One Options Correct Type)

This section contains **20 multiple choice questions**. Each question has **four choices** (A), (B), (C) and (D), out of which **ONLY ONE** option is correct.

- **Q1.** For all  $z \in C$  on the curve  $C_1 : |z| = 4$ , let the locus of the point  $z + \frac{1}{z}$  be the curve  $C_2$ . Then :
  - (A) the curves C<sub>1</sub> and C<sub>2</sub> intersect at 4 points
  - (B) the curve C<sub>1</sub> lies inside C<sub>2</sub>
  - (C) the curves C<sub>1</sub> and C<sub>2</sub> intersect at 2 points
  - (D) the curve C<sub>2</sub> lies inside C<sub>1</sub>
- Q2. The value of  $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\left(2+3\sin x\right)}{\sin x \left(1+\cos x\right)} dx \text{ is equal to}$

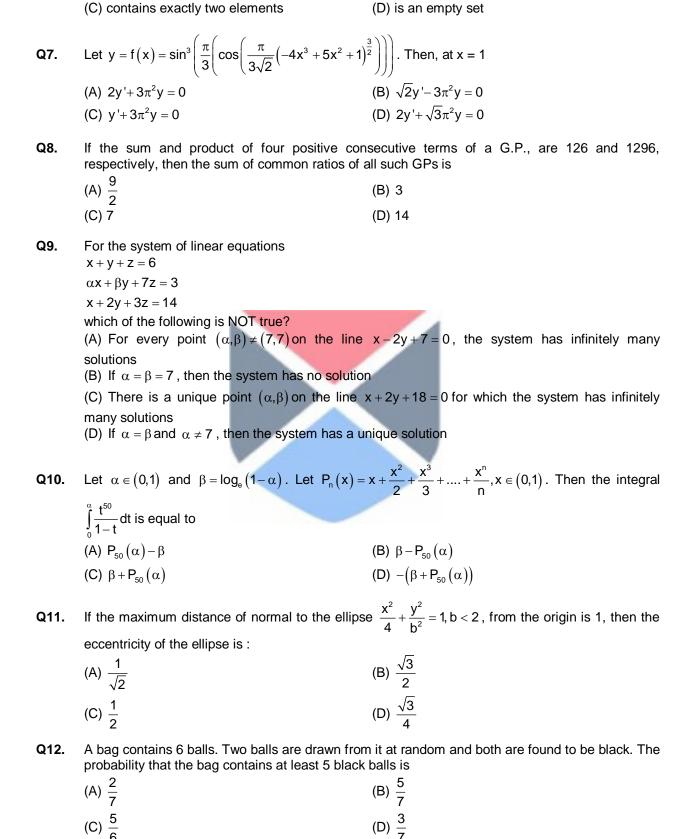
(A) 
$$-2 + 3\sqrt{3} + \log_e \sqrt{3}$$

(B) 
$$\frac{10}{3} - \sqrt{3} + \log_e \sqrt{3}$$

(C) 
$$\frac{10}{3} - \sqrt{3} - \log_e \sqrt{3}$$

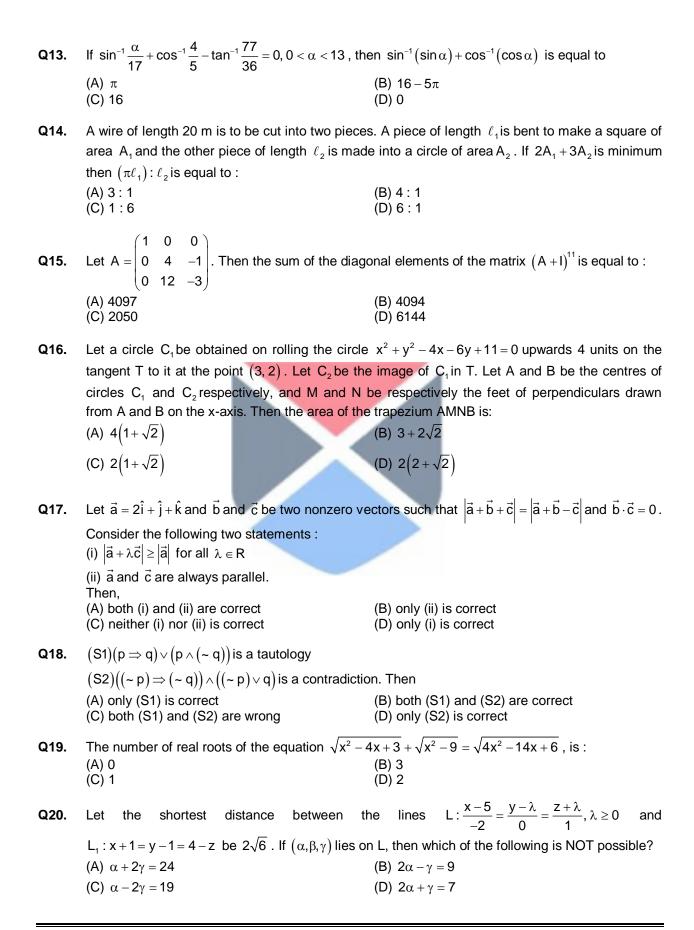
(D) 
$$\frac{7}{2} - \sqrt{3} - \log_e \sqrt{3}$$

- Q3. Let a differentiable function f satisfy  $f(x) + \int_3^x \frac{f(t)}{t} dt = \sqrt{x+1}$ ,  $x \ge 3$ . Then 12f(8) is equal to :
  - (A) 34


(B) 1

(C) 19

- (D) 17
- **Q4.** If the domain of the function  $f(x) = \frac{[x]}{1+x^2}$ , where [x] is greatest integer  $\le x$ , is [2,6), then its range is
  - $\text{(A)} \left(\frac{5}{37}, \frac{2}{5}\right] \left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}$
- $(B) \left(\frac{5}{37}, \frac{2}{5}\right]$


 $(C)\left(\frac{5}{26},\frac{2}{5}\right]$ 

- $\text{(D)} \left(\frac{5}{26}, \frac{2}{5}\right] \left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}$
- **Q5.** Let R be a relation on  $N \times N$  defined by (a, b)R(c, d) if any only if ad(b-c) = bc(a-d). Then R is
  - (A) reflexive and symmetric but not transitive
  - (B) transitive but neither reflexive nor symmetric
  - (C) symmetric and transitive but not reflexive
  - (D) symmetric but neither reflexive nor transitive
- **Q6.** Let y = f(x) represent a parabola with focus  $\left(-\frac{1}{2}, 0\right)$  and directrix  $y = -\frac{1}{2}$ . Then  $S = \left\{x \in \mathbb{R} : tan^{-1}\left(\sqrt{f(x)}\right) + sin^{-1}\left(\sqrt{f(x) + 1}\right) = \frac{\pi}{2}\right\}:$



(B) is an infinite set

(A) contains exactly one element



### **SECTION - B**

#### (Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. If the variance of the frequency distribution

| ii tiio tailailoo                 | 00       | 094003 | 4.00 | • |   |   |   |
|-----------------------------------|----------|--------|------|---|---|---|---|
| $\mathbf{x}_{i}$                  | 2        | 3      | 4    | 5 | 6 | 7 | 8 |
| Frequency f <sub>i</sub>          | 3        | 6      | 16   | α | 9 | 5 | 6 |
| is 3, then $\alpha$ is $\epsilon$ | equal to |        |      |   |   |   |   |

- **Q2.** Number of 4-digit numbers that are less than or equal to 2800 and either divisible by 3 or by 11, is equal to.......
- Q3. Let for  $x \in R$ ,  $f(x) = \frac{x + |x|}{2}$  and  $g(x) = \begin{cases} x, & x < 0 \\ x^2, & x \ge 0 \end{cases}$ . Then area bounded by the curve  $y = (f \circ g)(x)$  and the lines y = 0, 2y x = 15 is equal to.........
- Q4. Let 5 digit numbers be constructed using the digits 0, 2, 3, 4, 7, 9 with repetition allowed, and are arranged in ascending order with serial numbers. Then the serial number of the number 42923 is.......
- Q5. Let the line L:  $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{1}$  intersect the plane 2x + y + 3z = 16 at the point P. Let the point Q be the foot of perpendicular from the point R(1, -1, -3) on the line L. If  $\alpha$  is the area of triangle PQR, then  $\alpha^2$  is equal to......
- Q6. Let  $\theta$  be the angle between the planes  $P_1: \vec{r} \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 9$  and  $P_2: \vec{r} \cdot (2\hat{i} \hat{j} + \hat{k}) = 15$ . Let L be the line that meets  $P_2$  at the point (4, -2, 5) and makes an angle  $\theta$  with the normal of  $P_2$ . If  $\alpha$  is the angle between L and  $P_2$ , then  $(\tan^2 \theta)(\cot^2 \alpha)$  is equal to........
- Q7. Let  $\alpha > 0$ , be the smallest number such that the expansion of  $\left(x^{\frac{2}{3}} + \frac{2}{x^3}\right)^{30}$  has a term  $\beta x^{-\alpha}$ ,  $\beta \in \mathbb{N}$ . Then  $\alpha$  is equal to......
- **Q8.** The remainder on dividing 5<sup>99</sup> by 11 is......
- **Q9.** Let  $a_1, a_2, \dots, a_n$  be in A.P. If  $a_5 = 2a_7$  and  $a_{11} = 18$ , then  $12 \left( \frac{1}{\sqrt{a_{10}} + \sqrt{a_{11}}} + \frac{1}{\sqrt{a_{11}} + \sqrt{a_{12}}} + \dots + \frac{1}{\sqrt{a_{17}} + \sqrt{a_{18}}} \right) \text{is equal to}......$
- **Q10.** Let  $\vec{a}$  and  $\vec{b}$  be two vectors such that  $\left| \vec{a} \right| = \sqrt{14}$ ,  $\left| \vec{b} \right| = \sqrt{6}$  and  $\left| \vec{a} \times \vec{b} \right| = \sqrt{48}$ . Then  $\left( \vec{a} \cdot \vec{b} \right)^2$  is equal to......

# **Keys to JEE Main 2024 Mock Test 5**

# PART - A (PHYSICS)

## **SECTION - A**

1. С

5. В

9. D

13. D С

17.

2. 6. В

В

С

D

10. 14. D

18.

3. 7.

11.

D

С

D

15. D

19.

4. Α

8. Α С 12.

16. С

20.

### SECTION - B

1. 27

5. 242

9. 3 2.

6. 5

10. 20 3. 10 60

640 4.

8. 5

# PART - B (CHEMISTRY)

## **SECTION - A**

1. В

5. В

9. В

13. Α

17. Α 2. В

6. Α

10. D

14. Α 3. 7.

11.

15.

19.

Α

D

C

8. Α 12.

4.

С

16. D 20. Α

## **SECTION - B**

3 1.

1

2. 6.

18

44

62250

С

3. 7.

555

2520

4.

4 8.

9. 6

5.

10.

610

# PART - C (MATHEMATICS)

# **SECTION - A**

- Α 1.
- 2.

В

- 3.
- 4. В

- 5. D
- С 6.
- 7. Α

D

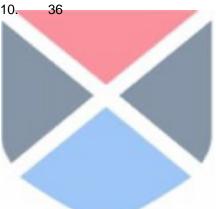
С 8.

- 9. Α
- 10. D
- 11. В
- 12. В

- 13. Α
- 14. D
- 15. Α
- 16. Α

- 17. D
- 18 Α
- 19. С
- 20. Α

## **SECTION - B**


- 1. 5
- 5. 180
- 9. 8
- 2. 710
  - 9
- 3. 72
- 4. 2997

9

8.

- 7. 2
- 10.

6.

