Telangana State Board of INTERMEDIATE Education

FIRST YEAR

MATHEMATICS - IA

140
 BASC LEARNING MATERIAL

For The Academic Year : 2021-2022

Coordinating Committee

Sri Syed Omer Jaleel, ias
Commissioner, Intermediate Education \& Secretary, Telangana State Board of Intermediate Education Hyderabad
Dr. Md. Abdul Khaliq
Controller of Examinations
Telangana State Board of Intermediate Education
\title{ Educational Research and Training Wing }
Ramana Rao Vudithyala
Reader
Mahendar Kumar Taduri
Assistant Professor
\section*{Vasundhara Devi Kanjarla}
Assistant Professor
\section*{Learning Material Contributors}

M. Vijaya Sekhar

J.L. in Maths, GJC, BHEL, Dist. Rangareddy
K. Srinivas
J.L. in Maths, GJC, Shamshabad, Dist. Rangareddy

D. Arundathi

J.L. in Maths, GJC,

Bhudan Pochampally
Dist. Yadadri Bhongiri

B. Roja Rani

J.L. in Maths, GJC, Maheshwaram, Dist. Rangareddy

V. Aruna Kumari

J.L. in Maths, GJC,

Toopran, Dist. Medak

D. Srilatha

J.L. in Maths, RLD. GJC,
S.P. Road, Secunderabad

PREFACE

The ongoing Global Pandemic Covid-19 that has engulfed the entire world has changed every sphere of our life. Education, of course is not an exception. In the absence of Physical Classroom Teaching, Department of Intermediate Education Telangana has successfully engaged the students and imparted education through TV lessons. In the back drop of the unprecedented situation due to the pandemic TSBIE has reduced the burden of curriculum load by considering only 70% syllabus for class room instruction as well as for the forthcoming Intermediate Examinations. It has also increased the choice of questions in the examination pattern for the convenience of the students.

To cope up with exam fear and stress and to prepare the students for annual exams in such a short span of time, TSBIE has prepared "Basic Learning Material" that serves as a primer for the students to face the examinations confidently. It must be noted here that, the Learning Material is not comprehensive and can never substitute the Textbook. At most it gives guidance as to how the students should include the essential steps in their answers and build upon them. I wish you to utilize the Basic Learning Material after you have thoroughly gone through the Text Book so that it may enable you to reinforce the concepts that you have learnt from the Textbook and Teachers. I appreciate ERTW Team, Subject Experts, who have involved day in and out to come out with the Basic Learning Material in such a short span of time.

I would appreciate the feedback from all the stake holders for enriching the learning material and making it cent percent error free in all aspects.

The material can also be accessed through our websitewww.tsbie.cgg.gov.in.

Commissioner \& Secretary

Intermediate Education, Telangana.

CONTENTS

UNIT - I Functions 1
UNIT - III Matrices 13
UNIT - IV Addition of Vectors 47
UNIT - V Vector Products 64
UNIT - VI Trignometric Rations upto Transformation 85
UNIT - IX Hyperbolic Equations 104
UNIT - X Properties of Triangles 108

Unit

FUNCTIONS

Functions: Let A and B be non-empty sets and f be a relation from A to B . If for each element $a \in \mathrm{~A}$, there exists a unique $b \in \mathrm{~B}$ such that $(a, b) \in f$, then f is called a function (or) mapping from A to B . It is denoted by $f: A \rightarrow B$. The set A is called the domain of f and B is called the co-domain of f.
Range: If $f: A \rightarrow B$ is a function, then $f(\mathrm{~A})$, the set of all f-images of elements in A , is called the range of f. Clearly $f(A)=\{f(a) / a \in A\} \subseteq B$. Also $f(\mathrm{~A})=\{b \in \mathrm{~B} / b=f(a)$ for some $a \in \mathrm{~A}\}$.
Injection or one-one function: A function $f: A \rightarrow B$ is called an injection if distinct elements of A have distinct f-images in B . An injection is also called a one-one function.
$f: A \rightarrow B$ is an injection $\Leftrightarrow a_{1}, a_{2} \in \mathrm{~A}$ and $a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)$ $\Leftrightarrow a_{1}, a_{2} \in \mathrm{~A}$ and $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow a_{1}=a_{2}$
Surjection: A function $f: A \rightarrow B$ is called a surjection if the range of f is equal to the codomain.

$$
\begin{aligned}
f: A \rightarrow B \text { is a surjection } & \Leftrightarrow \text { range } f=f(\mathrm{~A})=\mathrm{B} \text { (co-domain) } \\
& \Leftrightarrow \mathrm{B}=\{f(a) \mid a \in \mathrm{~A}\} \\
& \Leftrightarrow \text { for every } b \in \mathrm{~B} \text { there exists atleast one } a \in \mathrm{~A} \text { such that } f(a)=b .
\end{aligned}
$$

Bijection: If $f: A \rightarrow B$ is both an injection and surjection then f is said to be a bijection or one to one from A onto B .
(i.e.) $f: A \rightarrow B$ is a bijection $\Leftrightarrow f$ is both injection and surjection.
\Leftrightarrow (i) If $\mathrm{a}_{1}, \mathrm{a}_{2} \in \mathrm{~A}$ and $f\left(\mathrm{a}_{1}\right)=f\left(\mathrm{a}_{2}\right) \Rightarrow \mathrm{a}_{1}=\mathrm{a}_{2}$
(ii) for every $b \in \mathrm{~B} \exists$ atleast one $a \in \mathrm{~A}$ such that $f(a)=b$.

Finite set: If A is empty or $\exists n \in \mathrm{~N}$ such that there is a bijection from A onto $\{1,2,3$ \qquad n\}
then A is called a finite set. In such a case we say that the number of elements in A is n and denote it by $|\mathrm{A}|$ or $n(\mathrm{~A})$.

Equality of functions: Let f and g be functions. We say f and g are equal and write $f=g$ if domain of $f=$ domain of g and $f(x)=g(x)$ for all $x \in$ domain f.
Identity function: Let A be a non-empty set. Then the function f : $\mathrm{A} \rightarrow \mathrm{A}$ defined by $f(x)=\mathrm{x} \forall$ $x \in \mathrm{~A}$ is called the identity function on A and is denoted by I_{A}.
Constant function: A function $f: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a constant function, if the range of f contains one and only one element i.e. $f(x)=c \forall x \in \mathrm{~A}$, for some fixed $c \in \mathrm{~B}$. In this case the constant function f will be denoted by c itself.

Very Short Answer Questions

1. If $f: \mathrm{R} \backslash\{0\} \rightarrow \mathrm{R}$ is defined by $f(x)=x+\frac{1}{x}$ then prove that $(f(x))^{2}=f\left(x^{2}\right)+f(1)$.

Sol. Since $f(x)=\left(x+\frac{1}{x}\right)$

$$
\begin{aligned}
f\left(x^{2}\right)+f(1) & =x^{2}+\frac{1}{x^{2}}+\left(1+\frac{1}{1}\right) \\
& =x^{2}+\frac{1}{x^{2}}+2 \\
& =\left(x+\frac{1}{x}\right)^{2}=[f(x)]^{2}
\end{aligned}
$$

2. If the function f is defined by $f(x)=\left\{\begin{array}{l}3 x-2, x>3 \\ x^{2}-2,-2 \leq x \leq 2 \\ 2 x+1, x<-3\end{array}\right.$ then find the values, if exists, of (i) $f(4)$, (ii) $f(2.5)$, (iii) $f(-2)$, (iv) $f(-4)$, (v) $f(0)$, (vi) $f(-7)$.

Sol. Note that the domain of f is $(-\infty,-3) \cup[-2,2] \cup(3, \infty)$
(i) Since $f(x)=3 x-2$, for $x>3$, we have $f(4)=12-2=10$
(ii) 2.5 does not belong to domain $f, f(2.5)$ is not defined.
(iii) Since $f(x)=x^{2}-2,-2 \leq x \leq 2$, we have $f(-2)=(-2)^{2}-2=2$
(iv) Since $f(x)=2 x+1, x<-3$, we have $f(-4)=2(-4)+1=-7$
(v) Since $f(x)=x^{2}-2,-2 \leq x \leq 2$, we have $f(0)=0^{2}-2=-2$
(vi) Since $f(x)=2 x+1, x<-3$, we have $f(-7)=2(-7)+1=-13$
3. If $\mathrm{A}=\left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$ and $f: \mathrm{A} \rightarrow \mathrm{B}$ is surjection defined by $f(x)=\operatorname{Cos}(x)$ then find B .

Sol. Let $f: \mathrm{A} \rightarrow \mathrm{B}$ be a surjection defined by $f(x)=\operatorname{Cos}(x)$

$$
\text { Then } \mathrm{B}=\text { rang of } f=f(A)=\left\{f(0), f\left(\frac{\pi}{6}\right), f\left(\frac{\pi}{4}\right), f\left(\frac{\pi}{3}\right), f\left(\frac{\pi}{2}\right)\right\}
$$

4. If $f(x)=\frac{\operatorname{Cos}^{2} x+\operatorname{Sin}^{4} x}{\operatorname{Sin}^{2} x+\operatorname{Cos}^{4} x} \forall x \in R$ then show that $f(2012)=1$.

Sol. $f(x)=\frac{\operatorname{Cos}^{2} x+\operatorname{Sin}^{4} x}{\operatorname{Sin}^{2} x+\operatorname{Cos}^{4} x}$

$$
\begin{aligned}
& =\frac{1-\operatorname{Sin}^{2} x+\operatorname{Sin}^{4} x}{1-\operatorname{Cos}^{2} x+\operatorname{Cos}^{4} x} \\
& =\frac{1-\operatorname{Sin}^{2} x\left(1-\operatorname{Sin}^{2} x\right)}{1-\operatorname{Cos}^{2} x\left(1-\operatorname{Cos}^{2} x\right)} \\
& =\frac{1-\operatorname{Sin}^{2} x \operatorname{Cos}^{2} x}{1-\operatorname{Sin}^{2} x \operatorname{Cos}^{2} x}
\end{aligned}
$$

$$
f(x)=1
$$

$$
f(2012)=1
$$

5. If the function f is defined by $f(x)=\left\{\begin{array}{ll}x+2, & x>1 \\ 2, & -1 \leq x \leq 1 \\ x-1, & -3<x<-1\end{array}\right.$, then find the values of
(i) $f(3)$
(ii) $f(0)$
(iii) $f(-1.5)$
(iv) $f(2)+f(-2)$
(v) $f(-5)$

Sol. (i) Since $f(x)=x+2, x>1$ we have $f(3)=3+2=5$
(ii) Since $f(x)=2,-1 \leq x \leq 1$ we have $f(0)=2$
(iii) Since $f(x)=x-1,-3<x<-1$ we have $f(-1.5)=-1.5-1=-2.5$
(iv) Since $f(x)=x+2, x>1$ we have $f(2)=2+2=4$

$$
\begin{aligned}
& f(x)=x-1,-3<x<-1 \text { we have } f(-2)=-2-1=-3 \\
& f(2)+f(-2)=4+(-3)=4-3=1
\end{aligned}
$$

(v) As -5 does not belong to domain $f, f(-5)$ is not defined.
6. $f: R \backslash\{0\} \rightarrow R$ is defined by $f(x)=x^{3}-\frac{1}{x^{3}}$ then show that $f(x)+f\left(\frac{1}{x}\right)=0$.

Sol. $\quad f(x)=x^{3}-\frac{1}{x^{3}}$

$$
\begin{aligned}
& f\left(\frac{1}{x}\right)=\left(\frac{1}{x}\right)^{3}-\frac{1}{\left(\frac{1}{x}\right)^{3}} \\
& f\left(\frac{1}{x}\right)=\frac{1}{x^{3}}-x^{3} \\
& =f(x)+f\left(\frac{1}{x}\right)=x^{3}-\frac{1}{x^{3}}+\frac{1}{x^{3}}-x^{3}=0
\end{aligned}
$$

7. If $f: R \rightarrow R$ is defined by $f(x)=\frac{1-x^{2}}{1+x^{2}}$ then show that, $f(\tan \theta)=\operatorname{Cos} 2 \theta$.

Sol. $f(x)=\frac{1-x^{2}}{1+x^{2}}$

$$
\begin{aligned}
& f(\tan \theta)=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1-\frac{\operatorname{Sin}^{2} \theta}{\operatorname{Cos}^{2} \theta}}{1+\frac{\operatorname{Sin}^{2} \theta}{\operatorname{Cos}^{2} \theta}} \\
& f(\tan \theta)=\frac{\frac{\operatorname{Cos}^{2} \theta-\operatorname{Sin}^{2} \theta}{\operatorname{Cos}^{2} \theta}}{\frac{\operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta}{\operatorname{Cos}^{2} \theta}}=\frac{\operatorname{Cos}^{2} \theta-\operatorname{Sin}^{2} \theta}{\operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta} \\
& f(\tan \theta)=\operatorname{Cos}^{2} \theta-\operatorname{Sin}^{2} \theta=\operatorname{Cos} 2 \theta
\end{aligned}
$$

8. If $f: R \backslash[\pm 1] \rightarrow R$ is defined by $f(x)=\log \left|\frac{1+x}{1-x}\right|$, then show that $f\left(\frac{2 x}{1+x^{2}}\right)=2 f(x)$.

Sol. $\quad f(x)=\log \left|\frac{1+x}{1-x}\right|$

$$
f\left(\frac{2 x}{1+x^{2}}\right)=\log \left|\frac{1+\frac{2 x}{1+x^{2}}}{1-\frac{2 x}{1+x^{2}}}\right|
$$

$$
\begin{aligned}
& =\log \left|\frac{\frac{1+x^{2}+2 x}{1+x^{2}}}{\frac{1+x^{2}-2 x}{1+x^{2}}}\right| \\
& =\log \left|\frac{(1+x)^{2}}{(1-x)^{2}}\right| \\
& =\log \left|\frac{1+x}{1-x}\right|^{2} \\
& =2 \log \left|\frac{1+x}{1-x}\right| \\
& f\left(\frac{2 x}{1+x^{2}}\right)=2 f(x)
\end{aligned}
$$

9. $\mathrm{A}=\{-2,-1,0,1,2\}$ and $f: \mathrm{A} \rightarrow \mathrm{B}$ is a surjection defined by $f(x)=x^{2}+x+1$ then find B.

Sol. $f: \mathrm{A} \rightarrow \mathrm{B}$ is a surjection $\Rightarrow \forall b \in B \exists a \in A$ such that $f(a)=b$

$$
\mathrm{A}=\{-2,-1,0,1,2\}
$$

$$
f(x)=x^{2}+x+1
$$

$$
f(-2)=(-2)^{2}+(-2)+1=4-2=3
$$

$$
f(-1)=(-1)^{2}+(-1)+1=1
$$

$$
f(0)=(0)^{2}+(0)+1=1
$$

$$
f(1)=1^{2}+1+1=3
$$

$$
f(2)=(2)^{2}+2+1=7
$$

$\therefore B=\{1,3,7\}$
10. $\mathrm{A}=\{1,2,3,4\}$ and $f: \mathrm{A} \rightarrow \mathrm{R}$ is a function defined by $f(x)=\frac{x^{2}-x+1}{x+1}$, then find the range of f.

Sol. $\quad f: \mathrm{A} \rightarrow \mathrm{R} \Rightarrow f(\mathrm{~A})=\mathrm{R}$
$f(x)=\frac{x^{2}-x+1}{x+1}$
$f(1)=\frac{1^{2}-1+1}{1+1}=\frac{1}{2}$

$$
\begin{aligned}
& f(2)=\frac{2^{2}-2+1}{2+1}=\frac{3}{3}=1 \\
& f(3)=\frac{3^{2}-3+1}{3+1}=\frac{7}{4} \\
& f(4)=\frac{4^{2}-4+1}{4+1}=\frac{13}{5}
\end{aligned}
$$

$$
\text { Range of } f=\left\{\frac{1}{2}, 1, \frac{7}{4}, \frac{13}{5}\right\}
$$

11. If the function $f: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)=\frac{3^{x}+3^{-x}}{2}$, then show that $f(x+y)+f(x-y)=2 f(x) f(y)$.

Sol. $f(x)=\frac{3^{x}+3^{-x}}{2}, f(y)=\frac{3^{y}+3^{-y}}{2}$

$$
\begin{aligned}
\text { LHS } & \Rightarrow f(x+y)+f(x-y)=\frac{3^{(x+y)}+3^{-(x+y)}}{2}+\frac{3^{x-y}+3^{-(x-y)}}{2} \\
& =\frac{1}{2}\left[3^{x+y}+3^{-(x+y)}+3^{(x-y)}+3^{-(x-y)}\right] \\
& =\frac{1}{2}\left[3^{x} 3^{y}+3^{x} 3^{-y}+3^{-x} 3^{y}+3^{-x} 3^{-y}\right]
\end{aligned}
$$

$$
R \mathrm{HS} \Rightarrow 2 f(x) f(y)
$$

$$
=2\left(\frac{3^{x}+3^{-x}}{2}\right)\left(\frac{3^{y}+3^{-y}}{2}\right)
$$

$$
=\frac{1}{2}\left(3^{x}+3^{-x}\right)\left(3^{y}+3^{-y}\right)
$$

$$
=\frac{1}{2}\left(3^{x} 3^{y}+3^{x} 3^{-y}+3^{-x} 3^{y}+3^{-x} 3^{-y}\right)
$$

$$
=\frac{1}{2}\left(3^{x+y}+3^{x-y}+3^{-(x-y)}+3^{-(x+y)}\right)
$$

$$
=\frac{1}{2}\left(3^{(x+y)}+3^{-(x+y)}+3^{(x-y)}+3^{-(x-y)}\right)
$$

LHS = RHS

$$
f(x+y)+f(x-y)=2 f(x) f(y)
$$

PRACTICE PROBLEMS

1. $\quad f: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)=\frac{4^{x}}{4^{x}+2}$, then show that $f(1-x)=1-f(x)$ and hence deduce the value of $f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)$.

Real valued function

If X is any set, $f: \mathrm{X} \rightarrow \mathrm{R}$ then f is called a real valued function.
12. Find the domains of the following real valued functions
i) $f(x)=\frac{1}{\left(x^{2}-1\right)(x+3)} \in \mathrm{R}$

Sol. $\frac{1}{\left(x^{2}-1\right)(x+3)} \in \mathrm{R} \Rightarrow \frac{1}{(x+1)(x-1)(x+3)} \in \mathrm{R}$
$\Rightarrow(x+1)(x-1)(x+3) \neq 0 \Rightarrow x \neq-1,1,-3$,
Domain of f is $\mathrm{R} \backslash\{1,-1,-3\}$
ii) $f(x)=\frac{2 x^{2}-5 x+7}{(x-1)(x-2)(x-3)}$

Sol. $\frac{2 x^{2}-5 x+7}{(x-1)(x-2)(x-3)} \in R$
$\Rightarrow(x-1)(x-2)(x-3) \neq 0$
$\Rightarrow x \neq 1,2,3$
Domain of f is $R \backslash\{1,2,3\}$
iii) $\quad f(x)=\frac{1}{\log (2-x)}$

Sol. $\frac{1}{\log (2-x)} \in R$
$\Rightarrow(2-x)>0$
$2-x \neq 1$
$x-2<0$
$x<2$

$$
-x \neq-1
$$

$$
x \neq 1
$$

Domain of f is $(-\infty, 2)-\{1\}$
iv) $\quad f(x)=|x-3|$

Sol. $f(x)=|x-3|$
$f(x)=|x|=\left\{\begin{array}{l}x \text { if } x \geq 0 \\ -x \text { if } x<0\end{array}\right.$
$\Rightarrow|x-3|=\left\{\begin{array}{l}x-3 \text { if } x-3 \geq 0 \\ -(x-3) \text { if } x-3<0\end{array}\right.$
Domain of f is R .
v) $\quad f(x)=\sqrt{4 x-x^{2}}$

Sol. $f(x)=\sqrt{4 x-x^{2}} \in R$

$$
\Leftrightarrow 4 x-x^{2} \geq 0
$$

$$
\Leftrightarrow x^{2}-4 x \leq 0
$$

$$
\Leftrightarrow x(x-4) \leq 0
$$

$$
\Leftrightarrow x \geq 0, x-4 \leq 0
$$

Domain of f is $[0,4]$
vi) $f(x)=\frac{1}{\sqrt{1-x^{2}}}$

Sol. $f(x)=\frac{1}{\sqrt{1-x^{2}}}$

$$
\begin{aligned}
& \sqrt{1-x^{2}}>0 \\
& \Rightarrow x^{2}-1<0 \\
& \Rightarrow(x+1)(x-1)<0 \\
& \Rightarrow(x+1)>0,(x-1)<0 \\
& x>-1 ; x<1
\end{aligned}
$$

Domain of f is $(-1,1)$
13. Find the range of the following real valued functions
i) $\log \left|4-x^{2}\right|$

Sol. $\quad f(x)=\log \left|4-x^{2}\right|$
$f(x)=\log x ;$ Range $=(-\infty, \infty)$
$f(x)=|x| ;$ Range $=[0, \infty)$
$f(x) \in R \Rightarrow 4-x^{2} \neq 0, x^{2} \neq 4, x \neq-2,2$

Domain of $f=\mathrm{R}-\{-2,2\}$
Range of $f=\mathrm{R}$
ii) $\quad f(x)=\sqrt{[x]-x}$

Sol. $f(x)=\sqrt{[x]-x}$
$f(x)=[x]-x \geq 0$
$=[x] \geq x$
Domain of $f=$ Integers Z
Range of $f=\{0\}$
iii) $\quad f(x)=\frac{\operatorname{Sin} \pi[x]}{1+\left[x^{2}\right]}$

Sol. $\quad f(x)=\frac{\operatorname{Sin} \pi[x]}{1+\left[x^{2}\right]}$
$=1+\left[x^{2}\right] \neq 0$
Domain of $f=\mathrm{R} \quad[\because \operatorname{Sin} \pi=0]$
Range of $f=\{0\}$
iv) $f(x)=\frac{x^{2}-4}{x-2}$

Sol. $f(x)=\frac{x^{2}-4}{x-2}$
$x-2 \neq 0$
$f(x)=\frac{x^{2}-4}{x-2}$

$$
=\frac{(x+2)(x-2)}{(x-2)}=x+2
$$

$f(x) \neq 2+2=4$
Domain of $f=\mathrm{R}-\{2\}$
Range of $f=\mathrm{R}-\{4\}$

PRACTICE PROBLEMS

I. Find the domains of the following real valued functions
(i) $\quad f(x)=\frac{3^{x}}{x+1}$

Ans: $\mathrm{R}-\{-1\}$
(ii) $f(x)=\sqrt{x^{2}-25}$

Ans: $\mathrm{R}-(-5,5)$
(iii) $f(x)=\sqrt{x-[x]}$

Ans: R
(iv) $f(x)=\sqrt{[x]-x}$

Ans: Z
(v) $f(x)=\frac{1}{6 x-x^{2}+5}$

Ans: $\mathrm{R}-\{1,5\}$
(vi) $f(x)=\frac{1}{\sqrt{x^{2}-a^{2}}}(a>0)$

Ans: $\mathrm{R}-[-a, a]$
(vii) $f(x)=\sqrt{(x+2)(x-3)}$

Ans: $\mathrm{R}-(-2,3)$
(viii) $f(x)=\sqrt{(x-\alpha)(\beta-x)} \quad(0<\alpha<\beta) \quad$ Ans: $x \in[\alpha, \beta]$
(ix) $f(x)=\sqrt{2-x}+\sqrt{1+x}$

Ans: $[-1,2]$
(x) $f(x)=\sqrt{x^{2}-1}+\frac{1}{\sqrt{x^{2}-3 x+2}}$

Ans: $\mathrm{R}-[-1,2]$
II. Find the ranges of the following real valued functions
(i) $\sqrt{9+x^{2}}$

Ans: $[3, \infty)$

Long Answer Questions

1. If $f=\{(4,5),(5,6),(6,-4)\}, \mathrm{g}=\{(4,-4),(6,5),(8,5)\}$ then find
(i) $f+g$
(ii) $f-g$
(iii) $2 f+4 g$
(iv) $f+4$
(v) $f g$
(vi) f / g
(vii) $|f|$
(viii) \sqrt{f}
(ix) f^{2}
(x) f^{3}

Sol. Domain of $f=\mathrm{A}=\{4,5,6\}$
Domain of $g=B=\{4,6,8\}$
Domain of $f \pm g=\mathrm{A} \cap \mathrm{B}=[4,6]$
(i) $f+g=\{(4,5-4),(6,-4+5)\}=\{(4,1),(6,1)\}$
(ii) $f-g=\{(4,5+4),(6,-4-5)\}=\{(4,9),(6,-9)\}$
(iii) Domain of $2 f=\mathrm{A}=\{4,5,6\}$

Domain of $4 g=B=\{4,6,8\}$
$\therefore 2 f=\{(4,10),(5,12),(6,-8)\}$
$\therefore 4 \mathrm{~g}=\{(4,-16),(6,20),(8,20)\}$
Domain of $2 f+4 g=\{4,6\}$
$2 f+4 g=\{(4,10-16),(6,-8+20)\}=\{(4,-6),(6,12)\}$
(iv) Domain of $f+4=\mathrm{A}=\{4,5,6\}$

$$
\begin{aligned}
f+4 & =\{(4,5+4),(5,6+4),(6,-4+4)\} \\
& =\{(4,9),(5,10),(6,0)\}
\end{aligned}
$$

(v) Domain of $f g=\mathrm{A} \cap \mathrm{B}=\{4,6\}$

$$
\begin{aligned}
f g & =\{(4,(5)(-4)),(6,(-4)(-5))\} \\
& =\{(4,-20),(6,20)\}
\end{aligned}
$$

(vi) Domain of $\frac{f}{g}=\{4,6\}$
$\therefore \frac{f}{g}=\left\{\left(4, \frac{-5}{4}\right),\left(6, \frac{-4}{5}\right)\right\}$
(vii) Domain of $|\mathrm{f}| \mathrm{A}=\{4,5,6\}$
$|f|=\{(4,5),(5,6),(6,4)\}$
(viii) Domain of $\sqrt{f}\{4,5\}$
$\sqrt{f}=\{(4, \sqrt{5}),(5, \sqrt{6})\}$
(ix) Domain of $f^{2}=\mathrm{A}=\{4,5,6\}$

$$
f^{2}=\{(4,25),(5,36),(6,16)\}
$$

(x) Domain of $f^{3}=\mathrm{A}=\{4,5,6\}$

$$
f^{3}=\{(4,125),(5,216),(6,-64)\}
$$

2. If $f(x)=x^{2}$ and $g(x)=|x|$, find the following functions:
(i) $f+g$
(ii) $f-g$
(iii) $f g$
(iv) $2 f$
(v) f^{2}
(vi) $f+3$

Sol. $f(x)=x^{2}$
$g(x)=|x|= \begin{cases}x, & x \geq 0 \\ -x, & x<0\end{cases}$
Domain $f=$ Domain of $g=\mathrm{R}$
Hence the domain of all the functions is R .
(i) $\quad(f+g)(x)=f(\mathrm{x})+g(\mathrm{x})=x^{2}+|x|= \begin{cases}x^{2}+x, & x \geq 0 \\ x^{2}-x, & x<0\end{cases}$
(ii) $\quad(f-g)(x)=f(x)-g(x)=x^{2}-|x|= \begin{cases}x^{2}-x, & x>0 \\ x^{2}+x, & x<0\end{cases}$
(iii) $(f g)(x)=f(x) g(x)=x^{2}|x|=\left\{\begin{array}{l}x^{3}, x \geq 0 \\ -x^{3}, x<0\end{array}\right.$
(iv) (2f) $x=2 f(x)=2 x^{2}$
(v) $f^{2}(x)=(f(x))^{2}=\left(x^{2}\right)^{2}=x^{4}$
(vi) $(f+3)(x)=f(x)+3=x^{2}+3$
3. If f and g are real valued functions defined by $f(x)=2 x-1, g(x)=x^{2}$, then find
(i) $(3 f-2 g)(x)$
(ii) $(f g)(x)$
(iii) $\left(\frac{\sqrt{f}}{g}\right)(x)$
(iv) $(f+g+2)(x)$

Sol. $f(x)=2 x-1$,

$$
g(x)=x^{2}
$$

$$
\Rightarrow(f-g) x=f(x)-g(x)
$$

(i) $(3 f-2 g)(x)=3 f(x)-2 g(x)=3(2 x-1)-2\left(x^{2}\right)$

$$
\begin{aligned}
& =6 x-3-2 x^{2} \\
& =-2 x^{2}+6 x-3
\end{aligned}
$$

$(3 f-2 g) x=-2 x^{2}+6 x-3$
(ii) $(f g)(x)=f(x) . g(x)$

$$
=(2 x-1)\left(x^{2}\right)=2 x^{3}-x^{2}
$$

(iii) $\left(\frac{\sqrt{f}}{g}\right) x=\frac{\sqrt{f(x)}}{g(x)}=\frac{\sqrt{2 x-1}}{x^{2}}$
(iv) $(f+g+2) x=f(x)+g(x)+2$

$$
\begin{aligned}
& =2 x-1+x^{2}+2 \\
& =x^{2}+2 x+1=(x+1)^{2}
\end{aligned}
$$

4. If $f=\{(1,2),(2,-3),(3,-1)\}$ then find
(i) $2 f$
(ii) $2+f$
(iii) \sqrt{f}
(iv) f^{2}

Sol. $f=\{(1,2),(2,-3),(3,-1)\}$
Domain of $f, \mathrm{~A}=\{1,2,3\}$
(i) $2 f=\{(1,2 \times 2),(2,2(-3),(3,2(-1)\}=\{(1,4),(2,-6),(3,-2)\}$
(ii) $2+f=\{(1,2+2),(2,-3+2),(3,-1+2)\}$ $2+f=\{(1,4),(2,-1),(3,1)\}$
(iii) $\sqrt{f}=\{(1, \sqrt{2})\}$
(iv) $f^{2}=\left\{\left(1,2^{2}\right),\left(2,(-3)^{2}\right),\left(3,(-1)^{2}\right)\right\}=\{(1,4),(2,9),(3,1)\}$

Unit

MATRICES

Matrix

An ordered rectangular array of elements is called as matrix.
Ex: $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ 3 & 0 & -6\end{array}\right], \quad B=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]$

Order of Matrix

A matrix having m rows and n columns is said to be of order $\mathrm{m} \times \mathrm{n}$, read as m cross n or m by n.

Types of Matrices

1. Square Matrix: A matrix in which the number of rows is equal to the number of columns is called a square matrix.

Ex: $\left[\begin{array}{rr}1 & -1 \\ 0 & 4\end{array}\right]_{2 \times 2}\left[\begin{array}{rrr}2 & 0 & 1 \\ 4 & -1 & 2 \\ 7 & 6 & 9\end{array}\right]_{3 \times 3}$

Principal Diagonal / Diagonal

If $\mathrm{A}=\left[a_{i j}\right]$ is a square matrix of order n , the elements $a_{11}, a_{12} \ldots, a_{n n}$ are said to constitute its principal diagonal or simply the diagonal. Hence a_{ij} is an element of the diagonal according as $\mathrm{i}=\mathrm{j}$.

Trace of Matrix

The sum of the elements of the diagonal of a square matrix A is called the trace of A and is denoted by $\operatorname{Tr}(\mathrm{A})$.

$$
\operatorname{Tr}(\mathrm{A})=\sum_{i=1}^{n} a_{i i}
$$

Ex:

2. Diagonal Matrix

If each non-diagonal element of a square matrix is equal to zero, then the matrix is called a diagonal matrix.

3. Scalar Matrix

If each non-diagonal element of a square matrix is zero and all diagonal elements are equal to each other, then it is called a scalar matrix.

4. Unit matrx / Identity matrix

If each non-diagonal element of a square matrix is equal to zero and each diagonal element is equal to 1 , then that matrix is called a unit matrix or identity matrix.

Ex: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]_{2 \times 2},\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]_{3 \times 3}$ are identity matrices.
5. Null Matrix or Zero matrix

If each element of a matrix is zero, then it is called a null matrix or zero matrix. It is denoted by $\mathrm{O}_{\mathrm{m} \times \mathrm{n}}$ or O .
Ex.: $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]_{2 \times 2}, \quad O=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]_{3 \times 2}$
6. Row matrix

A matrix with only one row is called a Row matrix.
Ex: $\left.\begin{array}{lll}1 & 3 & -2\end{array}\right]_{1 \times 3}$

7. Column Matrix

A matrix with only one column is called a column matrix.
Ex: $\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]_{3 \times 1}$

8. Triangular matrices

A square matrix $\mathrm{A}=\left[a_{i j}\right]$ is said to be upper triangular if $a_{\mathrm{ij}}=0$ for all $i>j$.
'A' is said to be lower triangular if $a_{i j}=0 \forall i<\mathrm{j}$.
Ex: $\left[\begin{array}{rrr}2 & -4 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{rr}-3 & 1 \\ 0 & 4\end{array}\right]$ are upper triangular matrices.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right] \text { are lower triangular matrices. }
$$

Equality of matrices

Matrices A and B are said to be equal if A and B are of the same order and the corresponding elements of A and B are the same.
Thus $\mathrm{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right], \mathrm{B}=\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23}\end{array}\right]$ are equal if $a_{i j}=b_{i j}$ for $i=1,2,3$ and $j=1,2,3$

Sum of two matrices

Let A and B be matrices of the same order. Then the sum of A and B, denoted by A $+B$ is defined as the matrix of the same order in which each element is the sum of the corresponding elements of A and B .

Scalar multiple of a matrix

Let A be a matrix of order $m \times n$ and k be a scalar. Then the $m \times n$ matrix obtained by multiplying each element of A by k is called a scalar multiple of A and is denoted by $k \mathrm{~A}$.
If $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ then $\mathrm{kA}=\left[k a_{i j}\right]_{m \times n}$

Properties of Scalar multiplication of a matrix

Let A and B be matrices of the same order and α, β be scalars. Then
(i) $\alpha(\beta \mathrm{A})=(\alpha \beta) \mathrm{A}=\beta(\alpha \mathrm{A})$
(ii) $(\alpha+\beta) \mathrm{A}=\alpha \mathrm{A}+\beta \mathrm{A}$
(iii) $0 \mathrm{~A}=\mathrm{O}$
(iv) $\alpha \mathrm{O}=\mathrm{O}$
(v) $\alpha(\mathrm{A}+\mathrm{B})=\alpha \mathrm{A}+\alpha \mathrm{B}$

Very Short Answer Questions

1. If $\mathrm{A}=\left[\begin{array}{rr}-1 & 3 \\ 4 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{rr}2 & 1 \\ 3 & -5\end{array}\right], \mathrm{X}=\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right]$ and $\mathrm{A}+\mathrm{B}=\mathrm{X}$ then find the values of $x_{1}, x_{2}, x_{3}, x_{4}$.
Sol. $\mathrm{A}=\left[\begin{array}{rr}-1 & 3 \\ 4 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}2 & 1 \\ 3 & -5\end{array}\right], \mathrm{X}=\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right]$

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B}=\mathrm{X} \\
& \Rightarrow\left[\begin{array}{rr}
-1 & 3 \\
4 & 2
\end{array}\right]+\left[\begin{array}{rr}
2 & 1 \\
3 & -5
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{cc}
1 & 4 \\
7 & -3
\end{array}\right]=\left[\begin{array}{cc}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}=1 \\
& x_{2}=4 \\
& x_{3}=7
\end{aligned}
$$

$$
x_{4}=-3
$$

2. $\mathrm{A}=\left[\begin{array}{rrr}-1 & -2 & 3 \\ 1 & 2 & 4 \\ 2 & -1 & 3\end{array}\right], \mathrm{B}=\left[\begin{array}{rrr}1 & -2 & 5 \\ 1 & -2 & 2 \\ 1 & 2 & -3\end{array}\right], \mathrm{C}=\left[\begin{array}{rrr}-2 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 0 & 1\end{array}\right]$ then find $\mathrm{A}+\mathrm{B}+\mathrm{C}$.

Sol. $\quad \mathrm{A}=\left[\begin{array}{rrr}-1 & -2 & 3 \\ 1 & 2 & 4 \\ 2 & -1 & 3\end{array}\right], \mathrm{B}=\left[\begin{array}{rrr}1 & -2 & 5 \\ 1 & -2 & 2 \\ 1 & 2 & -3\end{array}\right], \mathrm{C}=\left[\begin{array}{rrr}-2 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 0 & 1\end{array}\right]$

$$
A+B+C=\left[\begin{array}{lcc}
-1+1+(-2) & -2+(-2)+1 & 3+5+2 \\
1+1+1 & 2+(-2)+1 & 4+2+2 \\
2+1+2 & -1+2+0 & 3+(-3)+1
\end{array}\right]
$$

$$
=\left[\begin{array}{rrr}
-2 & -3 & 10 \\
3 & 1 & 8 \\
5 & 1 & 1
\end{array}\right]
$$

3. If $\mathrm{A}=\left[\begin{array}{rrr}3 & 2 & -1 \\ 2 & -2 & 0 \\ 1 & 3 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{rrr}-3 & -1 & 0 \\ 2 & 1 & 3 \\ 4 & -1 & 2\end{array}\right]$ and $\mathrm{X}=\mathrm{A}+\mathrm{B}$ then find X .

Sol. $\mathrm{X}=\mathrm{A}+\mathrm{B}$

$$
\begin{aligned}
& X=\left[\begin{array}{rrr}
3 & 2 & -1 \\
2 & -2 & 0 \\
1 & 3 & 1
\end{array}\right]+\left[\begin{array}{rrr}
-3 & -1 & 0 \\
2 & 1 & 3 \\
4 & -1 & 2
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
3+(-3) & 2+(-1) & -1+0 \\
2+2 & -2+1 & 0+3 \\
1+4 & 3+(-1) & 1+2
\end{array}\right]=\left[\begin{array}{crr}
0 & 1 & -1 \\
4 & -1 & 3 \\
5 & 2 & 3
\end{array}\right]
\end{aligned}
$$

4. If $\left[\begin{array}{cc}x-3 & 2 y-8 \\ z+2 & 6\end{array}\right]=\left[\begin{array}{cc}5 & 2 \\ -2 & a-4\end{array}\right]$ then find the values of x, y, z, a.

Sol. $\left[\begin{array}{cc}x-3 & 2 y-8 \\ z+2 & 6\end{array}\right]=\left[\begin{array}{cc}5 & 2 \\ -2 & a-4\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow x-3=5 \Rightarrow x=5+3=8 \Rightarrow x=8 \\
& \Rightarrow 2 y-8=2 \Rightarrow 2 y=2+8=10 \\
& 2 y=10 \\
& \qquad y=\frac{10}{2}=5 \Rightarrow y=5 \\
& \Rightarrow z+2=-2 \Rightarrow z=-2-2=-4 \\
& \Rightarrow 6=a-4 \Rightarrow a=6+4 \Rightarrow a=10
\end{aligned}
$$

5. If $\left[\begin{array}{ccc}x-1 & 2 & 5-y \\ 0 & z-1 & 7 \\ 1 & 0 & a-5\end{array}\right]=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 4 & 7 \\ 1 & 0 & 0\end{array}\right]$ then find the values of x, y, z, a.

Sol. $\left[\begin{array}{ccc}x-1 & 2 & 5-y \\ 0 & z-1 & 7 \\ 1 & 0 & a-5\end{array}\right]=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 4 & 7 \\ 1 & 0 & 0\end{array}\right]$
$\Rightarrow x-1=1 \Rightarrow x=1+1=2 \Rightarrow x=2$

$$
\begin{aligned}
& \Rightarrow 5-y=3 \Rightarrow y=5-3=2 \Rightarrow y=2 \\
& \Rightarrow z-1=4 \Rightarrow z=4+1=5 \Rightarrow z=5 \\
& \Rightarrow a-5=0 \Rightarrow a=5
\end{aligned}
$$

6. Find the trace of $\mathrm{A}=\left[\begin{array}{rrr}1 & 3 & -5 \\ 2 & -1 & 5 \\ 2 & 0 & 1\end{array}\right]$.

Sol. $A=\left[\begin{array}{rrr}1 & 3 & -5 \\ 2 & -1 & 5 \\ 2 & 0 & 1\end{array}\right]$
Trace of $\mathrm{A}=1+(-1)+1=1$
7. If $A=\left[\begin{array}{rrr}0 & 1 & 2 \\ 2 & 3 & 4 \\ 4 & 5 & -6\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$ then find $B-A$ and $4 A-5 B$.

Sol. $\mathrm{A}=\left[\begin{array}{rrr}0 & 1 & 2 \\ 2 & 3 & 4 \\ 4 & 5 & -6\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$

$$
\begin{aligned}
\Rightarrow \mathrm{B} & -\mathrm{A}
\end{aligned}=\left[\begin{array}{ccc}
-1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]-\left[\begin{array}{rrr}
0 & 1 & 2 \\
2 & 3 & 4 \\
4 & 5 & -6
\end{array}\right] .
$$

$$
4 \mathrm{~A}-5 \mathrm{~B}=\left[\begin{array}{ccc}
5 & -6 & -7 \\
8 & 7 & 16 \\
16 & 20 & -19
\end{array}\right]
$$

8. If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{lll}3 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$ then find $3 \mathrm{~B}-2 \mathrm{~A}$.

Sol. $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right] \Rightarrow 2 \mathrm{~A}=\left[\begin{array}{lll}2 & 4 & 6 \\ 6 & 4 & 2\end{array}\right]$
$B=\left[\begin{array}{ccc}3 & 2 & 1 \\ 1 & 2 & 3\end{array}\right] \Rightarrow 3 B=\left[\begin{array}{lll}9 & 6 & 3 \\ 3 & 6 & 9\end{array}\right]$
$3 \mathrm{~B}-2 \mathrm{~A}=\left[\begin{array}{lll}9 & 6 & 3 \\ 3 & 6 & 9\end{array}\right]-\left[\begin{array}{lll}2 & 4 & 6 \\ 6 & 4 & 2\end{array}\right]=\left[\begin{array}{llr}7 & 2 & -3 \\ -3 & 2 & 7\end{array}\right]$
9. If $\mathrm{A}=\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]$ then show that $\mathrm{A}^{2}=-\mathrm{I},\left(i^{2}=-1\right)$.

Sol. $\quad \mathrm{A}=\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]$

$$
\begin{aligned}
& \mathrm{A} \times \mathrm{A}=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \times\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \\
& \mathrm{A}^{2}=\left[\begin{array}{cc}
i^{2}+0 & 0+0 \\
0+0 & 0+i^{2}
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{A}^{2}=-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Rightarrow \mathrm{A}^{2}=-\mathrm{I}
$$

10. If $\mathrm{A}=\left[\begin{array}{ll}4 & 2 \\ -1 & 1\end{array}\right]$ then find A^{2}.

Sol. $\quad A^{2}=\left[\begin{array}{ll}4 & 2 \\ -1 & 1\end{array}\right] \times\left[\begin{array}{ll}4 & 2 \\ -1 & 1\end{array}\right]$
$=\left[\begin{array}{cc}16+(-2) & 8+2 \\ -4+(-1) & -2+1\end{array}\right]$

$$
A^{2}=\left[\begin{array}{cc}
14 & 10 \\
-5 & -1
\end{array}\right]
$$

11. If $\mathrm{A}=\left[\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right]$ then find A^{2}.

Sol. $\quad \mathrm{A}^{2}=\left[\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right] \times\left[\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right]$

$$
\begin{aligned}
& \mathrm{A}^{2}=\left[\begin{array}{ll}
i^{2}+0 & 0+0 \\
0+0 & 0+i^{2}
\end{array}\right] \\
& \mathrm{A}^{2}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right] \Rightarrow \mathrm{A}^{2}=-\mathrm{I}
\end{aligned}
$$

12. If $\mathrm{A}=\left[\begin{array}{cc}2 & 4 \\ -1 & k\end{array}\right]$ and $\mathrm{A}^{2}=\mathrm{O}$ then find k.

Sol. $A=\left[\begin{array}{ll}2 & 4 \\ -1 & k\end{array}\right]$
$\mathrm{A}^{2}=\mathrm{A} \times \mathrm{A}=\left[\begin{array}{ll}2 & 4 \\ -1 & k\end{array}\right] \times\left[\begin{array}{cc}2 & 4 \\ -1 & k\end{array}\right]$
$\mathrm{A}^{2}=\left[\begin{array}{cc}4+(-4) & 8+4 k \\ -2+(-k) & -4+k^{2}\end{array}\right]$
$\mathrm{A}^{2}=\left[\begin{array}{cc}0 & 8+4 k \\ -2-k & -4+k^{2}\end{array}\right]$
$\mathrm{A}^{2}=\mathrm{O}$
$\left[\begin{array}{cc}0 & 8+4 k \\ -2-k & -4+k^{2}\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right]$
$8+4 k=0$
$4 k=-8$
$k=\frac{-8}{4}=-2$
$\therefore k=-2$
13. If $A=\left[\begin{array}{rr}-2 & 1 \\ 5 & 0 \\ -1 & 4\end{array}\right]$ and $B=\left[\begin{array}{rrr}-2 & 3 & 1 \\ 4 & 0 & 2\end{array}\right]$ then find $2 A+B^{1}$ and $3 B^{1}-A$.

Sol. $\mathrm{A}=\left[\begin{array}{rr}-2 & 1 \\ 5 & 0 \\ -1 & 4\end{array}\right], \mathrm{B}=\left[\begin{array}{rrr}-2 & 3 & 1 \\ 4 & 0 & 2\end{array}\right]$
$2 \mathrm{~A}=2\left[\begin{array}{rr}-2 & 1 \\ 5 & 0 \\ -1 & 4\end{array}\right]=\left[\begin{array}{ll}-4 & 2 \\ 10 & 0 \\ -2 & 8\end{array}\right]$
$\mathrm{B}=\left[\begin{array}{rrr}-2 & 3 & 1 \\ 4 & 0 & 2\end{array}\right] \mathrm{B}^{1}=\left[\begin{array}{rr}-2 & 4 \\ 3 & 0 \\ 1 & 2\end{array}\right]$
$\Rightarrow 2 \mathrm{~A}+\mathrm{B}^{1}=\left[\begin{array}{ll}-4 & 2 \\ 10 & 0 \\ -2 & 8\end{array}\right]+\left[\begin{array}{cc}-2 & 4 \\ 3 & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}-6 & 6 \\ 13 & 0 \\ -1 & 10\end{array}\right]$
$\Rightarrow 3 \mathrm{~B}^{1}=3\left[\begin{array}{rr}-2 & 4 \\ 3 & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{rr}-6 & 12 \\ 9 & 0 \\ 3 & 6\end{array}\right]$
$\Rightarrow 3 \mathrm{~B}^{1}-\mathrm{A}=\left[\begin{array}{rr}-6 & 12 \\ 9 & 0 \\ 3 & 6\end{array}\right]-\left[\begin{array}{rr}-2 & 1 \\ 5 & 0 \\ -1 & 4\end{array}\right]=\left[\begin{array}{rr}-4 & 11 \\ 4 & 0 \\ 4 & 2\end{array}\right]$
14. If $A=\left[\begin{array}{cr}2 & -4 \\ -5 & 3\end{array}\right]$ then find $A+A^{1}, A A^{1}$.

Sol. $A=\left[\begin{array}{cr}2 & -4 \\ -5 & 3\end{array}\right], \quad A^{1}=\left[\begin{array}{rr}2 & -5 \\ -4 & 3\end{array}\right]$

$$
\begin{aligned}
& \mathrm{A}+\mathrm{A}^{1}=\left[\begin{array}{lr}
2 & -4 \\
-5 & 3
\end{array}\right]+\left[\begin{array}{rr}
2 & -5 \\
-4 & 3
\end{array}\right]=\left[\begin{array}{rr}
4 & -9 \\
-9 & 6
\end{array}\right] \\
& \mathrm{AA}^{1}=\left[\begin{array}{lr}
2 & -4 \\
-5 & 3
\end{array}\right]\left[\begin{array}{rr}
2 & -5 \\
-4 & 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{AA}^{1}=\left[\begin{array}{lr}
4+16 & -10-12 \\
-10-12 & 25+9
\end{array}\right] \\
& \mathrm{AA}^{1}=\left[\begin{array}{lr}
20 & -22 \\
-22 & 34
\end{array}\right]
\end{aligned}
$$

Symmetric matrix

A square matrix A is said to be symmetric if $A^{1}=A$.
$\mathrm{Ex}: \mathrm{A}=\left[\begin{array}{rrr}1 & 2 & 0 \\ 2 & -3 & -1 \\ 0 & -1 & 4\end{array}\right]$

Skew Symmetric matrix

A square matrix A is said to be skew symmetric if $\mathrm{A}^{1}=-\mathrm{A}$.
Ex: $\left[\begin{array}{rrr}0 & 1 & -2 \\ -1 & 0 & 4 \\ 2 & -4 & 0\end{array}\right]$
15. If $\mathrm{A}=\left[\begin{array}{rrr}-1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & x & 7\end{array}\right]$ is a symmetric matrix, then find x.

Sol. $\mathrm{A}=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & x & 7\end{array}\right], \mathrm{A}^{1}=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 2 & 5 & x \\ 3 & 6 & 7\end{array}\right]$
A is Symmetric matrix $\Leftrightarrow A^{1}=A$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-1 & 2 & 3 \\
2 & 5 & x \\
3 & 6 & 7
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 2 & 3 \\
2 & 5 & 6 \\
3 & x & 7
\end{array}\right]} \\
& \Leftrightarrow x=6
\end{aligned}
$$

16. If $\mathrm{A}=\left[\begin{array}{rrr}0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0\end{array}\right]$ is a skew symmetric matrix, then find x.

Sol. A is Skew symmetric matrix $\Leftrightarrow A^{1}=-A$

$$
\begin{aligned}
{\left[\begin{array}{rrr}
0 & -2 & -1 \\
2 & 0 & x \\
1 & -2 & 0
\end{array}\right] } & =-\left[\begin{array}{rrr}
0 & 2 & 1 \\
-2 & 0 & -2 \\
-1 & x & 0
\end{array}\right] \\
{\left[\begin{array}{rrr}
0 & -2 & -1 \\
2 & 0 & x \\
1 & -2 & 0
\end{array}\right] } & =\left[\begin{array}{rrr}
0 & -2 & -1 \\
2 & 0 & 2 \\
1 & -x & 0
\end{array}\right] \\
& \Rightarrow x=2
\end{aligned}
$$

17. If $\mathrm{A}=\left[\begin{array}{rr}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ then show that $\mathrm{AA}^{1}=\mathrm{A}^{1} \mathrm{~A}=\mathrm{I}$.

Sol. $\mathrm{A}=\left[\begin{array}{rr}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right], \mathrm{A}^{1}=\left[\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

$$
\begin{aligned}
\mathrm{AA}^{1} & =\left[\begin{array}{rr}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \alpha+\sin ^{2} \alpha & -\cos \alpha \sin \alpha+\sin \alpha \cos \alpha \\
-\sin \alpha \cos \alpha+\cos \alpha \sin \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha
\end{array}\right] \\
& =\left[\begin{array}{lr}
1 & 0 \\
0 & 1
\end{array}\right]=\mathrm{I} \\
\mathrm{~A}^{1} \mathrm{~A} & =\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \cdot\left[\begin{array}{rr}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{lc}
\cos ^{2} \alpha+\sin ^{2} \alpha & -\cos \alpha \sin \alpha+\sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha-\cos \alpha \sin \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathrm{I}
$$

$$
\therefore \quad \mathrm{AA}^{1}=\mathrm{A}^{1} \mathrm{~A}=\mathrm{I}
$$

Short Answer Questions (4 marks)

1. If $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{lr}1 & -2 \\ -1 & 0 \\ 2 & -1\end{array}\right]$ then find $A B, B A$.

Sol. $\quad \mathrm{AB}=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]_{3 \times 3}\left[\begin{array}{lr}1 & -2 \\ -1 & 0 \\ 2 & -1\end{array}\right]_{3 \times 2}=\left[\begin{array}{ll}0-1+4 & 0+0-2 \\ 1-2+6 & -2+0-3 \\ 2-3+8 & -4+0-4\end{array}\right]$
$\Rightarrow \mathrm{AB}=\left[\begin{array}{ll}3 & -2 \\ 5 & -5 \\ 7 & -8\end{array}\right]$
$\Rightarrow \mathrm{BA}=\left[\begin{array}{lr}1 & -2 \\ -1 & 0 \\ 2 & -1\end{array}\right]_{3 \times 2} \times\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]_{3 \times 3}$
Since the number of column of B is not equal to number of rows of $A, B A$ is not defined.
2. If $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right]$ then examine whether A and B commute with respect to multiplication of matrices.
Sol. Both A and B are square matrices of order 3. Hence both AB, BA are defined and are matrices of order 3 .

$$
\begin{aligned}
\mathrm{AB} & =\left[\begin{array}{rrr}
1 & -2 & 3 \\
2 & 3 & -1 \\
-3 & 1 & 2
\end{array}\right]_{3 \times 3} \times\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right]_{3 \times 3} \\
& =\left[\begin{array}{ccc}
1+0+3 & 0-2+6 & 2-4+0 \\
2+0-1 & 0+3-2 & 4+6+0 \\
-3+0+2 & 0+1+4 & -6+2+0
\end{array}\right] \\
& =\left[\begin{array}{lll}
4 & 4 & -2 \\
1 & 1 & 10 \\
-1 & 5 & -4
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{BA} & =\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right] \times\left[\begin{array}{rrr}
1 & -2 & 3 \\
2 & 3 & -1 \\
-3 & 1 & 2
\end{array}\right] \\
& =\left[\begin{array}{rrr}
1+0-6 & -2+0+2 & 3+0+4 \\
0+2-6 & 0+3+2 & 0-1+4 \\
1+4+0 & -2+6+0 & 3-2+0
\end{array}\right] \\
& =\left[\begin{array}{rrr}
-5 & 0 & 7 \\
-4 & 5 & 3 \\
5 & 4 & 1
\end{array}\right]_{3 \times 3}
\end{aligned}
$$

Which shows that $\mathrm{AB} \neq \mathrm{BA}$.
$\therefore \mathrm{A}$ and B do not commute with respect to multiplication of matrices.
3. If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]_{3 \times 3}$ then show that $A^{2}-4 A-5 I=O$.

Sol. $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$
$\Rightarrow \mathrm{A}^{2}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right] \times\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$

$$
=\left[\begin{array}{ccc}
1+4+4 & 2+2+4 & 2+4+2 \\
2+2+4 & 4+1+4 & 4+2+2 \\
2+4+2 & 4+2+2 & 4+4+1
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
9 & 8 & 8 \\
8 & 9 & 8 \\
8 & 8 & 9
\end{array}\right]
$$

$\Rightarrow 4 \mathrm{~A}=4\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]=\left[\begin{array}{lll}4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4\end{array}\right]$
$\Rightarrow 5 \mathrm{I}=5\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]$
Hence $A^{2}-4 A-5 I$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
9 & 8 & 8 \\
8 & 9 & 8 \\
8 & 8 & 9
\end{array}\right]-\left[\begin{array}{lll}
4 & 8 & 8 \\
8 & 4 & 8 \\
8 & 8 & 4
\end{array}\right]-\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \Rightarrow \mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I}=\mathrm{O}
\end{aligned}
$$

4. If $A=\left[\begin{array}{lrr}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right]$ then do $A B$ and $B A$ exist? If they exist, find them. Do A and B commute with respect to multiplication?

Sol. $\mathrm{A}=\left[\begin{array}{lrr}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right]_{2 \times 3}, \mathrm{~B}=\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right]_{3 \times 2}$
AB multiplication matrix is 2×2 matrix
BA multiplication matrix is 3×3 matrix

$$
\begin{aligned}
\therefore \mathrm{AB} & =\left[\begin{array}{lll}
1 & -2 & 3 \\
-4 & 2 & 5
\end{array}\right] \times\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
2 & 1
\end{array}\right] \\
\mathrm{AB} & =\left[\begin{array}{cc}
2-8+6 & 3-10+3 \\
-8+8+10 & -12+10+5
\end{array}\right]=\left[\begin{array}{cc}
0 & -4 \\
10 & 3
\end{array}\right] \\
\mathrm{BA} & =\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
2 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & -2 & 3 \\
-4 & 2 & 5
\end{array}\right] \\
& =\left[\begin{array}{lll}
2-12 & -4+6 & 6+15 \\
4-20 & -8+10 & 12+25 \\
2-4 & -4+2 & 6+5
\end{array}\right]=\left[\begin{array}{ccc}
-10 & 2 & 21 \\
-16 & 2 & 37 \\
-2 & -2 & 11
\end{array}\right]
\end{aligned}
$$

Since $A B \neq B A, A$ and B are not commutative with respect to multiplication.
5. If $\mathrm{A}=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$ then find A^{4}.

Sol. $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]=3\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow \mathrm{A}^{4}=\left\{3\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\}^{4}=3^{4}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{4} \\
& \mathrm{~A}^{4}=81\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
81 & 0 & 0 \\
0 & 81 & 0 \\
0 & 0 & 81
\end{array}\right]
\end{aligned}
$$

6. If $\mathrm{A}=\left[\begin{array}{rrr}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$ then find A^{3}.

Sol. $A=\left[\begin{array}{rrr}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$

$$
\begin{aligned}
\mathrm{A}^{2} & =\left[\begin{array}{rrr}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right] \times\left[\begin{array}{rrr}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1+5-6 & 1+2-3 & 3+6-9 \\
5+10-12 & 5+4-6 & 15+12-18 \\
-2-5+6 & -2-2+3 & -6-6+9
\end{array}\right]=\left[\begin{array}{rrr}
0 & 0 & 0 \\
3 & 3 & 9 \\
-1 & -1 & -3
\end{array}\right]
\end{aligned}
$$

$$
A^{3}=A^{2} \times A=\left[\begin{array}{rrr}
0 & 0 & 0 \\
3 & 3 & 9 \\
-1 & -1 & -3
\end{array}\right] \times\left[\begin{array}{rrr}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right]
$$

$$
\mathrm{A}^{3}=\left[\begin{array}{ccc}
0+0+0 & 0+0+0 & 0+0+0 \\
3+15-18 & 3+6-9 & 9+18-27 \\
-1-5+6 & -1-2+3 & -3-6+9
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

7. If $\mathrm{A}=\left[\begin{array}{ccr}1 & -2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$ then find $\mathrm{A}^{3}-3 \mathrm{~A}^{2}-\mathrm{A}-3 \mathrm{I}$ (where I is unit matrix of order 3).

Sol. $A=\left[\begin{array}{rcr}1 & -2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$

$$
\begin{aligned}
& A^{2}=A \times A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
3 & -1 & 1
\end{array}\right] \times\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
3 & -1 & 1
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ccc}
1+0+3 & -2-2-1 & 1+2+1 \\
0+0-3 & 0+1+1 & 0-1-1 \\
3+0+3 & -6-1-1 & 3+1+1
\end{array}\right]=\left[\begin{array}{rrr}
4 & -5 & 4 \\
-3 & 2 & -2 \\
6 & -8 & 5
\end{array}\right] \\
& A^{3}=A^{2} \times A=\left[\begin{array}{rrr}
4 & -5 & 4 \\
-3 & 2 & -2 \\
6 & -8 & 5
\end{array}\right] \times\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
3 & -1 & 1
\end{array}\right] \\
& A^{3}=\left[\begin{array}{ccc}
4+0+12 & -8-5-4 & 4+5+4 \\
-3+0-6 & 6+2+2 & -3-2-2 \\
6+0+15 & -12-8-5 & 6+8+5
\end{array}\right] \\
& A^{3}=\left[\begin{array}{ccc}
16 & -17 & 13 \\
-9 & 10 & -7 \\
21 & -25 & 19
\end{array}\right]
\end{aligned}
$$

$$
3 A^{2}=3\left[\begin{array}{rrr}
4 & -5 & 4 \\
-3 & 2 & -2 \\
6 & -8 & 5
\end{array}\right]=\left[\begin{array}{rrr}
12 & -15 & 12 \\
-9 & 6 & -6 \\
18 & -24 & 15
\end{array}\right]
$$

$$
3 \mathrm{I}=3\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

$$
\Rightarrow \mathrm{A}^{3}-3 \mathrm{~A}^{2}-\mathrm{A}-3 \mathrm{I}
$$

$$
=\left[\begin{array}{rrr}
16 & -17 & 13 \\
-9 & 10 & -7 \\
21 & -25 & 19
\end{array}\right]-\left[\begin{array}{ccc}
12 & -15 & 12 \\
-9 & 6 & -6 \\
18 & -24 & 15
\end{array}\right]-\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
3 & -1 & 1
\end{array}\right]-\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]_{3 \times 3}=O \\
& \therefore A^{3}-3 A^{2}-A-3 I=O
\end{aligned}
$$

8. If $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \mathrm{E}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ then show that $(a \mathrm{I}+b \mathrm{E})^{3}=a^{3} \mathrm{I}+3 a^{2} b \mathrm{E}$. (Where I is unit matrix).

Sol. $\mathrm{LHS}=(a \mathrm{I}+b \mathrm{E})^{3}$

$$
\begin{aligned}
& \left.=\left[\begin{array}{ll}
a & 1 \\
0 & 1
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right]^{3} \\
& =\left[\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right]+\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right]\right]^{3}=\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right] \\
& {\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]^{2}=\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right] \times\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]=\left[\begin{array}{ll}
a^{2}+0 & a b+b a \\
0+0 & 0+a^{2}
\end{array}\right]=\left[\begin{array}{cc}
a^{2} & 2 a b \\
0 & a^{2}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]^{3}=\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right] \times\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]=\left[\begin{array}{ll}
a^{2} & 2 a b \\
0 & a^{2}
\end{array}\right] \times\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]} \\
& \text { L.H.S. }=\left[\begin{array}{ll}
a^{3}+0 & a^{2} b+2 a^{2} b \\
0+0 & 0+a^{3}
\end{array}\right]=\left[\begin{array}{cc}
a^{2} & 3 a^{2} b \\
0 & a^{3}
\end{array}\right] \\
& \text { R.H.S. }=a^{3} \mathrm{I}+3 a^{2} b \mathrm{E} \\
& ==a^{3}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+3 a^{2} b\left[\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
a^{3} & 0 \\
0 & a^{3}
\end{array}\right]+\left[\begin{array}{ll}
0 & 3 a^{2} b \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
a^{3} & 3 a^{2} b \\
0 & a^{3}
\end{array}\right]
\end{aligned}
$$

$\therefore \quad$ L.H.S. $=$ RHS

$$
(a \mathrm{I}+b \mathrm{E})^{3}=a^{3} \mathrm{I}+3 a^{2} b \mathrm{E}
$$

9. If $\theta-\phi=\frac{\pi}{2}$, then show that $\left[\begin{array}{lc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]\left[\begin{array}{lc}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]=\mathrm{O}$.

Sol. $\left[\begin{array}{lc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]\left[\begin{array}{lc}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2} \theta \cos ^{2} \phi+\cos \theta \sin \theta \cdot \cos \phi \sin \phi & \cos ^{2} \theta \cdot \cos \phi \sin \phi+\cos \theta \sin \theta \cdot \sin ^{2} \phi \\ \cos \theta \sin \theta \cdot \cos ^{2} \phi+\sin ^{2} \theta \cdot \cos \phi \sin \phi & \cos \theta \sin \theta \cdot \cos \phi \sin \phi+\sin ^{2} \theta \cdot \sin ^{2} \phi\end{array}\right]$
$\theta-\phi=\frac{\pi}{2} \Rightarrow \theta=\frac{\pi}{2}+\phi$
$\Rightarrow \cos \theta=\cos \left(\frac{\pi}{2}+\phi\right)=-\sin \phi$
$\sin \theta=\sin \left(\frac{\pi}{2}+\phi\right)=\cos \phi$
$=\left[\begin{array}{lr}\sin ^{2} \phi \cos ^{2} \phi-\sin ^{2} \phi \cos ^{2} \phi & \sin ^{2} \phi \cos \phi \sin \phi-\sin \phi \cos \phi \sin ^{2} \phi \\ (-\sin \phi \cos \phi)\left(\cos ^{2} \phi\right)+\cos ^{2} \phi \cos \phi \sin \phi & -\sin \phi \cos \phi \cos \phi \sin \phi+\cos ^{2} \phi \sin ^{2} \phi\end{array}\right]$
$=\left[\begin{array}{lr}\sin ^{2} \phi \cos ^{2} \phi-\sin ^{2} \phi \cos ^{2} \phi & \sin ^{3} \phi \cos \phi-\sin ^{3} \phi \cos \phi \\ -\sin \phi \cos ^{3} \phi+\sin \phi \cos ^{3} \phi & -\sin ^{2} \phi \cos ^{2} \phi+\sin ^{2} \phi \cos ^{2} \phi\end{array}\right]$
$=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$=0$.

Singular Matrix

A square matrix is said to be singular if its determinant is zero.

Non-singular Matrix

A square matrix is said to be non-singular if its determinant is non-zero.

Adjoint of a matrix

The transpose of the matrix formed by replacing the elements of a square matrix A , with the corresponding co-factors is called the adjoint of A and is denoted by Adj A .

Invertible Matrix

Let A be a square matrix, we say that A is invertible if a matrix B exists such that $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$, where I is the unit matrix of the same order as A and B .
10. If $\mathrm{A}=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$ is a non-singular matrix then show that A is invertible and $\mathrm{A}^{-1}=\frac{\operatorname{Adj} \mathrm{A}}{\operatorname{det} \mathrm{A}}$.

Sol. $\mathrm{A}=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$

$$
\operatorname{Adj} A=\left[\begin{array}{ccc}
\mathrm{A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}_{3} \\
\mathrm{~B}_{1} & \mathrm{~B}_{2} & \mathrm{~B}_{3} \\
\mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3}
\end{array}\right]
$$

$$
\mathrm{A} \cdot \operatorname{Adj} \mathrm{~A}=\left[\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right] \times\left[\begin{array}{ccc}
\mathrm{A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}_{3} \\
\mathrm{~B}_{1} & \mathrm{~B}_{2} & \mathrm{~B}_{3} \\
\mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3}
\end{array}\right]
$$

$$
\left[\begin{array}{lcc}
a_{1} \mathrm{~A}_{1}+b_{1} \mathrm{~B}_{1}+c_{1} \mathrm{C}_{1} & a_{1} \mathrm{~A}_{2}+b_{1} \mathrm{~B}_{2}+c_{1} \mathrm{C}_{2} & a_{1} \mathrm{~A}_{3}+b_{1} \mathrm{~B}_{3}+c_{1} \mathrm{C}_{3} \\
a_{2} \mathrm{~A}_{1}+b_{2} \mathrm{~B}_{1}+c_{2} \mathrm{C}_{1} & a_{2} \mathrm{~A}_{2}+b_{2} \mathrm{~B}_{2}+c_{2} \mathrm{C}_{2} & a_{2} \mathrm{~A}_{3}+b_{2} \mathrm{~B}_{3}+c_{2} \mathrm{C}_{3} \\
a_{3} \mathrm{~A}_{1}+b_{3} \mathrm{~B}_{1}+c_{3} \mathrm{C}_{1} & a_{3} \mathrm{~A}_{2}+b_{3} \mathrm{~B}_{2}+c_{3} \mathrm{C}_{2} & a_{3} \mathrm{~A}_{3}+b_{3} \mathrm{~B}_{3}+c_{3} \mathrm{C}_{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
\operatorname{det} \mathrm{A} & 0 & 0 \\
0 & \operatorname{det} \mathrm{~A} & 0 \\
0 & 0 & \operatorname{det} \mathrm{~A}
\end{array}\right]=\operatorname{det} \mathrm{A}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\operatorname{det} \mathrm{A} . \mathrm{I}
$$

Since $\operatorname{det} \mathrm{A} \neq 0$,
A. $(\operatorname{Adj} \mathrm{A})=\operatorname{det} \mathrm{A} . \mathrm{I}$
$\Rightarrow \mathrm{A}\left(\frac{\operatorname{Adj} \mathrm{A}}{\operatorname{det} \mathrm{A}}\right)=\mathrm{I}$
Similarly $\left(\frac{\operatorname{Adj} \mathrm{A}}{\operatorname{det} \mathrm{A}}\right) \cdot \mathrm{A}=\mathrm{I}$

Let $\mathrm{B}=\frac{\operatorname{Adj} \mathrm{A}}{\operatorname{det} \mathrm{A}}$ then $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$
Hence A is invertible and $\mathrm{A}^{-1}=\mathrm{B}=\frac{\operatorname{Adj} \mathrm{A}}{\operatorname{det} \mathrm{A}}$

Long Answer Questions (7 Marks)

1. Find the adjoint and the inverse of the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$.

Sol. $A=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$

$$
\begin{array}{r}
\operatorname{det} \mathrm{A}=1(16-9)-3(4-3)+3(3-4) \\
=7-3-3=1 \neq 0
\end{array}
$$

$\therefore \mathrm{A}$ is invertible.
The cofactor matrix of A is $\mathrm{B}=\left[\begin{array}{rrr}7 & -1 & -1 \\ -3 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \operatorname{Adj} \mathrm{A}=\mathrm{B}^{\mathrm{T}}=\left[\begin{array}{rrc}
7 & -3 & -3 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \\
& \mathrm{A}^{-1}=\frac{\operatorname{Adj} \mathrm{A}}{\operatorname{det} \mathrm{~A}}=\left[\begin{array}{rrc}
7 & -3 & -3 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right][\because \operatorname{det} \mathrm{A}=1]
\end{aligned}
$$

2. Show that $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$ is non-singular and find A^{-1}.

Sol. $\quad \mathrm{A}=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$

$$
\begin{aligned}
\operatorname{det} \mathrm{A} & =1(4-3)-2(6-3)+1(3-2) \\
& =1-6+1=-4 \neq 0
\end{aligned}
$$

Hence A is a non-singular matrix.
The cofactor matrix of A is $\mathrm{B}=\left[\begin{array}{rrr}1 & -3 & 1 \\ -3 & 1 & 1 \\ 4 & 0 & -4\end{array}\right]$

$$
\operatorname{Adj} A=B^{T}=\left[\begin{array}{rrr}
1 & -3 & 4 \\
-3 & 1 & 0 \\
1 & 1 & -4
\end{array}\right]
$$

$$
\mathrm{A}^{-1}=\frac{\operatorname{Adj} \mathrm{A}}{\operatorname{det} \mathrm{~A}}=\frac{1}{-4}\left[\begin{array}{rrr}
1 & -3 & 4 \\
-3 & 1 & 0 \\
1 & 1 & -4
\end{array}\right]
$$

$$
\mathrm{A}^{-1}=\left[\begin{array}{ccc}
-\frac{1}{4} & \frac{3}{4} & -1 \\
\frac{3}{4} & -\frac{1}{4} & 0 \\
-\frac{1}{4} & -\frac{1}{4} & 1
\end{array}\right]
$$

3. If $\mathrm{A}=\left[\begin{array}{rrr}1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1\end{array}\right]$ then find $\left(\mathrm{A}^{\prime}\right)^{-1}$.

Sol. $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1\end{array}\right]$

$$
\begin{aligned}
& \mathrm{A}^{1}= {\left[\begin{array}{rlr}
1 & 0 & -2 \\
-2 & -1 & 2 \\
3 & 4 & 1
\end{array}\right] } \\
& \operatorname{del}\left(\mathrm{A}^{1}\right)=1(-1-8)+0-2(-8+3) \\
&=-9+0+10=1 \neq 0
\end{aligned}
$$

Cofactor matrix of $\mathrm{A}^{1}=\left[\begin{array}{ccc}-9 & 8 & -5 \\ -8 & 7 & -4 \\ -2 & 2 & -1\end{array}\right]$
Adjoint matrix of $\mathrm{A}^{1}=\left[\begin{array}{rrr}-9 & -8 & -2 \\ 8 & 7 & 2 \\ -5 & -4 & -1\end{array}\right]$
$\left(\mathrm{A}^{1}\right)^{-1}=\frac{\operatorname{Adj}\left(\mathrm{A}^{1}\right)}{\operatorname{det}\left(\mathrm{A}^{1}\right)}=\left[\begin{array}{rrr}-9 & -8 & -2 \\ 8 & 7 & 2 \\ -5 & -4 & -1\end{array}\right]$
4. If $\mathrm{A}=\left[\begin{array}{rrr}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ then show that $\operatorname{adj} \mathrm{A}=3 \mathrm{~A}^{1}$. Find A^{-1}.

Sol. $\mathrm{A}=\left[\begin{array}{rrr}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$
$\mathrm{A}^{1}=\left[\begin{array}{rrr}-1 & 2 & 2 \\ -2 & 1 & -2 \\ -2 & -2 & 1\end{array}\right]$
$3 \mathrm{~A}^{1}=3\left[\begin{array}{rcr}-1 & 2 & 2 \\ -2 & 1 & -2 \\ -2 & -2 & 1\end{array}\right]$
$3 \mathrm{~A}^{1}=\left[\begin{array}{ccc}-3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3\end{array}\right]$
Cofactor matrix of $\mathrm{A}=\left[\begin{array}{rrr}-3 & -6 & -6 \\ 6 & 3 & -6 \\ 6 & -6 & 3\end{array}\right]$

$$
\operatorname{Adj} A=\left[\begin{array}{rrr}
-3 & -6 & -6 \tag{2}\\
6 & 3 & -6 \\
6 & -6 & 3
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{rcc}
-3 & 6 & 6 \\
-6 & 3 & -6 \\
-6 & -6 & 3
\end{array}\right]
$$

From (1) and (2) Adj $\mathbf{A}=\mathbf{3 A}^{1}$

$$
\begin{aligned}
\operatorname{det} \mathrm{A} & =-1(1-4)+2(2+4)-2(-4-2) \\
& =3+12+12=27 \neq 0 \\
\mathrm{~A}^{-1} & =\frac{\operatorname{Adj} \mathrm{A}}{\operatorname{det} \mathrm{~A}}=\frac{1}{27}\left[\begin{array}{ccc}
-3 & 6 & 6 \\
-6 & 3 & -6 \\
-6 & -6 & 3
\end{array}\right] \\
\mathrm{A}^{-1} & =\left[\begin{array}{ccc}
-\frac{3}{27} & \frac{6}{27} & \frac{6}{27} \\
-\frac{6}{27} & \frac{3}{27} & -\frac{6}{27} \\
-\frac{6}{27} & \frac{-6}{27} & \frac{3}{27}
\end{array}\right]=\frac{1}{9}\left[\begin{array}{ccr}
-1 & 2 & 2 \\
-2 & 1 & -2 \\
-2 & -2 & 1
\end{array}\right]
\end{aligned}
$$

5. If $3 \mathrm{~A}=\left[\begin{array}{rrr}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$ then show that $\mathrm{A}^{-1}=\mathrm{A}^{\mathrm{T}}$.

Sol. $\quad 3 \mathrm{~A}=\left[\begin{array}{rrr}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$

$$
A=\frac{1}{3}\left[\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
-2 & 2 & -1
\end{array}\right]
$$

$$
\mathrm{AA}^{\mathrm{T}}=\mathrm{I} \Rightarrow \mathrm{~A}^{-1}=\mathrm{A}^{\mathrm{T}}
$$

$$
\mathrm{A}^{\mathrm{T}}=\frac{1}{3}\left[\begin{array}{ccc}
1 & 2 & -2 \\
2 & 1 & 2 \\
2 & -2 & -1
\end{array}\right]
$$

$$
\mathrm{A} \times \mathrm{A}^{\mathrm{T}}=\frac{1}{3}\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
-2 & 2 & -1
\end{array}\right] \times \frac{1}{3}\left[\begin{array}{ccc}
1 & 2 & -2 \\
2 & 1 & 2 \\
2 & -2 & -1
\end{array}\right]
$$

$$
\begin{aligned}
& =\frac{1}{9}\left[\begin{array}{ccc}
1+4+4 & 2+2-4 & -2+4-2 \\
2+2-4 & 4+1+4 & -4+2+2 \\
-2+4-2 & -4+2+2 & 4+4+1
\end{array}\right] \\
& =\frac{1}{9}\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathrm{I} \\
\mathrm{AA}^{\mathrm{T}} & =\mathrm{I} \\
\Rightarrow \mathrm{~A}^{-1} & =\mathrm{A}^{\mathrm{T}}
\end{aligned}
$$

Solution of Simultaneous Linear Equations

Cramer's Rule

Consider the system of equations
$a_{1} x+b_{1} y+c_{1} z=d_{1}$
$a_{2} x+b_{2} y+c_{2} z=d_{2}$
$a_{3} x+b_{3} y+c_{3} z=d_{3}$
where $\mathrm{A}=\left[\begin{array}{ccc}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$ is non-singular matrix
Let $\mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ be the solution of the equation $\mathrm{AX}=\mathrm{D}$ where $\mathrm{D}=\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right]$
\Rightarrow Let $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$
Then $x \Delta=\left|\begin{array}{ccc}a_{1} x & b_{1} & c_{1} \\ a_{2} x & b_{2} & c_{2} \\ a_{3} x & b_{3} & c_{3}\end{array}\right|$
On applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+y \mathrm{C}_{2}+z \mathrm{C}_{3}$ we get

$$
x \Delta=\left|\begin{array}{lll}
a_{1} x+b_{1} y+c_{1} z & b_{1} & c_{1} \\
a_{2} x+b_{2} y+c_{2} z & b_{2} & c_{2} \\
a_{3} x+b_{3} y+c_{3} z & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right|
$$

$\therefore \quad \Delta_{1}=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|$, then $x=\frac{\Delta_{1}}{\Delta}$
Similarly $\Delta_{2}=\left|\begin{array}{lll}a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3}\end{array}\right|$ then $y=\frac{\Delta_{2}}{\Delta}$

$$
\Delta_{3}=\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right| \text { then } z=\frac{\Delta_{3}}{\Delta}
$$

$\therefore \frac{x}{\Delta_{1}}=\frac{y}{\Delta_{2}}=\frac{z}{\Delta_{3}}=\frac{1}{\Delta}$. This is known as Cramer's Rule.

Matrix Inversion Method

Consider the matrix equation $\mathrm{AX}=\mathrm{D}$, where A is non-singular.
Then we can find A^{-1}.

$$
\begin{aligned}
A X=D \Leftrightarrow A^{-1}(A X) & =A^{-1} D \\
\left(A^{-1} A\right) X & =A^{-1} D \\
I X & =A^{-1} D \\
X & =A^{-1} D . \text { From this } x, y \text { and } z \text { are known. }
\end{aligned}
$$

6. Solve the following simultaneous linear equations by using Cramer's rule.

$$
3 x+4 y+5 z=18,2 x-y+8 z=13 \quad 5 x-2 y+7 z=20
$$

Sol. $3 x+4 y+5 z=18$,

$$
2 x-y+8 z=13
$$

$$
5 x-2 y+7 z=20
$$

$$
\mathrm{A}=\left[\begin{array}{ccc}
3 & 4 & 5 \\
2 & -1 & 8 \\
5 & -2 & 7
\end{array}\right], \mathrm{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \mathrm{D}=\left[\begin{array}{l}
18 \\
13 \\
20
\end{array}\right]
$$

Then we can write the given equations in the form of matrix equation as $\mathrm{AX}=\mathrm{D}$.

$$
\Delta=\operatorname{det} \mathrm{A}=\left[\begin{array}{ccc}
3 & 4 & 5 \\
2 & -1 & 8 \\
5 & -2 & 7
\end{array}\right]
$$

$$
\begin{aligned}
& =3(-7+16)-4(14-40)+5(-4+5) \\
& =3(9)-4(-26)+5(1) \\
& =27+104+5=136 \neq 0
\end{aligned}
$$

Hence we can solve the given equation by using Cramer's rule.

$$
\begin{aligned}
& \Delta_{1}=\left|\begin{array}{rrr}
18 & 4 & 5 \\
13 & -1 & 8 \\
20 & -2 & 7
\end{array}\right|=408 \\
& \Delta_{2}=\left|\begin{array}{lll}
3 & 18 & 5 \\
2 & 13 & 8 \\
5 & 20 & 7
\end{array}\right|=136 \\
& \Delta_{3}=\left|\begin{array}{ccc}
3 & 4 & 18 \\
2 & -1 & 13 \\
5 & -2 & 20
\end{array}\right|=136
\end{aligned}
$$

Hence by Cramer's rule

$$
\begin{aligned}
& x=\frac{\Delta_{1}}{\Delta}=\frac{408}{136}=3 \\
& y=\frac{\Delta_{2}}{\Delta}=\frac{136}{136}=1 \\
& z=\frac{\Delta_{3}}{\Delta}=\frac{136}{136}=1
\end{aligned}
$$

The solution of the given system of equations is $x=3, y=1, z=1$
7. Solve the following system of equations by Cramer's rule.
(i) $5 x-6 y+4 z=15,7 x+4 y-3 z=19,2 x+y+6 z=46$

Sol. (i) $5 x-6 y+4 z=15$,
$7 x+4 y-3 z=19$,
$2 x+y+6 z=46$

$$
\operatorname{det} \mathrm{A}=\left[\begin{array}{rrr}
5 & -6 & 4 \\
7 & 4 & -3 \\
2 & 1 & 6
\end{array}\right], \mathrm{D}=\left[\begin{array}{c}
15 \\
19 \\
46
\end{array}\right], \mathrm{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

$$
\begin{aligned}
& \operatorname{det} \mathrm{A}=\Delta=\left[\begin{array}{rrr}
5 & -6 & 4 \\
7 & 4 & -3 \\
2 & 1 & 6
\end{array}\right]=5(24+3)+6(42+6)+4(7-8) \\
& \\
& =135+288-4 \\
& \Delta=419 \neq 0 \\
& \Delta_{1}=\left|\begin{array}{lrr}
15 & -6 & 4 \\
19 & 4 & -3 \\
46 & 1 & 6
\end{array}\right|=1257 \\
& \Delta_{2}=\left|\begin{array}{rrr}
5 & 15 & 4 \\
7 & 19 & -3 \\
2 & 46 & 6
\end{array}\right|=1676 \\
& \Delta_{3}=\left|\begin{array}{rrr}
5 & -6 & 15 \\
7 & 4 & 19 \\
2 & 1 & 46
\end{array}\right|=2514
\end{aligned}
$$

From Cramer's rule

$$
\begin{aligned}
& x=\frac{\Delta_{1}}{\Delta}=\frac{1257}{419}=3 \\
& y=\frac{\Delta_{2}}{\Delta}=\frac{1676}{419}=4 \\
& z=\frac{\Delta_{3}}{\Delta}=\frac{2514}{419}=6 \\
\therefore & x=3, y=4, z=6
\end{aligned}
$$

(ii) $x+y+z=1$

$$
2 x+2 y+3 z=6
$$

$$
x+4 y+9 z=3
$$

Sol. $\quad \mathrm{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 3 \\ 1 & 4 & 9\end{array}\right], \mathrm{D}=\left[\begin{array}{l}1 \\ 6 \\ 3\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

$$
\begin{aligned}
& \operatorname{det} \mathrm{A}=\Delta=\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 3 \\
1 & 4 & 9
\end{array}\right|=1(18-12)-1(18-3)+1(8-2) \\
& \Delta=6-15+6=-3 \neq 0 \\
& \Delta_{1}=\left|\begin{array}{lll}
1 & 1 & 1 \\
6 & 2 & 3 \\
3 & 4 & 9
\end{array}\right|=-21 \\
& \Delta_{2}=\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 6 & 3 \\
1 & 3 & 9
\end{array}\right|=30 \\
& \Delta_{3}=\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 6 \\
1 & 4 & 3
\end{array}\right|=-12
\end{aligned}
$$

From C ram er's rule

$$
\begin{aligned}
& x=\frac{\Delta_{1}}{\Delta}=\frac{-21}{-3}=7 \\
& y=\frac{\Delta_{2}}{\Delta}=\frac{30}{-3}=-10 \\
& z=\frac{\Delta_{3}}{\Delta}=\frac{-12}{-3}=4
\end{aligned}
$$

$$
\therefore x=7, y=-10, z=4
$$

(iii) $x-y+3 z=5$

$$
4 x+2 y-z=0
$$

$$
-x+3 y+z=5
$$

Sol. $\mathrm{A}=\left[\begin{array}{rrr}1 & -1 & 3 \\ 4 & 2 & -1 \\ -1 & 3 & 1\end{array}\right], \mathrm{D}=\left[\begin{array}{l}5 \\ 0 \\ 5\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

$$
\begin{aligned}
\operatorname{det} \mathrm{A}=\Delta=\left|\begin{array}{rrr}
1 & -1 & 3 \\
4 & 2 & -1 \\
-1 & 3 & 1
\end{array}\right| & =1(2+3)+1(4-1)+3(12+2) \\
& =5+3+42=50 \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{1}=\left|\begin{array}{ccr}
5 & -1 & 3 \\
0 & 2 & -1 \\
5 & 3 & 1
\end{array}\right|=0 \\
& \Delta_{2}=\left|\begin{array}{ccr}
1 & 5 & 3 \\
4 & 0 & -1 \\
-1 & 5 & 1
\end{array}\right|=50 \\
& \Delta_{3}=\left|\begin{array}{ccr}
1 & -1 & 5 \\
4 & 2 & 0 \\
-1 & 3 & 5
\end{array}\right|=100
\end{aligned}
$$

From Cramer's rule

$$
\begin{array}{r}
x=\frac{\Delta_{1}}{\Delta}=\frac{0}{50}=0 \\
y=\frac{\Delta_{2}}{\Delta}=\frac{50}{50}=1 \\
z=\frac{\Delta_{3}}{\Delta}=\frac{100}{50}=2 \\
\therefore \quad x=0, y=1, z=2 \\
\text { (iv) } \quad x+y+z=9 \\
2 x+5 y+7 z=52 \\
2 x+y-z=0
\end{array}
$$

Sol. $\mathrm{A}=\left[\begin{array}{rrr}1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1\end{array}\right], \mathrm{D}=\left[\begin{array}{l}9 \\ 52 \\ 0\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

$$
\begin{aligned}
\operatorname{det} \mathrm{A}=\Delta=\left|\begin{array}{rrr}
1 & 1 & 1 \\
2 & 5 & 7 \\
2 & 1 & -1
\end{array}\right|= & (-5-7)-1(-2-14)+1(2-10) \\
& =-12+16-8=-4 \neq 0
\end{aligned}
$$

$$
\Delta=-4
$$

$$
\begin{aligned}
& \Delta_{1}=\left|\begin{array}{llr}
9 & 1 & 1 \\
52 & 5 & 7 \\
0 & 1 & -1
\end{array}\right|=-4 \\
& \Delta_{2}=\left|\begin{array}{ccc}
1 & 9 & 1 \\
2 & 52 & 7 \\
2 & 0 & -1
\end{array}\right|=-12 \\
& \Delta_{3}=\left|\begin{array}{llr}
1 & 1 & 9 \\
2 & 5 & 52 \\
2 & 1 & 0
\end{array}\right|=-20
\end{aligned}
$$

From Cramer's rule

$$
\begin{gathered}
x=\frac{\Delta_{1}}{\Delta}=\frac{-4}{-4}=1 \\
y=\frac{\Delta_{2}}{\Delta}=\frac{-12}{-4}=3 \\
z=\frac{\Delta_{3}}{\Delta}=\frac{-20}{-4}=5 \\
\therefore \quad x=1, y=3, \quad z=5
\end{gathered}
$$

8. Solve the following systems of equations by using matrix inversion method.
i) $3 x+4 y+5 z=18,2 x-y-8 z=13,5 x-2 y+7 z=20$

Sol. $\quad 3 x+4 y+5 z=18$

$$
\begin{aligned}
& 2 x-y-8 z=13 \\
& 5 x-2 y+7 z=20
\end{aligned}
$$

Let $\mathrm{A}=\left[\begin{array}{ccc}3 & 4 & 5 \\ 2 & -1 & 8 \\ 5 & -2 & 7\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $\mathrm{D}=\left[\begin{array}{c}18 \\ 13 \\ 20\end{array}\right]$
Then we can write the given equations in the form

$$
\begin{aligned}
& \mathrm{AX}=\mathrm{D} \\
& \operatorname{det} \mathrm{~A}=\Delta=\left|\begin{array}{ccc}
3 & 4 & 5 \\
2 & -1 & 8 \\
5 & -2 & 7
\end{array}\right|= 3(-7+16)-4(14-40)+5(-4+5) \\
&=27+104+5=136 \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cofactor matrix of } \mathrm{A}=\left[\begin{array}{rrr}
9 & 26 & 1 \\
-38 & -4 & 26 \\
37 & -14 & -11
\end{array}\right] \\
& \text { Adj A }=\left[\begin{array}{ccc}
9 & -38 & 37 \\
26 & -4 & -14 \\
1 & 26 & -11
\end{array}\right] \\
& \mathrm{X}=\mathrm{A}^{-1} \mathrm{D} \\
& \mathrm{X}=\left(\frac{\mathrm{AdjA}}{\operatorname{det} \mathrm{~A}}\right) . \mathrm{D} \\
& \quad=\frac{1}{136}\left[\begin{array}{ccc}
9 & -38 & 37 \\
26 & -4 & -14 \\
1 & 26 & -11
\end{array}\right]\left[\begin{array}{l}
18 \\
13 \\
20
\end{array}\right] \\
& =\frac{1}{136}\left[\begin{array}{c}
408 \\
136 \\
136
\end{array}\right] \\
& \mathrm{X}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right] \Rightarrow \begin{array}{l}
3=3, y=1, z=1
\end{array}
\end{aligned}
$$

(ii) $2 x-y+3 z=9$

$$
x+y+z=6
$$

$$
x-y+z=2
$$

Sol. $\quad \mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], \mathrm{D}=\left[\begin{array}{l}9 \\ 6 \\ 2\end{array}\right]$

$$
\mathrm{AX}=\mathrm{D} \Rightarrow \mathrm{X}=\mathrm{A}^{-1} \mathrm{D}
$$

$$
\begin{aligned}
\operatorname{det} \mathrm{A}=\Delta=\left|\begin{array}{ccc}
2 & -1 & 3 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right|= & 2(1+1)+1(0-0)+3(-1-1) \\
& =4-6=-2 \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cofactor matrix of } \mathrm{A}=\left[\begin{array}{rrr}
2 & 0 & -2 \\
-2 & -1 & 1 \\
-4 & 1 & 3
\end{array}\right] \\
& \text { Adj } \mathrm{A}=\left[\begin{array}{rrr}
2 & -2 & -4 \\
0 & -1 & 1 \\
-2 & 1 & 3
\end{array}\right] \\
& \mathrm{X}=\mathrm{A}^{-1} \mathrm{D} \\
& \mathrm{X}=\left(\frac{\text { AdjA }}{\operatorname{det} \mathrm{A}}\right) . \mathrm{D} \\
& \mathrm{X}=\frac{1}{-2}\left[\begin{array}{rrr}
2 & -2 & -4 \\
0 & -1 & 1 \\
-2 & 1 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
9 \\
6 \\
2
\end{array}\right] \\
& \mathrm{X}=\frac{1}{-2}\left[\begin{array}{l}
-2 \\
-4 \\
-6
\end{array}\right] \\
& \mathrm{X}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
& \therefore \quad x=1, y=2, \quad z=3
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& x+y+z=1 \\
& 2 x+2 y+3 z=6 \\
& x+4 y+9 z=3
\end{aligned}
$$

Sol. $\mathrm{A}=\left[\begin{array}{llc}1 & 1 & 1 \\ 2 & 2 & 3 \\ 1 & 4 & 9\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], \mathrm{D}=\left[\begin{array}{l}1 \\ 6 \\ 3\end{array}\right]$

$$
\mathrm{AX}=\mathrm{D} \Rightarrow \mathrm{X}=\mathrm{A}^{-1} \mathrm{D}
$$

$\operatorname{det} \mathrm{A}=\left|\begin{array}{llc}1 & 1 & 1 \\ 2 & 2 & 3 \\ 1 & 4 & 9\end{array}\right|=1(18-12)-1(18-3)+1(8-2)$

$$
=6-15+6=-3 \neq 0
$$

$\operatorname{det} \mathrm{A} \neq 0=-3$

Cofactor matrix of $A=\left[\begin{array}{ccr}6 & -15 & 6 \\ -5 & 8 & -3 \\ 1 & -1 & 0\end{array}\right]$
$\operatorname{Adj} \mathrm{A}=\left[\begin{array}{crr}6 & -5 & 1 \\ -15 & 8 & -1 \\ 6 & -3 & 0\end{array}\right]$
$X=A^{-1} D$

$$
X=\left(\frac{\operatorname{Adj} \mathrm{A}}{\operatorname{det} \mathrm{~A}}\right) . \mathrm{D}
$$

$$
X=-\frac{1}{3}\left[\begin{array}{crr}
6 & -5 & 1 \\
-15 & 8 & -1 \\
6 & -3 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
6 \\
3
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=-\frac{1}{3}\left[\begin{array}{c}
-21 \\
30 \\
-12
\end{array}\right]=\left[\begin{array}{c}
7 \\
-10 \\
4
\end{array}\right]
$$

$$
\therefore \quad x=7, y=-10, z=4
$$

(iv)

$$
\begin{aligned}
& 2 x-y+3 z=8 \\
& -x+2 y+z=4 \\
& 3 x+y-4 z=0
\end{aligned}
$$

Sol. $\mathrm{A}=\left[\begin{array}{rlr}2 & -1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & -4\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], \mathrm{D}=\left[\begin{array}{l}8 \\ 4 \\ 0\end{array}\right]$

$$
\mathrm{AX}=\mathrm{D} \Rightarrow \mathrm{X}=\mathrm{A}^{-1} \mathrm{D}
$$

$$
\begin{aligned}
\operatorname{det} \mathrm{A}=\left|\begin{array}{ccc}
2 & -1 & 3 \\
-1 & 2 & 1 \\
3 & 1 & -4
\end{array}\right|= & 2(-8-1)+1(4-3)+3(-1-6) \\
& =-18+1-21=-38 \neq 0
\end{aligned}
$$

$\operatorname{det} \mathrm{A}=-38 \neq 0$

$$
\begin{gathered}
\text { Cofactor matrix of } \mathrm{A}=\left[\begin{array}{lll}
-9 & -1 & -7 \\
-1 & -17 & -5 \\
-7 & -5 & 3
\end{array}\right] \\
\mathrm{Adj} \mathrm{~A}=\left[\begin{array}{lll}
-9 & -1 & -7 \\
-1 & -17 & -5 \\
-7 & -5 & 3
\end{array}\right] \\
\mathrm{X}=\mathrm{A}^{-1} \mathrm{D} \\
\mathrm{X}=\binom{\text { AdjA }}{\operatorname{det} \mathrm{A}} . \mathrm{D} \\
\mathrm{X}=-\frac{1}{38}\left[\begin{array}{lll}
-9 & -1 & -7 \\
-1 & -17 & -5 \\
-7 & -5 & 3
\end{array}\right]\left[\begin{array}{l}
8 \\
4 \\
0
\end{array}\right] \\
\mathrm{X}=-\frac{1}{38}\left[\begin{array}{l}
-76 \\
-76 \\
-76
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]} \\
\therefore \quad x=1, y=1, \quad z=1
\end{gathered}
$$

PRACTISE PROBLEMS

1. If $\mathrm{A}=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ then show that $\mathrm{A}^{-1}=\mathrm{A}^{3}$.
2. Solve the following system of equations by Cramer's rule.
(i) $2 x-y+3 z=9, x+y+z=6, x-y+z=2$
(ii) $2 x-y+3 z=8,-x+2 y+z=4,3 x+y-4 z=0$
(iii) $2 x-y+8 z=13,3 x+4 y+5 z=18,5 x-2 y+7 z=20$
3. Solve the following system of equations by matrix inversion method.
(i) $x+y+z=1,2 x+2 y+3 z=6, x+4 y+9 z=3$
(ii) $x-y+3 z=5,4 x+2 y-z=0,-x+3 y+z=5$
(iii) $x+y+z=9,2 x+5 y+7 z=52,2 x+y-z=0$

Addition of Vectors

* Vector: A physical quantity which has both magnitude and direction is called a vector. Example: Velocity, displacement, force etc.
* Scalar: A physical quantity which has only magnitude is called a scalar. Example: Length, volume, temperature
* Position Vector: : Let ' O ' and ' P ' be any two points in space. Then the vector $\overline{\mathrm{OP}}$ having ' O ' and ' P ' as initial and terminal points respectively, is called the position vector of the point P with respect to ' O '.
Position vector of $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ w.r.t. origin $\mathrm{O}(0,0,0)$ is denoted by $\overline{\mathrm{r}}$.
Magnitude of $\overline{\mathrm{OP}}$ is given by, $|\overline{\mathrm{OP}}|=|\bar{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Note: $\overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=$ Position vector of $\mathrm{B}-$ Position vector of A .

* Direction Cosines and Direction Ratios:

Let the position vector of point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ w.r.t. origin ' O ' be $\overline{\mathrm{OP}}=\bar{r}$. Let α, β, γ be the angles made by the vector \bar{r} in the positive direction (counter clockwise direction) of X , Y, Z axes respectively.
Then $\operatorname{Cos} \alpha, \operatorname{Cos} \beta, \operatorname{Cos} \gamma$ are called the direction cosines of the vector \bar{r}.
These direction cosines are denoted by l, m, n respectively.
i.e. $\quad \begin{aligned} & l=\cos \alpha \\ & \\ & \\ & m=\cos \beta \\ & \\ & n=\operatorname{Cos} \gamma\end{aligned}$

Thus the coordinates x, y, z of the point P are expressed as $(l r, m r, n r)$.
The numbers $l r, m r, n r$ which are proportional to the direction cosines l, m, n are called the direction ratios of the vector \bar{r}. These direction ratios are denoted by a, b, c.

$$
\text { i.e. } \quad \begin{array}{ll}
a & =l r \\
& b=m r \\
& c=n r
\end{array}
$$

Note: $l^{2}+m^{2}+n^{2}=1$ but $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2} \neq 1$, in general.

* Unit Vector: A vector whose magnitude is unity (i.e. 1 unit) is called a unit vector. It is represented by \bar{e}.
* Unit vector in the direction of a given vector $\overline{\mathrm{a}}$ is denoted by $\hat{\mathrm{a}}$ and it is given by, $\hat{a}=\frac{\bar{a}}{|\bar{a}|}$
* The zero vector is denoted by $\overline{0}$ and it is also known as null vector. We can observe that the initial and terminal points coincide for zero vector and its magnitude is the scalar 0.
* Like vectors: If two vectors are having the same direction, then they are called like vectors.
* Unlike vectors: If two vectors are in opposite directions, then they are called unlike vectors.
* Negative of a vector: Let $\overline{\mathrm{a}}$ be a vector. The vector having the same magnitude as $\overline{\mathrm{a}}$ but having the opposite direction is called the negative vector of \bar{a} and is denoted by $-\bar{a}$.

Note:

1. If $\overline{\mathrm{a}}=\overline{\mathrm{AB}}$, then $-\overline{\mathrm{a}}=\overline{\mathrm{BA}}$.
2. Unit vector in the opposite direction of $\overline{\mathrm{a}}=\frac{-\overline{\mathrm{a}}}{\overline{\mathrm{a} \mid}}$

* The line AB is called support of the vector $\overline{\mathrm{AB}}$.

* Collinear (Parallel) Vectors: Vectors with same support or parallel supports are called collinear or parallel vectors.
Note:1. $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ are collinear (parallel) vectors $\Leftrightarrow \overline{\mathrm{a}}=\lambda \overline{\mathrm{b}}$, where λ is a scalar.

2. The points A, B, C are collinear $\Leftrightarrow \overline{\mathrm{AB}}=\lambda \overline{\mathrm{BC}}$, where λ is a scalar.
3. If $a_{1} i+a_{2} j+a_{3} k$ and $b_{1} i+b_{2} j+b_{3} k$ are collinear vectors, then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$.

* Coplanar Vectors: Vectors whose supports are in the same plane or parallel to the same plane are called coplanar vectors.
Note: 1 . The points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar $\Leftrightarrow \overline{\mathrm{AD}}=x \overline{\mathrm{AB}}+y \overline{\mathrm{AC}}$ where x, y are scalars.

$$
\text { 2. If } \begin{aligned}
& \overline{\mathrm{AB}}=a_{1} i+b_{1} j+c_{1} k \\
& \overline{\mathrm{AC}}=a_{2} i+b_{2} j+c_{2} k \\
& \overline{\mathrm{AD}}=a_{3} i+b_{3} j+c_{3} k \text {, then the points } A, B, C, D \text { or } \\
& \overline{\mathrm{AB}}, \overline{\mathrm{AC}}, \overline{\mathrm{AD}} \text { are coplanar } \Leftrightarrow\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=0
\end{aligned}
$$

* The vectors which are not coplanar are called non-coplanar vectors.

* Triangle law of vector addition:

In $\triangle \mathrm{ABC}, \overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$ are two sides, then their sum is represented by the third side, $\overline{\mathrm{AC}}$.
i.e. $\overline{\mathrm{AC}}=\overline{\mathrm{AB}}+\overline{\mathrm{BC}}$

This is known as the triangle law of vector addition.

* Parallelogram law of vector addition:

If \bar{a}, \bar{b} are the adjacent sides of a parallelogram then their sum $\bar{a}+\bar{b}$ is represented by the diagonal of the parallelogram through their common point.

This is known as the parallelogram law of vector addition.

* Properties of vector addition: For any vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$
(i) $\overline{\mathrm{a}}+\overline{\mathrm{b}}=\overline{\mathrm{b}}+\overline{\mathrm{a}}$
(Commutative property)
(ii) $\overline{\mathrm{a}}+(\overline{\mathrm{b}}+\overline{\mathrm{c}})=(\overline{\mathrm{a}}+\overline{\mathrm{b}})+\overline{\mathrm{c}}$
(Associative property)
(iii) $\overline{\mathrm{a}}+\overline{0}=\overline{0}+\overline{\mathrm{a}}=\overline{\mathrm{a}}$
(Identity property)

Here, the zero vector $\overline{0}$ is called the additive identity for the vector addition.

* Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ be two vectors, then
(i) $\quad|\overline{\mathrm{a}}+\overline{\mathrm{b}}| \leq|\overline{\mathrm{a}}|+|\overline{\mathrm{b}}|$
(ii) $\|\overline{\mathrm{a}}|-|\overline{\mathrm{b}} \| \leq|\overline{\mathrm{a}}-\overline{\mathrm{b}}|$

Note: Equality holds if and only if $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are like vectors.

* If a point P divides the line segment joining the points $\mathrm{A}(\overline{\mathrm{a}})$ and $\mathrm{B}(\overline{\mathrm{b}})$ in the ratio $\mathrm{m}: \mathrm{n}$, then the position vector of P is $\frac{m \bar{b}+n \bar{a}}{m+n}$.
* Linear combination of vectors: Let $\overline{a_{1}}, \overline{a_{2}}, \overline{a_{3}} \ldots . . \overline{a_{n}}$ be vectors and $x_{1}, x_{2}, x_{3} \ldots, x_{n}$ be scalars. Then the vector $x_{1} \overline{a_{1}}+x_{2} \overline{a_{2}}+x_{3} \overline{a_{3}}+\ldots \ldots .+x_{n} \overline{a_{n}}$ is called a linear combination of the vectors $\overline{a_{1}}, \overline{a_{2}}, \overline{a_{3}} \ldots \ldots, \overline{a_{n}}$.
* Vector equation of the straight line passing through the point $\mathrm{A}(\overline{\mathrm{a}})$ and parallel to the vector \bar{b} is $\bar{r}=\bar{a}+t \bar{b}, \quad t \in R$
* Vector equation of the straight line passing through two points $\mathrm{A}(\overline{\mathrm{a}})$ and $\mathrm{B}(\overline{\mathrm{b}})$ is, $\bar{r}=(1-t) \bar{a}+t \bar{b}, \quad t \in R$
* Vector equation of the plane passing through a point $\mathrm{A}(\overline{\mathrm{a}})$ and parallel to the vectors $\overline{\mathrm{b}}, \overline{\mathrm{c}}$ is $\bar{r}=\bar{a}+t \bar{b}+\bar{c} \bar{c}, \quad t, s \in R$
* Vector equation of the plane passing through three points $\mathrm{A}(\overline{\mathrm{a}}), \mathrm{B}(\overline{\mathrm{b}})$ and parallel to the vector \bar{c} is $\bar{r}=(1-t) \bar{a}+t \bar{b}+s \bar{c}, \quad t, s \in R$
* Vector equation of the plane passing through three points $A(\bar{a}), B(\bar{b})$ and $C(\bar{c})$ is $\bar{r}=(1-t-s) \bar{a}+t \bar{b}+\bar{c} \bar{c}, \quad t, s \in R$

VERY SHORT ANSWER TYPE QUESTIONS (2 MARKS)

1) Find the unit vector in the direction of vector $\overline{\mathbf{a}}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$.

Sol. $\overline{\mathrm{a}}=2 \mathrm{i}+3 \mathrm{j}+\mathrm{k}$

$$
|\overline{\mathrm{a}}|=\sqrt{2^{2}+3^{2}+1^{2}}=\sqrt{4+9+1}=\sqrt{14}
$$

\therefore Unit vector in the direction of $\overline{\mathrm{a}}$ is $\hat{\mathrm{a}}=\frac{\overline{\mathrm{a}}}{\overline{|\mathrm{a}|}}=\frac{2 i+3 j+k}{\sqrt{14}}$
$\Rightarrow \hat{a}=\frac{2}{\sqrt{14}} i+\frac{3}{\sqrt{14}} j+\frac{1}{\sqrt{14}} k$
2) Let $\bar{a}=i+2 j+3 k, \bar{b}=3 i+j$. Find the unit vector in the direction of $\bar{a}+\bar{b}$.

Sol. $\overline{\mathrm{a}}=i+2 j+3 k$
$\overline{\mathrm{b}}=3 i+j$
$\bar{a}+\bar{b}=i+2 j+3 k+3 i+j$
$\therefore \overline{\mathrm{a}}+\overline{\mathrm{b}}=4 \mathrm{i}+3 \mathrm{j}+3 \mathrm{k}$
$|\overline{\mathrm{a}}+\overline{\mathrm{b}}|=\sqrt{4^{2}+3^{2}+3^{2}}=\sqrt{16+9+9}=\sqrt{34}$
\therefore Unit vector in the direction of $|\overline{\mathrm{a}}+\overline{\mathrm{b}}|=\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}}{|\overline{\mathrm{a}}+\overline{\mathrm{b}}|}=\frac{4 i+3 j+3 k}{\sqrt{34}}$

$$
=\frac{1}{\sqrt{34}}(4 i+3 j+3 k)
$$

3) Find the unit vector in the direction of the sum of the vectors $\bar{a}=2 i+2 j-5 k$ and $\overline{\mathbf{b}}=2 \boldsymbol{i}+\boldsymbol{j}+\mathbf{3 k}$.
Sol. $\overline{\mathrm{a}}=2 i+2 j-5 k, \quad \overline{\mathrm{~b}}=2 i+j+3 k$
$\overline{\mathrm{a}}+\overline{\mathrm{b}}=2 \mathrm{i}+2 \mathrm{j}-5 \mathrm{k}+2 \mathrm{i}+\mathrm{j}+3 \mathrm{k}$
$\overline{\mathrm{a}}+\overline{\mathrm{b}}=4 \mathrm{i}+3 \mathrm{j}-2 \mathrm{k}$
$|\overline{\mathrm{a}}+\overline{\mathrm{b}}|=\sqrt{4^{2}+3^{2}+(-2)^{2}}=\sqrt{16+9+4}=\sqrt{29}$
\therefore Unit vector in the direction of sum of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}=\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}}{|\overline{\mathrm{a}}+\overline{\mathrm{b}}|}=\frac{4 i+3 j-2 k}{\sqrt{29}}$
4) Let $\overline{\mathrm{a}}=2 i+4 j-5 k, \overline{\mathrm{~b}}=i+j+k$ and $\overline{\mathrm{c}}=j+2 k$. Find the unit vector in the opposite direction of $\bar{a}+\bar{b}+\bar{c}$.

Sol. $\overline{\mathrm{a}}=2 i+4 j-5 k$
$\overline{\mathrm{b}}=i+j+k$
$\overline{\mathrm{c}}=j+2 k$
$\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=(2 \mathrm{i}+4 \mathrm{j}-5 \mathrm{k})+(\mathrm{i}+\mathrm{j}+\mathrm{k})+(\mathrm{j}+2 \mathrm{k})$
$\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=3 \mathrm{i}+6 \mathrm{j}-2 \mathrm{k}$
$|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|=\sqrt{3^{2}+6^{2}+(-2)^{2}}=\sqrt{9+36+4}=\sqrt{49}=7$
\therefore Unit vector in the opposite direction of $\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}$
$=-\frac{(\bar{a}+\bar{b}+\bar{c})}{|\bar{a}+\bar{b}+\bar{c}|}$
$=-\frac{(3 i+6 j-2 k)}{7}$
5) If the position vectors of the points A, B and C are $-2 i+j-k,-4 i+2 j+2 k$ and $6 i-3 j-13 k$ respectively and $\overline{\mathrm{AB}}=\lambda \overline{\mathrm{AC}}$, then find the value of λ.
Sol. Let ' O ' be the origin.
Then, $\quad \overline{\mathrm{OA}}=-2 i+j-k$
$\overline{\mathrm{OB}}=-4 i+2 j+2 k$
$\overline{\mathrm{OC}}=6 \mathrm{i}-3 \mathrm{j}-13 \mathrm{k}$
$\therefore \overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=(-4 \mathrm{i}+2 \mathrm{j}+2 \mathrm{k})-(-2 \mathrm{i}+\mathrm{j}-\mathrm{k})$
$=-4 i+2 j+2 k+2 i-j+k$
$\therefore \overline{\mathrm{AB}}=-2 \mathrm{i}+\mathrm{j}+3 \mathrm{k}$
$\therefore \overline{\mathrm{AC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OA}}=(6 \mathrm{i}-3 \mathrm{j}-13 \mathrm{k})-(-2 \mathrm{i}+\mathrm{j}-\mathrm{k})$
$=6 \mathrm{i}-3 \mathrm{j}-13 \mathrm{k}+2 \mathrm{i}-\mathrm{j}+\mathrm{k}$
$=8 \mathrm{i}-4 \mathrm{j}-12 \mathrm{k}$
$\overline{\mathrm{AC}}=-4(-2 \mathrm{i}+j+3 \mathrm{k})$
$\overline{\mathrm{AC}}=-4 . \overline{\mathrm{AB}} \quad[\because \overline{\mathrm{AB}}=-2 i+j+3 k]$
$\Rightarrow \quad-4 \overline{\mathrm{AB}}=\overline{\mathrm{AC}}$
$\overline{\mathrm{AB}}=-\frac{1}{4} \overline{\mathrm{AC}}$
Comparing with, $\overline{\mathrm{AB}}=\lambda \overline{\mathrm{AC}}$ we get,

$$
\lambda=-\frac{1}{4}
$$

6) If $\overline{\mathrm{OA}}=i+j+k, \overline{\mathrm{AB}}=3 i-2 j+k, \overline{\mathrm{BC}}=i+2 j-2 k$ and $\overline{\mathrm{CD}}=2 i+j+3 k$, then find the vector $\overline{\mathrm{OD}}$.

Sol. $\overline{\mathrm{OA}}=i+j+k$

$$
\begin{aligned}
& \overline{\mathrm{AB}}=3 i-2 j+k \\
& \overline{\mathrm{BC}}=i+2 j-2 k \\
& \overline{\mathrm{CD}}=2 i+j+3 k \\
& \because \overline{\mathrm{OA}}+\overline{\mathrm{AB}}+\overline{\mathrm{BC}}+\overline{\mathrm{CD}}=\overline{\mathrm{OD}} \\
& \Rightarrow \overline{\mathrm{OD}}=\overline{\mathrm{OA}}+\overline{\mathrm{AB}}+\overline{\mathrm{BC}}+\overline{\mathrm{CD}} \\
& \quad \quad=(\mathrm{i}+\mathrm{j}+\mathrm{k})+(3 \mathrm{i}-2 \mathrm{j}+\mathrm{k})+(\mathrm{i}+2 \mathrm{j}-2 \mathrm{k})+(2 \mathrm{i}+\mathrm{j}+3 \mathrm{k})
\end{aligned}
$$

$\therefore \overline{\mathrm{OD}}=7 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}$
7) Write direction ratios of the vector $\overline{\mathrm{a}}=\mathrm{i}+\mathrm{j}-2 \mathrm{k}$ and hence calculate its direction cosines.

Sol. Let $\bar{r}=\overline{\mathrm{a}}=\mathrm{i}+\mathrm{j}-2 \mathrm{k}$
Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be the direction ratios of vector $\bar{r}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}$
Then the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are just the respective components x, y and z of the vector.
Hence, $a=1, b=1, c=-2$
If l, m, n are the direction cosines of the given vector, then
$|\bar{r}|=\sqrt{1^{2}+1^{2}+(-2)^{2}}=\sqrt{1+1+4}=\sqrt{6}$
$l=\frac{\mathrm{a}}{|\bar{r}|}=\frac{1}{\sqrt{6}}$
$m=\frac{b}{|\bar{r}|}=\frac{1}{\sqrt{6}}$
$n=\frac{c}{|\bar{r}|}=\frac{-2}{\sqrt{6}}$
\therefore The direction cosines are $\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right)$
8) If the vectors $-3 i+4 j+\lambda k$ and $\mu \mathrm{i}+8 \mathrm{j}+6 \mathrm{k}$ are collinear vectors, then find λ and μ.

Sol. The vectors, $-3 \mathrm{i}+4 \mathrm{j}+\lambda \mathrm{k}$ and $\mu \mathrm{i}+8 \mathrm{j}+6 \mathrm{k}$ are collinear.

$$
\begin{array}{ll}
\Rightarrow & \frac{-3}{\mu}=\frac{4}{8}=\frac{\lambda}{6} \\
\Rightarrow & \frac{-3}{\mu}=\frac{1}{2}=\frac{\lambda}{6} \\
\Rightarrow & \frac{-3}{\mu}=\frac{1}{2} \text { and } \\
\Rightarrow & \frac{1}{2}=\frac{\lambda}{6} \\
\Rightarrow & \mu=2(-3) \\
& \quad 2 \lambda=6(1) \\
& \therefore \lambda=3 \text { and } \mu=-6
\end{array}
$$

9) Find the vector equation of the line passing through the point $\mathbf{2 i}+\mathbf{3} \mathbf{j}+\mathbf{k}$ and parallel to the vector $\mathbf{4 i} \mathbf{-} \mathbf{2} \mathbf{j}+\mathbf{3 k}$.
Sol. Let $\overline{\mathrm{a}}=2 \mathrm{i}+3 \mathrm{j}+\mathrm{k}$

$$
\overline{\mathrm{b}}=4 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}
$$

Vector equation of the line passing through $\overline{\mathrm{a}}$ and parallel to $\overline{\mathrm{b}}$ is,
$\bar{r}=\bar{a}+t \bar{b}, t \in R$
$\overline{\mathrm{r}}=(2 \mathrm{i}+3 \mathrm{j}+\mathrm{k})+\mathrm{t}(4 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k})$
$\Rightarrow \quad \overline{\mathrm{r}}=(2+4 \mathrm{t}) \mathrm{i}+(3-2 \mathrm{t}) \mathrm{j}+(1+3 \mathrm{t}) \mathrm{k}$
10) OABC is a parallelogram. If $\overline{\mathrm{OA}}=\overline{\mathrm{a}}$ and $\overline{\mathrm{OC}}=\bar{c}$, find the vector equation of the side $\overline{\mathrm{BC}}$.

Sol. OABC is a parallelogram in which,
$\overline{\mathrm{OA}}=\overline{\mathrm{a}}$
$\overline{\mathrm{OC}}=\bar{c} \Rightarrow \overline{\mathrm{AB}}=\overline{\mathrm{c}}$
$\Rightarrow \overline{\mathrm{OB}}-\overline{\mathrm{OA}}=\overline{\mathrm{c}}$
$\Rightarrow \overline{\mathrm{OB}}=\overline{\mathrm{c}}+\overline{\mathrm{OA}}$
$\Rightarrow \overline{\mathrm{OB}}=\overline{\mathrm{c}}+\overline{\mathrm{a}}$

$\therefore \overline{\mathrm{OB}}=\overline{\mathrm{a}}+\overline{\mathrm{c}}$
\therefore The vector equation of $\overline{\mathrm{BC}}, \overline{\mathrm{r}}=(1-\mathrm{t}) \overline{\mathrm{c}}+\mathrm{t}(\overline{\mathrm{a}}+\overline{\mathrm{c}}), \mathrm{t} \in \mathrm{R}$
$\Rightarrow \quad \overline{\mathrm{r}}=(1-\mathrm{t}+\mathrm{t}) \overline{\mathrm{c}}+\mathrm{t} \overline{\mathrm{a}}$
$\Rightarrow \quad \overline{\mathrm{r}}=\overline{\mathrm{c}}+\mathrm{t} \overline{\mathrm{a}}$
11) Find the vector equation of the line joining the points $2 i+j+3 k$ and $-4 i+3 j-k$.

Sol. Let $\overline{\mathrm{a}}=2 \mathrm{i}+\mathrm{j}+3 \mathrm{k}$

$$
\overline{\mathrm{b}}=-4 \mathrm{i}+3 \mathrm{j}-\mathrm{k}
$$

Vector equation of line passing through \bar{a} and \bar{b} is

$$
\begin{array}{rlrl}
& & \overline{\mathrm{r}} & =(1-\mathrm{t}) \overline{\mathrm{a}}+\mathrm{tb}, \mathrm{t} \in \mathrm{R} \\
\Rightarrow & \overline{\mathrm{r}} & =(1-\mathrm{t})(2 \mathrm{i}+\mathrm{j}+3 \mathrm{k})+\mathrm{t}(-4 \mathrm{i}+3 \mathrm{j}-\mathrm{k}) \\
\Rightarrow \quad & \overline{\mathrm{r}} & =(2-2 \mathrm{t}-4 \mathrm{t}) \mathrm{i}+(1-\mathrm{t}+3 \mathrm{t}) \mathrm{j}+(3-3 \mathrm{t}-\mathrm{t}) \mathrm{k} \\
\Rightarrow \quad & \overline{\mathrm{r}} & =(2-6 \mathrm{t}) \mathrm{i}+(1+2 \mathrm{t}) \mathrm{j}+(3-4 \mathrm{t}) \mathrm{k} \\
\Rightarrow & \overline{\mathrm{r}} & =2(1-3 \mathrm{t}) \mathrm{i}+(1+2 \mathrm{t}) \mathrm{j}+(3-4 \mathrm{t}) \mathrm{k}
\end{array}
$$

12) Find the vector equation of the plane passing through the points $i-2 j+5 k,-5 j-k$ and $-3 \mathrm{i}+5 \mathrm{j}$.
Sol. Let $\overline{\mathrm{a}}=\mathrm{i}-2 \mathrm{j}+5 \mathrm{k}$

$$
\begin{aligned}
& \bar{b}=-5 \mathrm{j}-\mathrm{k} \\
& \overline{\mathrm{c}}=-3 \mathrm{i}+5 \mathrm{j}
\end{aligned}
$$

\therefore Vector equation of the plane passing through $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is,
$\bar{r}=(1-t-s) \bar{a}+t \bar{b}+s \bar{c}, t, s \in R$
$\Rightarrow \quad \overline{\mathrm{r}}=(1-\mathrm{t}-\mathrm{s})(\mathrm{i}-2 \mathrm{j}+5 \mathrm{k})+\mathrm{t}(-5 \mathrm{j}-\mathrm{k})+\mathrm{s}(-3 \mathrm{i}+5 \mathrm{j})$
13) Find the vector equation of the plane passing through the points $(0,0,0),(0,5,0)$ and $(2,0,1)$.
Sol. $\quad \bar{a}=0 . i+0 . j+0 . k=\overline{0}$
$\bar{b}=0 . i+5 j+0 . k=5 j$
$\bar{c}=2 . i+0 . j+1 . k=2 i+k$
Vector equation of the plane passing through $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is,
$\bar{r}=(1-t-s) \bar{a}+t \bar{b}+s \bar{c}, t, s \in R$
$\Rightarrow \quad \overline{\mathrm{r}}=(1-\mathrm{t}-\mathrm{s}) \overline{0}+\mathrm{t}(5 \mathrm{j})+\mathrm{s}(2 \mathrm{i}+\mathrm{k})$
$\Rightarrow \quad \overline{\mathrm{r}}=(5 \mathrm{t}) \mathrm{j}+\mathrm{s}(2 \mathrm{i}+\mathrm{k})$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

1) Show that the points $A(2 i-j+k), B(i-3 j-5 k), C(3 i-4 j-4 k)$ are the vertices of a right angle triangle.
Sol. Let ' O ' be the origin, then
$\overline{\mathrm{OA}}=2 \mathrm{i}-\mathrm{j}+\mathrm{k}$

$$
\begin{aligned}
& \overline{\mathrm{OB}}=\mathrm{i}-3 \mathrm{j}-5 \mathrm{k} \\
& \overline{\mathrm{OC}}=3 \mathrm{i}-4 \mathrm{j}-4 \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}} & =(\mathrm{i}-3 \mathrm{j}-5 \mathrm{k})-(2 \mathrm{i}-\mathrm{j}+\mathrm{k}) \\
& =(1-2) \mathrm{i}+(-3+1) \mathrm{j}+(-5-1) \mathrm{k}
\end{aligned}
$$

$$
\overline{\mathrm{AB}}=-\mathrm{i}-2 j-6 k
$$

$$
\Rightarrow \quad|\overline{\mathrm{AB}}|=\sqrt{(-1)^{2}+(-2)^{2}+(-6)^{2}}=\sqrt{1+4+36}=\sqrt{41}
$$

$$
\overline{\mathrm{BC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OB}}=(3 \mathrm{i}-4 \mathrm{j}-4 \mathrm{k})-(\mathrm{i}-3 \mathrm{j}-5 \mathrm{k})
$$

$$
\overline{\mathrm{BC}}=(3-1) \mathrm{i}+(-4+3) \mathrm{j}+(-4+5) \mathrm{k}=2 \mathrm{i}-\mathrm{j}+\mathrm{k}
$$

$$
|\overline{\mathrm{BC}}|=\sqrt{2^{2}+(-1)^{2}+1^{2}}=\sqrt{4+1+1}=\sqrt{6}
$$

$$
\overline{\mathrm{CA}}=\overline{\mathrm{OA}}-\overline{\mathrm{OC}}=(2 \mathrm{i}-j+\mathrm{k})-(3 \mathrm{i}-4 \mathrm{j}-4 \mathrm{k})
$$

$$
\overline{\mathrm{CA}}=(2-3) \mathrm{i}+(-1+4) \mathrm{j}+(1+4) \mathrm{k}=-\mathrm{i}+3 \mathrm{j}+5 \mathrm{k}
$$

$$
|\overline{\mathrm{CA}}|=\sqrt{(-1)^{2}+3^{2}+5^{2}}=\sqrt{1+9+25}=\sqrt{35}
$$

$$
|\overline{\mathrm{AB}}|^{2}=(\sqrt{41})^{2}=(\sqrt{6})^{2}+(\sqrt{35})^{2}
$$

$$
\Rightarrow \quad|\overline{\mathrm{AB}}|^{2}=|\overline{\mathrm{BC}}|^{2}+|\overline{\mathrm{CA}}|^{2}
$$

$\Rightarrow \quad \mathrm{A}, \mathrm{B}, \mathrm{C}$ are the vertices of a right angle triangle.
2) Is the triangle formed by the vectors $3 \mathrm{i}+5 \mathrm{j}+2 \mathrm{k}, 2 \mathrm{i}-3 \mathrm{j}-5 \mathrm{k}$ and $-5 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}$ equilateral?

Sol. In $\triangle \mathrm{ABC}$, let $\overline{\mathrm{AB}}=3 \mathrm{i}+5 \mathrm{j}+2 \mathrm{k}$

$$
\begin{aligned}
& \overline{\mathrm{BC}}=2 \mathrm{i}-3 \mathrm{j}-5 \mathrm{k} \\
& \overline{\mathrm{CA}}=-5 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
& |\overline{\mathrm{AB}}|=\sqrt{3^{2}+5^{2}+2^{2}}=\sqrt{9+25+4}=\sqrt{38} \\
& |\overline{\mathrm{BC}}|=\sqrt{2^{2}+(-3)^{2}+(-5)^{2}}=\sqrt{4+9+25}=\sqrt{38} \\
& |\overline{\mathrm{CA}}|=\sqrt{(-5)^{2}+(-2)^{2}+3^{2}}=\sqrt{25+4+9}=\sqrt{38}
\end{aligned}
$$

$\therefore|\overline{\mathrm{AB}}|=|\overline{\mathrm{BC}}|=|\overline{\mathrm{CA}}| \Rightarrow \Delta \mathrm{ABC}$ is an equilateral triangle.
3) If centre of the regular hexagon ABCDEF is ' O , then show that $\mathrm{AB}+\mathrm{AC}+\mathrm{AD}+\mathrm{AE}=3 \mathrm{AD}=6 \mathrm{AO}$.
Sol. From figure, $A B+A C+A D+A E+A F$

$$
=(\mathrm{AB}+\mathrm{AE})+\mathrm{AD}+(\mathrm{AC}+\mathrm{AF})
$$

$$
\begin{aligned}
& =(\mathrm{AE}+\mathrm{ED})+\mathrm{AD}+(\mathrm{AC}+\mathrm{CD}) \\
& (\because \mathrm{AB}=\mathrm{ED}, \mathrm{AF}=\mathrm{CD})(\text { from figure }) \\
& =\mathrm{AD}+\mathrm{AD}+\mathrm{AD}=3 \mathrm{AD} \\
& =6 \mathrm{AO}(\because \mathrm{O} \text { centre}, \mathrm{OD}=\mathrm{AO})
\end{aligned}
$$

4) $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar vectors. Prove that the following four points are coplanar.
(i) $-\bar{a}+4 \bar{b}-3 \bar{c}, 3 \bar{a}+2 \bar{b}-5 \bar{c},-3 \bar{a}+8 \bar{b}-5 \bar{c},-3 \bar{a}+2 \bar{b}+\bar{c}$
(ii) $6 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-\overline{\mathrm{c}}, 2 \overline{\mathrm{a}}-\overline{\mathrm{b}}+3 \overline{\mathrm{c}},-\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-4 \overline{\mathrm{c}},-12 \overline{\mathrm{a}}-\overline{\mathrm{b}}-3 \overline{\mathrm{c}}$

Sol. (i) Let ' O ' be the origin. Then the position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are

$$
\begin{aligned}
& \overline{\mathrm{OA}}=-\overline{\mathrm{a}}+4 \overline{\mathrm{~b}}-3 \overline{\mathrm{c}} \\
& \overline{\mathrm{OB}}=3 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-5 \overline{\mathrm{c}} \\
& \overline{\mathrm{OC}}=-3 \overline{\mathrm{a}}+8 \overline{\mathrm{~b}}-5 \overline{\mathrm{c}} \\
& \overline{\mathrm{OD}}=-3 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}+\overline{\mathrm{c}}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=(3 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-5 \overline{\mathrm{c}})-(-\overline{\mathrm{a}}+4 \overline{\mathrm{~b}}-3 \overline{\mathrm{c}})=4 \overline{\mathrm{a}}-2 \overline{\mathrm{~b}}-2 \overline{\mathrm{c}} \\
& \overline{\mathrm{AC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OA}}=(-3 \overline{\mathrm{a}}+8 \overline{\mathrm{~b}}-5 \overline{\mathrm{c}})-(-\overline{\mathrm{a}}+4 \overline{\mathrm{~b}}-3 \overline{\mathrm{c}})=-2 \overline{\mathrm{a}}+4 \overline{\mathrm{~b}}-2 \overline{\mathrm{c}} \\
& \overline{\mathrm{AD}}=\overline{\mathrm{OD}}-\overline{\mathrm{OA}}=(-3 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}+\overline{\mathrm{c}})-(-\overline{\mathrm{a}}+4 \overline{\mathrm{~b}}-3 \overline{\mathrm{c}})=-2 \overline{\mathrm{a}}-2 \overline{\mathrm{~b}}+4 \overline{\mathrm{c}}
\end{aligned}
$$

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar $\Leftrightarrow\left|\begin{array}{ccc}4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4\end{array}\right|=0$
$\left|\begin{array}{lll}4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4\end{array}\right|=4(16-4)+2(-8-4)-2(4+8)$

$$
\begin{aligned}
& =4(12)+2(-12)-2(12) \\
& =48-24-24 \\
& =0
\end{aligned}
$$

$\Rightarrow \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar.

Second Method:

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar $\Leftrightarrow \overline{\mathrm{AB}}, \overline{\mathrm{AC}}, \overline{\mathrm{AD}}$ are coplanar.

$$
\Leftrightarrow \overline{\mathrm{AB}}=x \overline{\mathrm{AC}}+\mathrm{y} \overline{\mathrm{AD}}
$$

where x, y are scalars.

$$
\begin{aligned}
& \Rightarrow \quad 4 \overline{\mathrm{a}}-2 \overline{\mathrm{~b}}-2 \overline{\mathrm{c}}=x(-2 \overline{\mathrm{a}}+4 \overline{\mathrm{~b}}-2 \overline{\mathrm{c}})+y(-2 \overline{\mathrm{a}}-2 \overline{\mathrm{~b}}+4 \overline{\mathrm{c}}) \\
& \Rightarrow \quad 4 \overline{\mathrm{a}}-2 \overline{\mathrm{~b}}-2 \overline{\mathrm{c}}+2 \overline{\mathrm{a}} x-4 \overline{\mathrm{~b}} x+2 \overline{\mathrm{c}} x+2 \overline{\mathrm{a}} y+2 \overline{\mathrm{~b}} y-4 \overline{\mathrm{c}} y=0 \\
& \Rightarrow \quad(4+2 \mathrm{x}+2 \mathrm{y}) \overline{\mathrm{a}}+(-2-4 \mathrm{x}+2 \mathrm{y}) \overline{\mathrm{b}}+(-2+2 \mathrm{x}-4 \mathrm{y}) \overline{\mathrm{c}}=0
\end{aligned}
$$

$\because \overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar

$$
\Rightarrow \quad \begin{align*}
4+2 x+2 y & =0 \tag{1}\\
-2-4 x+2 y & =0 \tag{2}\\
-2+2 x-4 y & =0
\end{align*}
$$

Solving (1) and (2)

$$
\begin{aligned}
& 2 x+2 y+4=0 \\
& -4 x+2 y-2=0 \\
& +\quad+\quad+6=0 \\
& \hline 6 x++6=-1
\end{aligned}
$$

Substituting $x=-1$ in equation (1), we get
$4+2(-1)+2 y=0$
$4-2+2 y=0$
$2+2 y=0$
$2 \mathrm{y}=-2$
$y=-2 / 2=-1$
Substituting $\mathrm{x}=-1, \mathrm{y}=-1$ in equation (3), we get
$-2+2(-1)-4(-1)=-2-2+4=-4+4=0$
$\therefore \overline{\mathrm{AB}}, \overline{\mathrm{AC}}, \overline{\mathrm{AD}}$ are coplanar.
$\Rightarrow \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar.
\therefore Given points are coplanar.
(ii) Let ' O ' be the origin. Then the position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are
$\overline{\mathrm{OA}}=6 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-\overline{\mathrm{c}}$
$\overline{\mathrm{OB}}=2 \overline{\mathrm{a}}-\overline{\mathrm{b}}+3 \overline{\mathrm{c}}$
$\overline{\mathrm{OC}}=-\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-4 \overline{\mathrm{c}}$
$\overline{\mathrm{OD}}=-12 \overline{\mathrm{a}}-\overline{\mathrm{b}}-3 \overline{\mathrm{c}}$ respectively
$\overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=(2 \overline{\mathrm{a}}-\overline{\mathrm{b}}+3 \overline{\mathrm{c}})-(6 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-\overline{\mathrm{c}})=-4 \overline{\mathrm{a}}-3 \overline{\mathrm{~b}}+4 \overline{\mathrm{c}}$
$\overline{\mathrm{AC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OA}}=(-\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-4 \overline{\mathrm{c}})-(6 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-\overline{\mathrm{c}})=-7 \overline{\mathrm{a}}-3 \overline{\mathrm{c}}$
$\overline{\mathrm{AD}}=\overline{\mathrm{OD}}-\overline{\mathrm{OA}}=(-12 \overline{\mathrm{a}}-\overline{\mathrm{b}}-3 \overline{\mathrm{c}})-(6 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-\overline{\mathrm{c}})=-18 \overline{\mathrm{a}}-3 \overline{\mathrm{~b}}-2 \overline{\mathrm{c}}$
A, B, C, D are coplanar $\Leftrightarrow\left|\begin{array}{lll}-4 & -3 & 4 \\ -7 & 0 & -3 \\ -18 & -3 & -2\end{array}\right|=0$
$\left|\begin{array}{ccc}-4 & -3 & 4 \\ -7 & 0 & -3 \\ -18 & -3 & -2\end{array}\right|=-4(0-9)+3(14-54)+4(21-0)$

$$
\begin{aligned}
& =36+3(-40)+4(21) \\
& =36-120+84 \\
& =120-120=0
\end{aligned}
$$

$\Rightarrow \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar.
5) If $\mathrm{i}, \mathrm{j}, \mathrm{k}$ are unit vectors along the positive direction of the coordinate axes, then show that the four points $4 i+5 j+k,-j-k, 3 i+9 j+4 k$ and $-4 i+4 j+4 k$ are coplanar.
Sol. Let ' O ' be the origin and $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be the given points.
Then, $\quad \overline{\mathrm{OA}}=4 \mathrm{i}+5 \mathrm{j}+\mathrm{k}$

$$
\begin{aligned}
& \overline{\mathrm{OB}}=-j-k \\
& \overline{\mathrm{OC}}=3 \mathrm{i}+9 \mathrm{j}+4 \mathrm{k} \\
& \overline{\mathrm{OD}}=-4 \mathrm{i}+4 j+4 k
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=(-j-k)-(4 i+5 j+k)=-4 i-6 j-2 k \\
& \overline{\mathrm{AC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OA}}=(3 i+9 j+4 k)-(4 i+5 j+k)=-i+4 j+3 k \\
& \overline{\mathrm{AD}}=\overline{\mathrm{OD}}-\overline{\mathrm{OA}}=(-4 i+4 j+4 k)-(4 i+5 j+k)=-8 i-j+3 k
\end{aligned}
$$

A, B, C, D are coplanar $\Leftrightarrow\left|\begin{array}{rrr}-4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3\end{array}\right|=0$

$$
\begin{aligned}
\because\left|\begin{array}{rrr}
-4 & -6 & -2 \\
-1 & 4 & 3 \\
-8 & -1 & 3
\end{array}\right| & =-4(12+3)+6(-3+24)-2(1+32) \\
& =-4(15)+6(21)-2(33) \\
& =-60+126-66 \\
& =-126+126 \\
& =0
\end{aligned}
$$

$\Rightarrow \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar.
6) If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors, then test for the collinearity of the following points whose position vectors are given by
(i) $\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}+3 \overline{\mathrm{c}}, 2 \overline{\mathrm{a}}+3 \overline{\mathrm{~b}}-4 \overline{\mathrm{c}},-7 \overline{\mathrm{~b}}+10 \overline{\mathrm{c}}$
(ii) $3 \overline{\mathrm{a}}-4 \overline{\mathrm{~b}}+3 \overline{\mathrm{c}},-4 \overline{\mathrm{a}}+5 \overline{\mathrm{~b}}-6 \overline{\mathrm{c}}, 4 \overline{\mathrm{a}}-7 \overline{\mathrm{~b}}+6 \overline{\mathrm{c}}$

Sol. (i) Let ' O ' be the origin and $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the given points.

$$
\begin{aligned}
& \overline{\mathrm{OA}}=\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}+3 \overline{\mathrm{c}} \\
& \overline{\mathrm{OB}}=2 \overline{\mathrm{a}}+3 \overline{\mathrm{~b}}-4 \overline{\mathrm{c}}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathrm{OC}}=-7 \overline{\mathrm{~b}}+10 \overline{\mathrm{c}} \\
& \overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=(2 \overline{\mathrm{a}}+3 \overline{\mathrm{~b}}-4 \overline{\mathrm{c}})-(\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}+3 \overline{\mathrm{c}})=\overline{\mathrm{a}}+5 \overline{\mathrm{~b}}-7 \overline{\mathrm{c}} \\
& \overline{\mathrm{BC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OB}}=(-7 \overline{\mathrm{~b}}+10 \overline{\mathrm{c}})-(2 \overline{\mathrm{a}}+3 \overline{\mathrm{~b}}-4 \overline{\mathrm{c}})=-2 \overline{\mathrm{a}}-10 \overline{\mathrm{~b}}+14 \overline{\mathrm{c}} \\
& \overline{\mathrm{BC}}=-2(\overline{\mathrm{a}}+5 \overline{\mathrm{~b}}-7 \overline{\mathrm{c}}) \\
& \overline{\mathrm{BC}}=-2 \overline{\mathrm{AB}}[\because \text { from (1) }] \\
& \Rightarrow \overline{\mathrm{BC}}=2 \overline{\mathrm{BA}} \\
& \Rightarrow \mathrm{~A}, \mathrm{~B}, \mathrm{C} \text { are collinear. }
\end{aligned}
$$

(ii) Let ' O ' be the origin $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the given points

$$
\begin{aligned}
& \overline{\mathrm{OA}}=3 \overline{\mathrm{a}}-4 \overline{\mathrm{~b}}+3 \overline{\mathrm{c}} \\
& \overline{\mathrm{OB}}=-4 \overline{\mathrm{a}}+5 \overline{\mathrm{~b}}-6 \overline{\mathrm{c}} \\
& \overline{\mathrm{OC}}=4 \overline{\mathrm{a}}-7 \overline{\mathrm{~b}}+6 \overline{\mathrm{c}} \\
& \overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=(-4 \overline{\mathrm{a}}+5 \overline{\mathrm{~b}}-6 \overline{\mathrm{c}})-(3 \overline{\mathrm{a}}-4 \overline{\mathrm{~b}}+3 \overline{\mathrm{c}})=-7 \overline{\mathrm{a}}+9 \overline{\mathrm{~b}}-9 \overline{\mathrm{c}} \\
& \overline{\mathrm{BC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OB}}=(4 \overline{\mathrm{a}}-7 \overline{\mathrm{~b}}+6 \overline{\mathrm{c}})-(-4 \overline{\mathrm{a}}+5 \overline{\mathrm{~b}}-6 \overline{\mathrm{c}})=8 \overline{\mathrm{a}}-12 \overline{\mathrm{~b}}+12 \overline{\mathrm{c}}
\end{aligned}
$$

$\overline{\mathrm{AB}} \neq \lambda \overline{\mathrm{BC}}$, where λ is a scalar.
$\Rightarrow \mathrm{A}, \mathrm{B}, \mathrm{C}$ are non-collinear.
7) If the points whose position vectors are $3 \mathrm{i}-2 \mathrm{j}-\mathrm{k}, 2 \mathrm{i}+3 \mathrm{j}-4 \mathrm{k},-\mathrm{i}+\mathrm{j}+2 \mathrm{k}$ and $4 i+5 j+\lambda k$ are coplanar, then show that $\lambda=\frac{-146}{17}$.
Sol. Let ' O ' be the origin and $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be given points.

$$
\begin{gathered}
\overline{\mathrm{OA}}=3 \mathrm{i}-2 j-k \\
\overline{\mathrm{OB}}=2 \mathrm{i}+3 \mathrm{j}-4 \mathrm{k} \\
\overline{\mathrm{OC}}=-\mathrm{i}+\mathrm{j}+2 \mathrm{k} \\
\overline{\mathrm{OD}}=4 \mathrm{i}+5 \mathrm{j}+\lambda \mathrm{k} \text { respectively. } \\
\Rightarrow \quad \overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=(2 \mathrm{i}+3 \mathrm{j}-4 \mathrm{k})-(3 \mathrm{i}-2 j-\mathrm{k})=-\mathrm{i}+5 \mathrm{j}-3 \mathrm{k} \\
\overline{\mathrm{AC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OA}}=(-\mathrm{i}+\mathrm{j}+2 \mathrm{k})-(3 \mathrm{i}-2 \mathrm{j}-\mathrm{k})=-4 \mathrm{i}+3 \mathrm{j}+3 \mathrm{k} \\
\overline{\mathrm{AD}}=\overline{\mathrm{OD}}-\overline{\mathrm{OA}}=(4 \mathrm{i}+5 \mathrm{j}+\lambda \mathrm{k})-(3 \mathrm{i}-2 \mathrm{j}-\mathrm{k})=\mathrm{i}+7 \mathrm{j}+(\lambda+1) \mathrm{k} \\
\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \text { are coplanar } \Leftrightarrow\left|\begin{array}{ccc}
-1 & 5 & -3 \\
-4 & 3 & 3 \\
1 & 7 & \lambda+1
\end{array}\right|=0 \\
-1[3(\lambda+1)-21]-5[-4(\lambda+1)-3]-3[-28-3]=0 \\
-1(3 \lambda+3-21)-5(-4 \lambda-4-3)-3(-31)=0
\end{gathered}
$$

$-1(3 \lambda-18)-5(-4 \lambda-7)+93=0$
$-3 \lambda+18+20 \lambda+35+93=0$
$17 \lambda+146=0$
$17 \lambda=-146$
$\therefore \lambda=-\frac{146}{17}$
8) Find the vector equation of the plane which passes through the points $2 \mathrm{i}+4 \mathrm{j}+2 \mathrm{k}$, $2 i+3 j+5 k$ and parallel to the vector $3 i-2 j+k$. Also find the point where this plane meets the line joining the points $2 \mathrm{i}+\mathrm{j}+3 \mathrm{k}$ and $4 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}$.
Sol. Let $\overline{\mathrm{a}}=2 \mathrm{i}+4 \mathrm{j}+2 \mathrm{k}$

$$
\begin{aligned}
& \overline{\mathrm{b}}=2 \mathrm{i}+3 \mathrm{j}+5 \mathrm{k} \\
& \overline{\mathrm{c}}=3 \mathrm{i}-2 \mathrm{j}+\mathrm{k}
\end{aligned}
$$

\therefore Vector equation of plane passing through $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and parallel to $\overline{\mathrm{c}}$ is given by,
$\bar{r}=(1-t) \bar{a}+t \bar{b}+s \bar{c}, \quad t, s \in R$
$\overline{\mathrm{r}}=(1-\mathrm{t})(2 \mathrm{i}+4 \mathrm{j}+2 \mathrm{k})+\mathrm{t}(2 \mathrm{i}+3 \mathrm{j}+5 \mathrm{k})+\mathrm{s}(3 \mathrm{i}-2 \mathrm{j}+\mathrm{k})$
$\overline{\mathrm{r}}=(2-2 \mathrm{t}+2 \mathrm{t}+3 \mathrm{~s}) \mathrm{i}+(4-4 \mathrm{t}+3 \mathrm{t}-2 \mathrm{~s}) \mathrm{j}+(2-2 \mathrm{t}+5 \mathrm{t}+\mathrm{s}) \mathrm{k}$
$\overline{\mathrm{r}}=(2+3 \mathrm{~s}) \mathrm{i}+(4-\mathrm{t}-2 \mathrm{~s}) \mathrm{j}+(2+3 \mathrm{t}+\mathrm{s}) \mathrm{k}$
Let $\bar{p}=2 \mathrm{i}+\mathrm{j}+3 \mathrm{k}$
$\bar{q}=4 i-2 j+3 k$
Vector equation of line passing through $\overline{\mathrm{p}}$ and $\overline{\mathrm{q}}$ is given by,
$\bar{r}=(1-x) \bar{p}+x \bar{q}, \quad x \in R$
$\overline{\mathrm{r}}=(1-\mathrm{x})(2 \mathrm{i}+\mathrm{j}+3 \mathrm{k})+\mathrm{x}(4 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k})$
$\overline{\mathrm{r}}=(2-2 x+4 \mathrm{x}) \mathrm{i}+(1-\mathrm{x}-2 \mathrm{x}) \mathrm{j}+(3-3 \mathrm{x}+3 \mathrm{x}) \mathrm{k}$
$\overline{\mathrm{r}}=(2+2 \mathrm{x}) \mathrm{i}+(1-3 \mathrm{x}) \mathrm{j}+3 \mathrm{k}$
Equating the corresponding coefficients of $\mathrm{i}, \mathrm{j}, \mathrm{k}$ from (1) \& (2), we get

$$
\begin{align*}
& 2+3 \mathrm{~s}=2+2 \mathrm{x} \Rightarrow 2 \mathrm{x}-3 \mathrm{~s}=0 \tag{3}\\
& 4-\mathrm{t}-2 \mathrm{~s}=1-3 \mathrm{x} \Rightarrow 3 \mathrm{x}-2 \mathrm{~s}-\mathrm{t}=-3 \tag{4}\\
& 2+3 \mathrm{t}+\mathrm{s}=3 \Rightarrow \mathrm{~s}+3 \mathrm{t}=1 \\
& \Rightarrow 3 \mathrm{t}=1-\mathrm{s} \Rightarrow \mathrm{t}=\frac{1-\mathrm{s}}{3}
\end{align*}
$$

Substituting 't' value in equation (4), we get

$$
\begin{align*}
& 3 x-2 s-\left(\frac{1-s}{3}\right)=-3 \\
& 9 x-6 s-1+s=-9 \\
\Rightarrow \quad & 9 x-5 s=-8 \tag{5}
\end{align*}
$$

Solving (3) \& (5), we get

$$
\begin{array}{ll}
(2 x-3 s=0) \times 5 \\
(9 x-5 s=-8) \times-3 \\
x=\frac{-24}{17} & \Rightarrow \quad 10 x-15 s=0 \\
& \\
\frac{-27 x+15 s=24}{-17 x}=24
\end{array}
$$

Substituting $x=\frac{-24}{17}$ in (2), we get
$\overline{\mathrm{r}}=\left(2+2\left(\frac{-24}{17}\right)\right) i+\left(1-3\left(\frac{-24}{17}\right)\right) j+3 k$
$\overline{\mathrm{r}}=\left(2-\frac{48}{17}\right) i+\left(1+\frac{72}{17}\right) j+3 k$
$\overline{\mathrm{r}}=\left(\frac{34-48}{17}\right) i+\left(\frac{17+72}{17}\right) j+3 k$
$\Rightarrow \quad \overline{\mathrm{r}}=\frac{-14}{17} i+\frac{89}{17} j+3 k$
\therefore Point of intersection of plane and line $=\left(\frac{-14}{17}, \frac{89}{17}, 3\right)$
9) Find the vector equation of the plane passing through points $4 i-3 j-k, 3 i+7 j-10 k$ and $2 \mathrm{i}+5 \mathrm{j}-7 \mathrm{k}$ and show that the point $\mathrm{i}+2 \mathrm{j}-3 \mathrm{k}$ lies in the plane.
Sol. Let $\overline{\mathrm{a}}=4 \mathrm{i}-3 \mathrm{j}-\mathrm{k}$
$\overline{\mathrm{b}}=3 \mathrm{i}+7 \mathrm{j}-10 \mathrm{k}$
$\overline{\mathrm{c}}=2 \mathrm{i}+5 \mathrm{j}-7 \mathrm{k}$
$\overline{\mathrm{d}}=\mathrm{i}+2 \mathrm{j}-3 \mathrm{k}$
Vector equation of plane passing through $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is

$$
\begin{aligned}
& \overline{\mathrm{r}}=(1-\mathrm{t}-\mathrm{s}) \overline{\mathrm{a}}+\mathrm{t} \overline{\mathrm{~b}}+\mathrm{s} \overline{\mathrm{c}} \quad \mathrm{t}, \mathrm{~s} \in \mathrm{R} \\
& \overline{\mathrm{r}}=(1-\mathrm{t}-\mathrm{s})(4 \mathrm{i}-3 \mathrm{j}-\mathrm{k})+\mathrm{t}(3 \mathrm{i}+7 \mathrm{j}-10 \mathrm{k})+\mathrm{s}(2 \mathrm{i}+5 \mathrm{j}-7 \mathrm{k})
\end{aligned}
$$

If the point $\overline{\mathrm{d}}$ lies on this plane, then
$\mathrm{i}+2 \mathrm{j}-3 \mathrm{k}=(1-\mathrm{t}-\mathrm{s})(4 \mathrm{i}-3 \mathrm{j}-\mathrm{k})+\mathrm{t}(3 \mathrm{i}+7 \mathrm{j}-10 \mathrm{k})+\mathrm{s}(2 \mathrm{i}+5 \mathrm{j}-7 \mathrm{k})$
$\mathrm{i}+2 \mathrm{j}-3 \mathrm{k}=(4-4 \mathrm{t}-4 \mathrm{~s}+3 \mathrm{t}+2 \mathrm{~s}) \mathrm{i}+(-3+3 \mathrm{t}+3 \mathrm{~s}+7 \mathrm{t}+5 \mathrm{~s}) \mathrm{j}+(-1+\mathrm{t}+\mathrm{s}-10 \mathrm{t}-7 \mathrm{~s}) \mathrm{k}$
$\mathrm{i}+2 \mathrm{j}-3 \mathrm{k}=(4-\mathrm{t}-2 \mathrm{~s}) \mathrm{i}+(-3+10 \mathrm{t}+8 \mathrm{~s}) \mathrm{j}+(-1-9 \mathrm{t}-6 \mathrm{~s}) \mathrm{k}$
Equating the coefficient of $\mathrm{i}, \mathrm{j}, \mathrm{k}$ on both sides, we get

$$
\begin{align*}
& 4-t-2 s=1 \quad \Rightarrow \quad t+2 s=3 \tag{1}\\
& -3+10 t+8 s=2 \Rightarrow \tag{2}\\
& 10 t+8 s=5
\end{align*}
$$

$-1-9 t-6 s=-3 \quad \Rightarrow \quad 9 t+6 s=2$
Solving (1) \& (2)
$(\mathrm{t}+2 \mathrm{~s}=3) \times-4 \Rightarrow \quad-4 \mathrm{t}-8 \mathrm{~s}=-12$
$10 \mathrm{t}+8 \mathrm{~s}=5 \quad \Rightarrow \quad 10 \mathrm{t}+8 \mathrm{~s}=5$
$6 \mathrm{t} \quad=-7 \Rightarrow \mathrm{t}=\frac{-7}{6}$
From (1) $\quad t+2 s=3$

$$
\begin{aligned}
& \frac{-7}{6}+2 s=3 \\
& 2 s=3+\frac{7}{6}=\frac{18+7}{6} \\
& 2 s=\frac{25}{6} \Rightarrow s=\frac{25}{12}
\end{aligned}
$$

From (3)
LHS $=9 t+6 s$
$=9\left(\frac{-7}{6}\right)+6\left(\frac{25}{12}\right)=\frac{-21}{2}+\frac{25}{2}=\frac{-21+25}{2}=\frac{4}{2}=2=$ R.H.S.
$\therefore \mathrm{t}=\frac{-7}{6}, \mathrm{~s}=\frac{25}{12}$ satisfy (1), (2) and (3) equations.
$\Rightarrow \overline{\mathrm{d}}$ lies on the plane passing through $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$.
10) Show that the line joining the pair of points $6 \bar{a}-4 \bar{b}+4 \bar{c},-4 \bar{c}$ and the line joining the pair of points $-\bar{a}-2 \bar{b}-3 \bar{c}, \bar{a}+2 \bar{b}-5 \bar{c}$ intersect at the point -4 c when $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are noncoplanar vectors.
Sol. Equation of the line joining the first pair of points is,
$\overline{\mathrm{r}}=(1-\mathrm{t})(-4 \overline{\mathrm{c}})+\mathrm{t}(6 \overline{\mathrm{a}}-4 \overline{\mathrm{~b}}+4 \overline{\mathrm{c}}), \quad \mathrm{t} \in \mathrm{R}$
$\overline{\mathrm{r}}=(6 \mathrm{t}) \overline{\mathrm{a}}+(-4 \mathrm{t}) \overline{\mathrm{b}}+(-4+4 \mathrm{t}+4 \mathrm{t}) \overline{\mathrm{c}}$
$\overline{\mathrm{r}}=(6 \mathrm{t}) \overline{\mathrm{a}}+(-4 \mathrm{t}) \overline{\mathrm{b}}+(8 \mathrm{t}-4) \overline{\mathrm{c}}$
Equation of the line joining the second pair of points is,
$\overline{\mathrm{r}}=(1-\mathrm{s})(-\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}-3 \overline{\mathrm{c}})+\mathrm{s}(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-5 \overline{\mathrm{c}}), \quad \mathrm{s} \in \mathrm{R}$
$\overline{\mathrm{r}}=(-1+\mathrm{s}+\mathrm{s}) \overline{\mathrm{a}}+(-2+2 \mathrm{~s}+2 \mathrm{~s}) \overline{\mathrm{b}}+(-3+3 \mathrm{~s}-5 \mathrm{~s}) \overline{\mathrm{c}}$
$\overline{\mathrm{r}}=(2 \mathrm{~s}-1) \overline{\mathrm{a}}-(4 \mathrm{~s}-2) \overline{\mathrm{b}}+(-2 \mathrm{~s}-3) \overline{\mathrm{c}}$
Equating the corresponding coefficients of $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ in (1) \& (2), we have
$6 \mathrm{t}=2 \mathrm{~s}-1 \quad \Rightarrow \quad 6 \mathrm{t}-2 \mathrm{~s}=-1$
$-4 \mathrm{t}=4 \mathrm{~s}-2 \quad \Rightarrow \quad 4 \mathrm{t}+4 \mathrm{~s}=2 \Rightarrow 2 \mathrm{t}+2 \mathrm{~s}=1$
$8 \mathrm{t}-4=-2 \mathrm{~s}-3 \Rightarrow 8 \mathrm{t}+2 \mathrm{~s}=1$

Solving (3) \& (4), we get
$6 t-2 s=-1$
$\underline{2 t+2 s=1}$
$8 \mathrm{t} \quad=0 \quad \Rightarrow \mathrm{t}=0$
From (4) $\quad 2 t+2 s=1$ $2(0)+2 s=1$ $2 \mathrm{~s}=1 \Rightarrow \mathrm{~s}=\frac{1}{2}$
$\mathrm{t}=0, \mathrm{~s}=\frac{1}{2}$ satisfy equation (5).
$\therefore \quad$ Substituting the value of $t=0$ in (1) or $s=\frac{1}{2}$ in (2), the point of intersection of the lines is -4 c .
10) Find the point of intersection of the line $\bar{r}=2 \bar{a}+\bar{b}+t(\bar{b}-\bar{c})$ and the plane
$\overline{\mathrm{r}}=\overline{\mathrm{a}}+\mathrm{x}(\overline{\mathrm{b}}+\overline{\mathrm{c}})+\mathrm{y}(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-\overline{\mathrm{c}})$ where $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar vectors.
Sol. Given line is, $\quad \bar{r}=2 \overline{\mathrm{a}}+\overline{\mathrm{b}}+\mathrm{t}(\overline{\mathrm{b}}-\overline{\mathrm{c}})$
plane is, $\quad \bar{r}=\bar{a}+x(\bar{b}+\bar{c})+y(\bar{a}+2 \bar{b}-\bar{c})$
At the point of intersection of the line and the plane, we have,

$$
\begin{aligned}
& 2 \overline{\mathrm{a}}+\overline{\mathrm{b}}+\mathrm{t}(\overline{\mathrm{~b}}-\overline{\mathrm{c}})=\overline{\mathrm{a}}+\mathrm{x}(\overline{\mathrm{~b}}+\overline{\mathrm{c}})+\mathrm{y}(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-\overline{\mathrm{c}}) \\
& 2 \overline{\mathrm{a}}+(1+\mathrm{t}) \overline{\mathrm{b}}-\mathrm{tc}=(1+\mathrm{y}) \overline{\mathrm{a}}+(\mathrm{x}+2 \mathrm{y}) \overline{\mathrm{b}}+(\mathrm{x}-\mathrm{y}) \overline{\mathrm{c}}
\end{aligned}
$$

\therefore On comparing the corresponding coefficients,
$2=1+y \Rightarrow y=2-1=1 \Rightarrow y=1$
$1+\mathrm{t}=\mathrm{x}+2 \mathrm{y} \Rightarrow 1+\mathrm{t}=\mathrm{x}+2(1) \Rightarrow \mathrm{t}-\mathrm{x}=1$
$-\mathrm{t}=\mathrm{x}-\mathrm{y} \Rightarrow-\mathrm{t}=\mathrm{x}-1 \Rightarrow \mathrm{t}+\mathrm{x}=1$
Solving (3) \& (4)
$t-x=1$

$t+x=1$
$2 t \quad=2$

$t=1$
From (4)

$$
\begin{aligned}
& \mathrm{t}+\mathrm{x}=1 \\
& 1+\mathrm{x}=1 \\
& \Rightarrow \mathrm{x}=1-1 \\
& \Rightarrow \mathrm{x}=0
\end{aligned}
$$

Substituting $t=1$ in (1) or substituting $x=0, y=1$ in (2), we get the point of intersection of (1) \& (2) as $2 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}-\overline{\mathrm{c}}$.

Unit

Product of Vectors

Scalar or Dot Product of two vectos

Let $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ be two vectos. The scalar (or dot) product of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, written as, $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ is defined as
$\bar{a} \cdot \bar{b}=0$ if one of \bar{a} or \bar{b} is 0

$$
=|\overline{\mathrm{a}}||\overline{\mathrm{b}}| \operatorname{Cos} \theta \text {, if } \overline{\mathrm{a}} \neq 0, \overline{\mathrm{~b}} \neq 0 \text { and } \theta \text { is the angle between } \overline{\mathrm{a}} \text { and } \overline{\mathrm{b}}
$$

Note:

(i) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ is a scalar.
(ii) If \bar{a}, \bar{b} are non zero vectors, than $\bar{a} \cdot \bar{b}$ is positive or zero or negative according as the angle θ beween \bar{a} and \bar{b} is acute or right or obtuse angle.
(iii) If $\theta=0^{0}$, then
$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=|\overline{\mathrm{a}}||\overline{\mathrm{b}}|$
In particular, $\overline{\mathrm{a}} \cdot \overline{\mathrm{a}}=|\stackrel{\rightharpoonup}{\mathrm{a}}||\overline{\mathrm{a}}| \cos 0^{\circ}=|\overrightarrow{\mathrm{a}}| \cdot|\overrightarrow{\mathrm{a}}|$
$\overline{\mathrm{a}} \cdot \overline{\mathrm{a}}=|\overline{\mathrm{a}}|^{2}$

Orthogonal Projection

Let $\overline{\mathrm{a}}=\overline{\mathrm{AB}}$ and $\overline{\mathrm{b}}=\overline{\mathrm{CD}}$ be two non zero vectors. Let P and Q be the feet of the perpendiculars drawn from C and D respectively onto the line AB . Then $\overline{\mathrm{PQ}}$ is called the orthogonal projection vector of $\overline{\mathrm{b}}$ on $\overline{\mathrm{a}}$ and the magnitude, $|\overline{\mathrm{PQ}}|$ is called the magnitude of the projection of $\overline{\mathrm{b}}$ on $\overline{\mathrm{a}}$.

1. The projection vector of \bar{b} on \bar{a} is $\frac{(\bar{b} \cdot \bar{a}) \bar{a}}{|\bar{a}|^{2}}$ and its magnitude is $\frac{|\bar{b} \cdot \bar{a}|}{|\bar{a}|}$
2. The projection vector of \bar{a} on \bar{b} is $\frac{(\bar{a} \cdot \bar{b}) \bar{b}}{|\bar{b}|^{2}}$ and its magnitude is $\frac{|\bar{a} \cdot \bar{b}|}{|\bar{b}|}$.
3. Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ be two vectors. Then
(i) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}$ (commutative law)
(ii) $(l \overline{\mathrm{a}}) \cdot \overline{\mathrm{b}}=\overline{\mathrm{a}} \cdot(l \overline{\mathrm{~b}})=l(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}), l \in \mathrm{R}$.
(iii) $(\overline{\mathrm{a}}) \cdot(\mathrm{m} \overline{\mathrm{b}})=\operatorname{lm}(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}), l, m \in \mathrm{R}$.
(iv) $(-\overline{\mathrm{a}}) \cdot(\overline{\mathrm{b}})=\overline{\mathrm{a}} \cdot(-\overline{\mathrm{b}})=-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}})$
(v) $(-\bar{a}) \cdot(-\bar{b})=\bar{a} \cdot \bar{b}$

Note: If $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are mutually perpandicular unit vectors, then
$\mathrm{i} . \mathrm{i}=\mathrm{j} . \mathrm{j}=\mathrm{k} . \mathrm{k}=1$
$\mathrm{i} . \mathrm{j}=\mathrm{j} . \mathrm{k}=\mathrm{k} . \mathrm{i}=0$
Theorem: Let $\overline{\mathrm{a}}=\mathrm{a}_{1} \mathrm{i}+\mathrm{a}_{2} \mathrm{j}+\mathrm{a}_{3} \overline{\mathrm{k}}$
$\bar{b}=b_{1} i+b_{2} j+b_{3} \bar{k}$. Then
$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{a}_{3} \mathrm{~b}_{3}$.
Note: (i) If θ is the angle between two non-zero vectors \bar{a} and \bar{b}, then

$$
\begin{aligned}
& \theta=\operatorname{Cos}^{-1}\left(\frac{\bar{a} \cdot \bar{b}}{|\vec{a}||\bar{b}|}\right) \\
& \theta=\operatorname{Cos}^{-1}\left(\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}} \sqrt{b_{1}{ }^{2}+b_{2}{ }^{2}+b_{3}{ }^{2}}}\right)
\end{aligned}
$$

(ii) \bar{a}, \bar{b} are perpendicular to each other $\Leftrightarrow a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$

Cross Product of two vectors:

Let \bar{a} and \bar{b} be non-zero non collinear vectors. The cross (or vector) product of \bar{a} and \bar{b} written as $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is defined to be the vector $(|\overline{\mathrm{a}}||\overline{\mathrm{b}}| \operatorname{Sin} \theta) \overline{\mathrm{n}}$ where θ is the angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ and $\overline{\mathrm{n}}$ is the unit vector perpendicular to both $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ such that $(\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{n}})$ is a right handed system.
If one of the vectors \bar{a}, \bar{b} is the null vectors or \bar{a}, \bar{b} are collinear vectors then the cross product $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is defined as the null vector $\overline{0}$.

Note:

(1) If \bar{a}, \bar{b} are non-zero and non collinear vectors, then $\bar{a} \times \bar{b}$ is a vector, perpendicular to the plane determined by $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, whose magnitude is $|\overline{\mathrm{a}}||\overline{\mathrm{b}}| \sin \theta$.
(2) $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=-(\overline{\mathrm{b}} \times \overline{\mathrm{a}})$
(3) $(-\mathrm{a}) \times \overline{\mathrm{b}}=\mathrm{a} \times(-\overline{\mathrm{b}})=-(\overline{\mathrm{a}} \times \overline{\mathrm{b}})=\overline{\mathrm{b}} \times \overline{\mathrm{a}}$
(4) $(-\bar{a}) \times(-\bar{b})=\bar{a} \times \bar{b}$
(5) $(l \bar{a}) \times(\overline{\mathrm{b}})=l(\overline{\mathrm{a}} \times \overline{\mathrm{b}})=\mathrm{a} \times(l \overline{\mathrm{~b}}), l \in \mathrm{R}$
(6) $(l \overline{\mathrm{a}}) \times(\mathrm{m} \overline{\mathrm{b}})=\operatorname{lm}(\overline{\mathrm{a}} \times \overline{\mathrm{b}}), l, m \in \mathrm{R}$
(7) $\overline{\mathrm{a}} \times(\overline{\mathrm{b}}+\overline{\mathrm{c}})=\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{a}} \times \overline{\mathrm{c}}$
(8) $(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \times \overline{\mathrm{c}}=(\overline{\mathrm{a}} \times \overline{\mathrm{c}})+(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$
(9) If (i, j, k) is an orthogonal triad, then

> (i) $\mathrm{i} \times \mathrm{i}=\mathrm{j} \times \mathrm{j}=\mathrm{k} \times \mathrm{k}=0$
> (ii) $\mathrm{i} \times \mathrm{j}=\mathrm{k}, \mathrm{j} \times \mathrm{k}=\mathrm{i}, \mathrm{k} \times \mathrm{i}=\mathrm{j}$

Theorem:If $\bar{a}=a_{1} i+a_{2} j+a_{3} k$
If $\bar{b}=b_{1} i+b_{2} j+b_{3} \bar{k}$ then

$$
\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}
\end{array}\right|
$$

Theorem: For any two vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$,

$$
|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|^{2}=|\overline{\mathrm{a}}|^{2}|\overline{\mathrm{~b}}|^{2}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}})^{2}
$$

Theorem: The vector area of $\triangle \mathrm{ABC}$ is

$$
=\frac{1}{2}(\overline{\mathrm{AB}} \times \overline{\mathrm{AC}})=\frac{1}{2}(\overline{\mathrm{BC}} \times \overline{\mathrm{BA}})=\frac{1}{2}(\overline{\mathrm{CA}} \times \overline{\mathrm{CB}})
$$

Theorem:If $\bar{a}, \bar{b}, \bar{c}$ are the position vectors of the vertices A, B and C of $\triangle A B C$, Then the vector area of $\triangle \mathrm{ABC}$ is $\frac{1}{2}(\overline{\mathrm{~b}} \times \overline{\mathrm{c}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}+\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and its area is $\frac{1}{2}|\overline{\mathrm{~b}} \times \overline{\mathrm{c}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}+\overline{\mathrm{a}} \times \overline{\mathrm{b}}|$

Theorem:

(i) The vector area of any plane quadrilateral ABCD in terms of the diagonals $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ is $\frac{1}{2}(\overline{\mathrm{AC}} \times \overline{\mathrm{BD}})$
(ii) The area of the quadrilateral ABCD is $\frac{1}{2}|\overline{\mathrm{AC}} \times \overline{\mathrm{BD}}|$
(iii) The vector area of a parallelogram with $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ as adjacent sides is $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ and the area is $|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|$,
(iv) The unit vector perpandicular to both $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is

$$
= \pm \frac{(\overline{\mathrm{a}} \times \overline{\mathrm{b}})}{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|}
$$

1. If $\overline{\mathrm{a}}=6 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}, \overline{\mathrm{b}}=2 \mathrm{i}-9 \mathrm{j}+6 \mathrm{k}$, then find $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ and the angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}} .(\mathbf{4 M})$

Sol: $\quad \overline{\mathrm{a}}=6 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}, \overline{\mathrm{b}}=2 \mathrm{i}-9 \mathrm{j}+6 \mathrm{k}$ then,
$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{a}_{3} \mathrm{~b}_{3}$ and $|\overline{\mathrm{a}}|=\sqrt{\mathrm{a}_{1}{ }^{2}+\mathrm{a}_{2}{ }^{2}+\mathrm{a}_{3}{ }^{2}}$
$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=6(2)+2(-9)+3(6)=12-18+18=12$
$|\stackrel{\rightharpoonup}{\mathrm{a}}|=\sqrt{36+4+9}=\sqrt{49}=7$
$|\overline{\mathrm{b}}|=\sqrt{2^{2}+(-9)^{2}+6^{2}}=\sqrt{4+81+36}=\sqrt{121}=11$
$\operatorname{Cos} \theta=\frac{\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}}{(|\overline{\mathrm{a}}||\overline{\mathrm{b}}|)}=\frac{12}{7 \times 11}=\frac{12}{77}$
$\theta=\operatorname{Cos}^{-1}\left(\frac{12}{77}\right)$
2. If $\bar{a}=i+2 j-3 k, \bar{b}=3 i-j+2 k$, then show that $\bar{a}+\bar{b}$ and $\bar{a}-\bar{b}$ are perpendicular to each other. (4 M)
Sol: $\quad \bar{a}+\bar{b}=i+2 j-3 k+3 i-j+2 k=4 i+j-k$
$\overline{\mathrm{a}}-\overline{\mathrm{b}}=(\mathrm{i}+2 \mathrm{j}-3 \mathrm{k})-(3 \mathrm{i}-\mathrm{j}+2 \mathrm{k})=-2 \mathrm{i}+3 \mathrm{j}-5 \mathrm{k}$
$(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \cdot(\overline{\mathrm{a}}-\overline{\mathrm{b}})=4(-2)+1(3)+(-1)(-5)$
$=-8+3+5$
$=0 \quad[\because \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=0 \Rightarrow \overline{\mathrm{a}} \perp \overline{\mathrm{b}}]$
$\therefore(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \perp(\overline{\mathrm{a}}-\overline{\mathrm{b}})$
3. If $\bar{a}=i-j-k$ and $\bar{b}=2 i-3 j+k$ then find the orthogonal projection of \bar{b} on \bar{a} and its magnitude. ($\mathbf{4} \mathbf{~ M}$)

Sol: Orthogonal projection of $\overline{\mathrm{b}}$ on $\overline{\mathrm{a}}=\frac{(\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}) \overline{\mathrm{a}}}{|\overline{\mathrm{a}}|^{2}}$

$$
\begin{aligned}
& \begin{aligned}
\overline{\mathrm{b}} \cdot \overline{\mathrm{a}} & =(2 \mathrm{i}-3 \mathrm{j}+\mathrm{k}) \cdot(\mathrm{i}-\mathrm{j}-\mathrm{k}) \\
& =2(1)+(-3)(-1)+1(-1)=2+3-1=4 \\
|\overline{\mathrm{a}}| & =\sqrt{(1)^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{1+1+1}=\sqrt{3}
\end{aligned}
\end{aligned}
$$

\therefore Orthogonal projection of $\overline{\mathrm{b}}$ on $\overline{\mathrm{a}}=\frac{(\overline{\mathrm{b}} \overline{\mathrm{a}}) \overline{\mathrm{a}}}{|\overline{\mathrm{a}}|^{2}}=\frac{4(\mathrm{i}-\mathrm{j}-\mathrm{k})}{(\sqrt{3})^{2}}=\frac{4(\mathrm{i}-\mathrm{j}-\mathrm{k})}{3}$
Magnitude of the projection vector $=\frac{|\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}|}{|\overline{\mathrm{a}}|}=\frac{|4|}{|\sqrt{3}|}=\frac{4}{\sqrt{3}}$
4. If the vectors $\lambda i-3 j+5 k$ and $2 \lambda i-\lambda j-k$ are perpendicular to each other, find λ. (2M)

Sol: If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are perpendicular to each other then, $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=0$

$$
\begin{array}{ll}
\therefore & (\lambda)(2 \lambda)+(-3)(-\lambda)+5(-1)=0 \\
& 2 \lambda^{2}+3 \lambda-5=0 \\
& 2 \lambda^{2}+5 \lambda-2 \lambda-5=0 \\
& (2 \lambda+5)(\lambda-1)=0 \\
& 2 \lambda+5=0 \text { (or) } \lambda-1=0 \\
& \lambda=\frac{-5}{2} \text { (or) } \lambda=1
\end{array}
$$

5. Prove that the angle θ between any two diagonals of a cube is given by $\cos \theta=1 / 3 .(\mathbf{4 M})$

Sol: Let the cuber be a unit cube.
Let $\overline{\mathrm{OA}}=\mathrm{i} ; \overline{\mathrm{OB}}=\mathrm{j} ; \overline{\mathrm{OC}}=\mathrm{k}$
$\overline{\mathrm{OF}}, \overline{\mathrm{GC}}$ are diagonals
$\overline{\mathrm{OF}}=\mathrm{OA}+\mathrm{AD}+\mathrm{DF}$
$=\mathrm{i}+\mathrm{k}+\mathrm{j}$
$=\mathrm{i}+\mathrm{j}+\mathrm{k}$
$\overline{\mathrm{GC}}=\overline{\mathrm{GB}}+\overline{\mathrm{BO}}+\overline{\mathrm{OC}}$
$=-\mathrm{i}-\mathrm{j}+\mathrm{k}$
If θ is angle between $\overline{\mathrm{OF}}$ and $\overline{\mathrm{GC}}$, then

$\cos \theta=\frac{|\overline{\mathrm{OF}} \cdot \overline{\mathrm{GC}}|}{|\overline{\mathrm{OF}}||\overline{\mathrm{GC}}|}=\frac{|1(-1)+1(-1)+1(1)|}{\sqrt{1^{2}+1^{2}+1^{2}} \sqrt{(-1)^{2}+(-1)^{2}+1^{2}}}=\frac{|-1-1+1|}{\sqrt{3} \cdot \sqrt{3}}=\frac{1}{3}$
6. The Vectors $\overline{\mathrm{AB}}=3 \mathrm{i}-2 \mathrm{j}+2 \mathrm{k}$ and $\overline{\mathrm{AD}}=\mathrm{i}-2 \mathrm{k}$ represent the adjacent sides of a parallelogram ABCD , Find the angle between the diagonals. (4M)
Sol: $\overline{\mathrm{AC}}=\overline{\mathrm{AB}}+\overline{\mathrm{BC}}$
$=3 \mathrm{i}-2 \mathrm{j}+2 \mathrm{k}+\mathrm{i}-2 \mathrm{k}$
$=4 \mathrm{i}-2 \mathrm{j}$
$\overline{\mathrm{BD}}=\mathrm{BA}+\mathrm{AD}$
$=-3 \mathrm{i}+2 \mathrm{j}-2 \mathrm{k}+\mathrm{i}-2 \mathrm{k}$
$=-2 \mathrm{i}+2 \mathrm{j}-4 \mathrm{k}$
If θ is the angle between $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$, then
$\cos \theta=\frac{\overline{\mathrm{AC}} \cdot \overline{\mathrm{BD}}}{|\overline{\mathrm{AC}}||\overline{\mathrm{BD}}|}=\frac{4(-2)+(-2) 2+0(-4)}{\sqrt{4^{2}+(-2)^{2}} \sqrt{(-2)^{2}+2^{2}+(-4)^{2}}}$

$\cos \theta=\frac{-8-4}{\sqrt{16+4} \sqrt{4+4+16}}=\frac{-12}{\sqrt{20} \sqrt{24}}=\frac{-12}{\sqrt{5 \times 4} \sqrt{6 \times 4}}=\frac{-12}{4 \sqrt{30}}=\frac{-3}{\sqrt{10} \cdot \sqrt{3}}$
$\operatorname{Cos} \theta=\frac{-\sqrt{3}}{\sqrt{10}}$
7. Find the cartesian equation of the plane through the point $\mathrm{A}=(2,-1,-4)$ and parallel to the plane $4 x-12 y-3 z-7=0$. (4M)
Sol: The normal to the plane $4 \mathrm{x}-12 \mathrm{y}-3 \mathrm{z}-7=0$ is, $\overline{\mathrm{n}}=4 \mathrm{i}-12 \mathrm{j}-3 \overline{\mathrm{k}}$.
Let $\mathrm{P}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}$ be any point on the plan.

$$
\overline{\mathrm{AP}} \perp \overline{\mathrm{n}}
$$

$(\overline{\mathrm{OP}}-\overline{\mathrm{OA}}) \cdot \overline{\mathrm{n}}=0$
$[(x-2) i+(y+1) j+(z+4) \bar{k}] \cdot(4 i-12 j-3 \bar{k})=0$
$4(x-2)-12(y+1)-3(z+4)=0$
$4 \mathrm{x}-12 \mathrm{y}-3 \mathrm{z}-8-12-12=0$
$4 x-12 y-3 z-32=0$
8. Find the angle between the vectors $i+2 j+3 k$ and $3 i-j+2 k$. (4M)

Sol: Let $\overline{\mathrm{a}}=\mathrm{i}+2 \mathrm{j}+3 \mathrm{k}, \overline{\mathrm{b}}=3 \mathrm{i}-\mathrm{j}+2 \mathrm{k}$
$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=1(3)+2(-1)+3(2)=3-2+6=7$
$|\overline{\mathrm{a}}|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14}$
$|\overline{\mathrm{b}}|=\sqrt{3^{2}+(-1)^{2}+2^{2}}=\sqrt{9+1+4}=\sqrt{14}$
If θ is angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}} \Rightarrow \operatorname{Cos} \theta=\frac{\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}}{|\overline{\mathrm{a}}||\overline{\mathrm{b}}|}$
$\operatorname{Cos} \theta=\frac{7}{\sqrt{14} \cdot \sqrt{14}}=\frac{7}{14}=\frac{1}{2}=\operatorname{Cos} 60^{\circ}$
$\theta=60^{\circ}$
9. If the vectors $2 \mathrm{i}+\lambda \mathrm{j}-\mathrm{k}$ and $4 \mathrm{i}-2 \mathrm{j}+2 \mathrm{k}$ are perpendicular to each other, find λ. (2M)

Sol: Let $\overline{\mathrm{a}}=2 \mathrm{i}+\lambda \mathrm{j}-\mathrm{k} ; \overline{\mathrm{b}}=4 \mathrm{i}-2 \mathrm{j}+2 \overline{\mathrm{k}}$
If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are perpendicular to each other, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=0$
$\therefore 2(4)+\lambda(-2)+(-1)(2)=0$
$8-2 \lambda-2=0$
$2 \lambda=6 \quad \therefore \lambda=3$
10. For what value of λ, the vectors $i-\lambda j+2 k$ and $8 i+6 j-k$ are at right angles? (2M)

Sol: Let $\overline{\mathrm{a}}=\mathrm{i}-\lambda \mathrm{j}+2 \mathrm{k} ; \overline{\mathrm{b}}=8 \mathrm{i}+6 \mathrm{j}-\overline{\mathrm{k}}$
If \bar{a} and \bar{b} are perpendicular to each other, then $\bar{a} \cdot \bar{b}=0$
$\therefore 1(8)+(-\lambda)(6)+2(-1)=0$
$\Rightarrow 8-6 \lambda-2=0$
$\Rightarrow 6 \lambda=6$
$\therefore \lambda=1$
11. Let e_{1} and e_{2} be unit vectors making angle θ. If $\frac{1}{2}\left|\overline{\mathrm{e}_{1}}-\overline{\mathrm{e}_{2}}\right|=\operatorname{Sin} \lambda \theta$, then find λ. (4M)

Sol: $\left|\overline{\mathrm{e}_{1}}\right|=1 ;\left|\overline{\mathrm{e}_{2}}\right|=1$
$\operatorname{Cos} \theta=\frac{\overline{\mathrm{e}_{1}} \cdot \overline{\mathrm{e}_{2}}}{\left|\overline{\mathrm{e}_{1}}\right|| | \mathrm{e}_{2} \mid}=\overline{\mathrm{e}_{1}} \cdot \overline{\mathrm{e}_{2}}$
Given, $\frac{1}{2}\left|\overline{\mathrm{e}_{1}}-\overline{\mathrm{e}_{2}}\right|=\operatorname{Sin} \lambda \theta$

$$
\begin{array}{ll}
\left|\overline{\mathrm{e}_{1}}-\overline{\mathrm{e}_{2}}\right|=2 \operatorname{Sin} \lambda \theta & \\
\left|\overline{\mathrm{e}_{1}}-\overline{\mathrm{e}_{2}}\right|^{2}=4 \operatorname{Sin}^{2} \lambda \theta & \left(\because|\overline{\mathrm{a}}|^{2}=\overline{\mathrm{a}} \cdot \overline{\mathrm{a}}\right) \\
\left(\overline{\mathrm{e}_{1}}-\overline{\mathrm{e}_{2}}\right) \cdot\left(\overline{\mathrm{e}_{1}}-\overline{\mathrm{e}_{2}}\right)=4 \operatorname{Sin}^{2} \lambda \theta & \left(\because \overline{\mathrm{e}_{1}} \cdot \overline{\mathrm{e}_{1}}=\left|\overline{\mathrm{e}_{1}}\right|^{2}\right) \\
\left|\overline{\mathrm{e}_{1}}\right|^{2}-\overline{\mathrm{e}_{1}} \cdot \overline{\mathrm{e}_{2}}-\overline{\mathrm{e}_{2}} \cdot \overline{\mathrm{e}_{1}}+\left|\overline{\mathrm{e}_{2}}\right|^{2}=4 \operatorname{Sin}^{2} \lambda \theta & \left(\because \overline{\mathrm{e}_{1}} \cdot \overline{\mathrm{e}_{2}}=\overline{\mathrm{e}_{2}} \cdot \overline{\mathrm{e}_{1}}\right) \\
1-2 \overline{\mathrm{e}_{1}} \cdot \overline{\mathrm{e}_{2}}+1=4 \operatorname{Sin}^{2} \lambda \theta & \\
2-2 \operatorname{Cos} \theta=4 \operatorname{Sin}^{2} \lambda \theta & \left(\because \overline{\mathrm{e}_{1}} \cdot \overline{\mathrm{e}_{2}}=\cos \theta\right) \\
2(1-\operatorname{Cos} \theta)=4 \operatorname{Sin}^{2} \lambda \theta & \\
2\left(2 \operatorname{Sin}^{2} \theta / 2\right)=4 \operatorname{Sin}^{2} \lambda \theta & {\left[\because 1-\cos \theta=2 \sin ^{2} \frac{\theta}{2}\right]} \\
\operatorname{Sin}^{2} \theta / 2=\operatorname{Sin}^{2} \lambda \theta & \\
\Rightarrow \lambda=\frac{1}{2} &
\end{array}
$$

12. If $\bar{a}=2 i+2 j-3 k, \bar{b}=3 i-j+2 k$, then find the angle betwen the vectors, $2 \bar{a}+\bar{b}$ and $\bar{a}+2 \bar{b} . \quad$ (4M)
Sol: $\quad 2 \bar{a}+\bar{b}=2(2 i+2 j-3 k)+3 i-j+2 k=7 i+3 j-4 k$
$\bar{a}+2 \bar{b}=2 i+2 j-3 k+2(3 i-j+2 k)=8 i+k$
If θ is the angle between $2 \bar{a}+\bar{b}$ and $\bar{a}+2 \bar{b}$, then
$\operatorname{Cos} \theta=\frac{(2 \bar{a}+\bar{b}) \cdot(\bar{a}+2 \overline{\mathrm{~b}})}{|2 \overline{\mathrm{a}}+\overline{\mathrm{b}}||\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}|}=\frac{7(8)+3(0)+(-4)(1)}{\sqrt{7^{2}+3^{2}+(-4)^{2}} \cdot \sqrt{8^{2}+1^{2}}}$
$=\frac{56-4}{\sqrt{49+9+16} \cdot \sqrt{64+1}}=\frac{52}{\sqrt{74} \cdot \sqrt{65}}$
$\theta=\operatorname{Cos}^{-1}\left(\frac{52}{\sqrt{74} \cdot \sqrt{65}}\right)$
13. If $\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=0,|\overline{\mathrm{a}}|=3,|\overline{\mathrm{~b}}|=5,|\overline{\mathrm{c}}|=7$, then find the angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$.

Sol: $\overline{\mathrm{a}}+\overline{\mathrm{b}}=-\overline{\mathrm{c}}$
$(\bar{a}+\bar{b})^{2}=(-\bar{c})^{2}$
$(\bar{a}+\bar{b}) \cdot(\bar{a}+\bar{b})=\bar{c} \cdot \bar{c}$
$|\overline{\mathrm{a}}|^{2}+\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}+|\overline{\mathrm{b}}|^{2}=|\overline{\mathrm{c}}|^{2}$
$|\overline{\mathrm{a}}|^{2}+2 \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}+|\overline{\mathrm{b}}|^{2}=|\overline{\mathrm{c}}|^{2}$
$2|\overline{\mathrm{a}}||\overline{\mathrm{b}}| \cos \theta=|\overline{\mathrm{c}}|^{2}-|\overline{\mathrm{a}}|^{2}-|\overline{\mathrm{b}}|^{2}$
$2(3)(5) \cos \theta=49-9-25$
$30 \cos \theta=49-34=15$
$\operatorname{Cos} \theta=\frac{15}{30}$
$\operatorname{Cos} \theta=\frac{1}{2}=\operatorname{Cos} 60^{\circ}$
$\theta=60^{\circ}$
14. If $|\mathrm{a}|=2,|\overline{\mathrm{~b}}|=3$ and $|\overline{\mathrm{c}}|=4$ and each of $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ is perpendicular to the sum of the other two vectos, then find the magnitude of $\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}$.

Sol: Given $|\mathrm{a}|=2,|\overline{\mathrm{~b}}|=3$ and $|\overline{\mathrm{c}}|=4$

$$
\begin{aligned}
\overline{\mathrm{a}} \perp(\overline{\mathrm{~b}}+\overline{\mathrm{c}}) \Rightarrow & \overline{\mathrm{a}} \cdot(\overline{\mathrm{~b}}+\overline{\mathrm{c}})=0 \\
& \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}+\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=0
\end{aligned}
$$

$$
\begin{align*}
& \overline{\mathrm{b}} \perp(\overline{\mathrm{c}}+\overline{\mathrm{a}}) \Rightarrow \overline{\mathrm{b}} \cdot(\overline{\mathrm{c}}+\overline{\mathrm{a}})=0 \\
& \overline{\mathrm{~b}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}=0 \\
& \overline{\mathrm{c}} \perp(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \Rightarrow \overline{\mathrm{c}} \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}})=0 \\
& \overline{\mathrm{c}} \cdot \overline{\mathrm{a}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{~b}}=0 \\
& \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}+\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{~b}}=0 \\
& 2(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{a}})=0 \tag{1}\\
& \text { Now, }|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|^{2}=(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{b}}) \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}) \\
&=|\overline{\mathrm{a}}|^{2}+\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}+\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}+|\overline{\mathrm{b}}|^{2}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{~b}}+|\overline{\mathrm{c}}|^{2} \\
&=|\overline{\mathrm{a}}|^{2}+|\overline{\mathrm{b}}|^{2}+|\overline{\mathrm{c}}|^{2}+2(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}) \\
& \quad[\because \text { from }(1)] \\
&=4+. . .(1) \\
& 4+9+16 \\
&=29 \\
& \therefore|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|=\sqrt{29}
\end{align*}
$$

15. Show that the points $(5,-1,1),(7,-4,7)(1,-6,10)$ and $(-1,-3,4)$ are the vertices of a rhombus. (7M)
Sol: Let OA $=5 \mathrm{i}-\mathrm{j}+\mathrm{k}$

$$
\mathrm{OB}=7 \mathrm{i}-4 \mathrm{j}+7 \mathrm{k}
$$

$$
\mathrm{OC}=\mathrm{i}-6 \mathrm{j}+10 \mathrm{k}
$$

$$
\mathrm{OD}=-\mathrm{i}-3 \mathrm{j}+4 \mathrm{k}
$$

$$
\overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=2 \mathrm{i}-3 \mathrm{j}+6 \mathrm{k}
$$

$$
\overline{\mathrm{BD}}=\overline{\mathrm{OD}}-\overline{\mathrm{OB}}=-8 \mathrm{i}+\mathrm{j}-3 \mathrm{k}
$$

$$
\overline{\mathrm{AC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OA}}=-4 \mathrm{i}-5 \mathrm{j}+9 \mathrm{k}
$$

$$
\mathrm{BC}=\mathrm{OC}-\mathrm{OB}=-6 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}
$$

$$
\mathrm{CD}=\mathrm{OD}-\mathrm{OC}=-2 \mathrm{i}+3 \mathrm{j}-6 \mathrm{k}
$$

$$
\mathrm{DA}=\mathrm{OA}-\mathrm{OD}=6 \mathrm{i}+2 \mathrm{j}-3 \mathrm{k}
$$

$$
\begin{aligned}
& \mid \overline{\mathrm{AB}}=\sqrt{4+9+36}=7 \\
& \overline{\mid \mathrm{BC}}=\sqrt{36+4+9}=7 \\
& \overline{|\mathrm{CD}|}=\sqrt{4+9+36}=7 \\
& |\overline{\mathrm{DA}}|=\sqrt{36+4+9}=7 \\
& \mid \overline{\mathrm{BD} \mid}=\sqrt{64+1+9}=\sqrt{74} \\
& |\overline{\mathrm{AC}}|=\sqrt{16+25+81}=\sqrt{122}
\end{aligned}
$$

i.e, $|\overline{\mathrm{AB}}|=|\overline{\mathrm{BC}}|=|\overline{\mathrm{CD}}|=|\overline{\mathrm{DA}}| \&|\overline{\mathrm{BD}}| \neq|\overline{\mathrm{AC}}|$

ABCD is a rhombus.
16. If $\overline{\mathrm{a}}=2 \mathrm{i}-3 \mathrm{j}+5 \mathrm{k}, \overline{\mathrm{b}}=-\mathrm{i}+4 j+2 \mathrm{k}$, then find $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ and unit vector perpendicular to both $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$. (4M)

Sol: $\quad \bar{a} \times \bar{b}=\left|\begin{array}{ccc}i & j & k \\ 2 & -3 & 5 \\ -1 & 4 & 2\end{array}\right|$

$$
\begin{aligned}
& =\mathrm{i}\left|\begin{array}{ll}
-3 & 5 \\
4 & 2
\end{array}\right|-\mathrm{j}\left|\begin{array}{ll}
2 & 5 \\
-1 & 2
\end{array}\right|+\mathrm{k}\left|\begin{array}{rr}
2 & -3 \\
-1 & 4
\end{array}\right| \\
& =\mathrm{i}(-6-20)-\mathrm{j}(4+5)+\mathrm{k}(8-3) \\
& =-26 \mathrm{i}-9 \mathrm{j}+5 \mathrm{k}
\end{aligned}
$$

Unit vector perpendicular to both $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is

$$
\begin{aligned}
& = \pm \frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|} \\
& = \pm \frac{(-26 \mathrm{i}-9 \mathrm{j}+5 \mathrm{k})}{\sqrt{(-26)^{2}+(-9)^{2}+5^{2}}}= \pm \frac{(-26 \mathrm{i}-9 \mathrm{j}+5 \mathrm{k})}{\sqrt{782}}
\end{aligned}
$$

17. If $a=2 i-3 j+5 k, b=-i+4 j+2 k$, then find $(a+b) \times(\vec{a}-\vec{b})$ and unit vector perpendicular to both $\overline{\mathrm{a}}+\overline{\mathrm{b}}$ and $\overline{\mathrm{a}}-\overline{\mathrm{b}} . \quad(\mathbf{4 M})$

Sol: $\quad \overline{\mathrm{a}}+\overline{\mathrm{b}}=\mathrm{i}+\mathrm{j}+7 \mathrm{k}, \quad \overline{\mathrm{a}}-\overline{\mathrm{b}}=3 \mathrm{i}-7 \mathrm{j}+3 \mathrm{k}$

$$
\begin{aligned}
& (\bar{a}+\bar{b}) \times(\bar{a}-\bar{b})=\left|\begin{array}{ccc}
i & j & k \\
1 & 1 & 7 \\
3 & -7 & 3
\end{array}\right| \\
& =\mathrm{i}(3+49)-\mathrm{j}(3-21)+\mathrm{k}(-7-3) \\
& =52 \mathrm{i}+18 \mathrm{j}-10 \mathrm{k} \\
& \left.|(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \times(\overline{\mathrm{a}}-\overline{\mathrm{b}})|=\sqrt{(52)^{2}+(18)^{2}+(-10)^{2}}=\sqrt{4\left[(26)^{2}+(9)^{2}+5^{2}\right.}\right]=2 \sqrt{782}
\end{aligned}
$$

Unit vector perpendicular to both $\overline{\mathrm{a}}+\overline{\mathrm{b}}$ and $\overline{\mathrm{a}}-\overline{\mathrm{b}}$

$$
\begin{aligned}
& = \pm \frac{(\bar{a}+\bar{b}) \times(\bar{a}-\bar{b})}{|(\bar{a}+\bar{b}) \times(\bar{a}-\bar{b})|} \\
& = \pm \frac{(52 i+18 j-10 k)}{2 \sqrt{782}}= \pm \frac{(26 i+9 j-5 k)}{\sqrt{782}}
\end{aligned}
$$

18. Find the area of the parallelogram for which $\overline{\mathrm{a}}=2 \mathrm{i}-3 \mathrm{j}, \overline{\mathrm{b}}=3 \mathrm{i}-\mathrm{k}$ are adjacent sides.
(2M)
Sol: $\overline{\mathrm{a}}=2 \mathrm{i}-3 \mathrm{j}, \overline{\mathrm{b}}=3 \mathrm{i}-\mathrm{k}$

$$
\begin{aligned}
\text { Vector area of parallelogram }=\overline{\mathrm{a}} \times \overline{\mathrm{b}} & =\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
2 & -3 & 0 \\
3 & 0 & -1
\end{array}\right| \\
& =\mathrm{i}(3-0)-\mathrm{j}(-2-0)+\mathrm{k}(0+9) \\
& =3 \mathrm{i}+2 \mathrm{j}+9 \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area }=|\overline{\mathrm{a}} \times \overline{\mathrm{b}}| & =\sqrt{3^{2}+2^{2}+9^{2}} \\
& =\sqrt{9+4+81} \\
& =\sqrt{94}
\end{aligned}
$$

19. If $\bar{a}=i+2 j+3 k$ and $\bar{b}=3 i+5 j-k$ are two sides of a triangle, then find its area.

Sol: Area of triangle $\frac{1}{2}|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|$

$$
\begin{aligned}
\overline{\mathrm{a}} \times \overline{\mathrm{b}} & =\left|\begin{array}{rrr}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
1 & 2 & 3 \\
3 & 5 & -1
\end{array}\right| \\
& =\mathrm{i}(-2-15)-\mathrm{j}(-1-9)+\mathrm{k}(5-6) \\
& =-17 \mathrm{i}+10 \mathrm{j}-\mathrm{k} \\
|\overline{\mathrm{a}} \times \overline{\mathrm{b}}| & =\sqrt{(-17)^{2}+\left(10^{2}+(-1)^{2}\right.} \\
& =\sqrt{289+100+1} \\
& =\sqrt{390}
\end{aligned}
$$

\therefore Area of triangle $=\frac{1}{2}|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|=\frac{1}{2}|\sqrt{390}|$

$$
=\frac{\sqrt{390}}{2}
$$

20. If θ is the angle between $\mathrm{a}=2 \mathrm{i}-\mathrm{j}+\mathrm{k}$ and $\mathrm{b}=3 \mathrm{i}+4 \mathrm{j}-\mathrm{k}$, then find $\sin \theta$.

Sol: $\quad \operatorname{Sin} \theta=\frac{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|}{|\overline{\mathrm{a}}||\overline{\mathrm{b}}|}$

$$
\begin{aligned}
\overline{\mathrm{a}} \times \overline{\mathrm{b}} & =\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
2 & -1 & 1 \\
3 & 4 & -1
\end{array}\right| \\
& =\mathrm{i}(1-4)-\mathrm{j}(-2-3)+\mathrm{k}(8+3) \\
& =-3 \mathrm{i}+5 \mathrm{j}+11 \mathrm{k}
\end{aligned}
$$

$|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|=\sqrt{(-3)^{2}+5^{2}+11^{2}}=\sqrt{9+15+121}=\sqrt{155}$
$|-\overline{\mathrm{a}}|=\sqrt{2^{2}+(-1)^{2}+1^{2}}=\sqrt{4+1+1}=\sqrt{6}$
$|\overline{\mathrm{b}}|=\sqrt{3^{2}+4^{2}+(-1)^{2}}=\sqrt{9+16+1}=\sqrt{26}$
$\therefore \operatorname{Sin} \theta=\frac{\sqrt{155}}{\sqrt{6} \cdot \sqrt{26}}=\frac{\sqrt{155}}{\sqrt{156}}$
21. Let $\overline{\mathrm{a}}=2 \mathrm{i}+\mathrm{j}-2 \mathrm{k}, \overline{\mathrm{b}}=\mathrm{i}+\mathrm{j}$. If $\overline{\mathrm{c}}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\mathrm{c}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is 30°, then find the value of $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|$.
Sol: $|\overline{\mathrm{a}}|=\sqrt{2^{2}+1^{2}+(-2)^{2}}=\sqrt{4+1+4}=3$
$|\bar{b}|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
$|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$
$|\overline{\mathrm{c}}-\overline{\mathrm{a}}|^{2}=(2 \sqrt{2})^{2}$
$|\overline{\mathrm{c}}|^{2}+|\overline{\mathrm{a}}|^{2}-2(\overline{\mathrm{c}} \cdot \overline{\mathrm{a}})=8$
$|\overline{\mathrm{c}}|^{2}+9-2|\overline{\mathrm{c}}|=8$
$|\bar{c}|^{2}-2|\stackrel{\rightharpoonup}{c}|+1=0$
$(|\overrightarrow{\mathrm{c}}|-1)^{2}=0$
$|\overline{\mathrm{c}}|=1$
$|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=|\overline{\mathrm{a}} \times \overline{\mathrm{b}}||\overline{\mathrm{c}}| \cdot \operatorname{Sin} 30^{\circ}$
$=|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|(1) \frac{1}{2}$
$|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=\frac{1}{2}|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|$

$$
\begin{aligned}
\overline{\mathrm{a}} \times \overline{\mathrm{b}} & =\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
2 & 1 & -2 \\
1 & 1 & 0
\end{array}\right| \\
& =\mathrm{i}(0+2)-\mathrm{j}(0+2)+\mathrm{k}(2-1) \\
& =2 \mathrm{i}-2 \mathrm{j}+\mathrm{k}
\end{aligned}
$$

$$
|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|=\sqrt{4+4+1}=3
$$

$$
\text { (1) } \Rightarrow|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=\frac{1}{2}(3)=\frac{3}{2}
$$

22. Let $\overline{\mathrm{a}}=4 \mathrm{i}+5 \mathrm{j}-\mathrm{k}, \overline{\mathrm{b}}=\mathrm{i}-4 \mathrm{j}+5 \mathrm{k}$ and $\overline{\mathrm{c}}=3 \mathrm{i}+\mathrm{j}-\mathrm{k}$. Find vector α which is perpendicular to both $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ and $\alpha . \overline{\mathrm{c}}=21$. (4M)
Sol: There exist scalar λ such that $\bar{\alpha}=\lambda(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$

$$
\begin{aligned}
& \begin{array}{l}
\overline{\mathrm{a}} \times \overline{\mathrm{b}} \\
= \\
\quad=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
4 & 5 & -1 \\
1 & -4 & 5
\end{array}\right| \\
\\
= \\
=21(25-4)-\mathrm{j}(20+1)+\mathrm{k}(-16-5)
\end{array} \\
& \begin{aligned}
\therefore \quad \bar{\alpha}=\lambda(21 \mathrm{i}-21 \mathrm{j}-21 \mathrm{k}) \\
\bar{\alpha}=21 \lambda(\mathrm{i}-\mathrm{j}-\mathrm{k})
\end{aligned} \\
& \text { but } \bar{\alpha} \cdot \overline{\mathrm{c}}=21 \\
& 21 \lambda(\mathrm{i}-\mathrm{j}-\mathrm{k}) \cdot(3 \mathrm{i}+\mathrm{j}-\mathrm{k})=21 \\
& 21 \lambda(3-1+1)=21 \\
& 21 \times 3 \times \lambda=21
\end{aligned} \begin{aligned}
& \lambda=\frac{1}{3} \\
& \therefore \alpha=21\left(\frac{1}{3}\right)(\mathrm{i}-\mathrm{j}-\mathrm{k}) \\
& \alpha=7(\mathrm{i}-\mathrm{j}-\mathrm{k})=7 \mathrm{i}-7 \mathrm{j}-7 \mathrm{k}
\end{aligned}
$$

23. For any vector \bar{a}, show that $|\overline{\mathrm{a}} \times \mathrm{i}|^{2}+|\overline{\mathrm{a}} \times \mathrm{j}|^{2}+|\overline{\mathrm{a}} \times \mathrm{k}|^{2}=2|\overline{\mathrm{a}}|^{2}$.

Sol: If $\overline{\mathrm{a}}=\mathrm{xi}+y j+\mathrm{zk}$, then $|\overline{\mathrm{a}}|=\sqrt{x^{2}+y^{2}+z^{2}}$

$$
\overline{\mathrm{a}} \times \mathrm{i}=\left|\begin{array}{lll}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\mathrm{x} & \mathrm{y} & \mathrm{z} \\
1 & 0 & 0
\end{array}\right|
$$

$$
\begin{aligned}
& =\mathrm{i}(0-0)-\mathrm{j}(0-\mathrm{z})+\mathrm{k}(0-\mathrm{y}) \\
& =\mathrm{zj}-\mathrm{yk}
\end{aligned}
$$

$$
|\overline{\mathrm{a}} \times \mathrm{i}|=\sqrt{z^{2}+y^{2}}
$$

Similarly $|\overline{\mathrm{a}} \times \mathrm{j}|=\sqrt{z^{2}+x^{2}}$

$$
\begin{aligned}
&|\overline{\mathrm{a}} \times \mathrm{k}|=\sqrt{x^{2}+y^{2}} \\
& \therefore|\overline{\mathrm{a}} \times \mathrm{i}|^{2}+|\overline{\mathrm{a}} \times \mathrm{j}|^{2}+|\overline{\mathrm{a}} \times \mathrm{k}|^{2} \\
&= \mathrm{z}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+\mathrm{x}^{2}+\mathrm{x}^{2}+\mathrm{y}^{2}=2\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \\
&= 2 .\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{2} \\
&= 2|\mathrm{a}|^{2}
\end{aligned}
$$

24. If $\bar{a}=2 i-j+k, \bar{b}=i-3 j-5 k$, then find $|\bar{a} \times \bar{b}|$. (2M)

Sol: $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ 2 & -1 & 1 \\ 1 & -3 & -5\end{array}\right|$
$=\mathrm{i}(5+3)-\mathrm{j}(-10-1)+\mathrm{k}(-6+1)$
$=8 \mathrm{i}+11 \mathrm{j}-5 \mathrm{k}$
$\therefore|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|=\sqrt{8^{2}+11^{2}+(-5)^{2}}$

$$
=\sqrt{64+121+25}
$$

$$
=\sqrt{210}
$$

25. If $\overline{\mathrm{a}}=2 \mathrm{i}-3 \mathrm{j}+\mathrm{k}, \overline{\mathrm{b}}=\mathrm{i}+4 \mathrm{j}-2 \mathrm{k}$, then find $(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \times(\overline{\mathrm{a}}-\overline{\mathrm{b}})$. (2M)

Sol: $\quad \bar{a}+\bar{b}=3 i+j-k$

$$
\overline{\mathrm{a}}-\overline{\mathrm{b}}=\mathrm{i}-7 \mathrm{j}+3 \mathrm{k}
$$

$$
\begin{aligned}
(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \times(\overline{\mathrm{a}}-\overline{\mathrm{b}}) & =\left|\begin{array}{rrr}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
3 & 1 & -1 \\
1 & -7 & 3
\end{array}\right| \\
& =\mathrm{i}(3-7)-j(9+1)+\mathrm{k}(-21-1) \\
& =-4 \mathrm{i}-10 \mathrm{j}-22 \mathrm{k}
\end{aligned}
$$

26. If $4 i+\frac{2 p}{3} j+p k$ is parallel to the vector $i+2 j+3 k$, find p. (2M)

Sol: If $\bar{a}=a_{1} i+a_{2} j+a_{3} k$ is parallel to $\bar{b}=b_{1} i+b_{2} j+b_{3} k$, then

$$
\begin{aligned}
& \frac{\mathrm{a}_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{a}_{2}}{\mathrm{~b}_{2}}=\frac{\mathrm{a}_{3}}{\mathrm{~b}_{3}} \\
& \therefore \frac{4}{1}=\frac{2 p / 3}{2}=\frac{p}{3} \\
& 4=\frac{p}{3} \\
& \Rightarrow \mathrm{p}=12
\end{aligned}
$$

27. Find unit vector perpendicular to both $\mathrm{i}+\mathrm{j}+\mathrm{k}$ and $2 \mathrm{i}+\mathrm{j}+3 \mathrm{k}$. (2M)

Sol: The unit vector perpendicular to both $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is $= \pm \frac{(\overline{\mathrm{a}} \times \overline{\mathrm{b}})}{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|}$

$$
\begin{aligned}
\overline{\mathrm{a}} \times \overline{\mathrm{b}} & =\left|\begin{array}{lll}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
1 & 1 & 1 \\
2 & 1 & 3
\end{array}\right| \\
& =\mathrm{i}(3-1)-\mathrm{j}(3-2)+\mathrm{k}(1-2) \\
& =2 \mathrm{i}-\mathrm{j}-\mathrm{k}
\end{aligned} \begin{aligned}
\therefore \quad|\overline{\mathrm{a}} \times \overline{\mathrm{b}}| & =\sqrt{2^{2}+(-1)^{2}+(-1)^{2}} \\
& =\sqrt{4+1+1}=\sqrt{6}
\end{aligned}
$$

\therefore Required unit vector $= \pm \frac{(2 \mathrm{i}-\mathrm{j}-\mathrm{k})}{\sqrt{6}}$
28. Find the area of the parallelogram having $\overline{\mathrm{a}}=2 \mathrm{j}-\mathrm{k}$ and $\overline{\mathrm{b}}=-\mathrm{i}+\mathrm{k}$ as adjacent sides. (2M)

Sol: Area of parallelogram $=|\bar{a} \times \bar{b}|$

$$
\begin{aligned}
\overline{\mathrm{a}} \times \overline{\mathrm{b}} & =\left|\begin{array}{rrr}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
0 & 2 & -1 \\
-1 & 0 & 1
\end{array}\right| \\
& =\mathrm{i}(2-0)-\mathrm{j}(0-1)+\mathrm{k}(0+2) \\
& =2 \mathrm{i}+\mathrm{j}+2 \mathrm{k}
\end{aligned}
$$

\therefore Area of parallelogram $=|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|=\sqrt{2^{2}+1^{2}+2^{2}}$

$$
=\sqrt{4+1+4}=3
$$

29. Find the area of the triangle whose vertices are $A(1,2,3), B(2,3,1)$ and $C(3,1,2)$ (4M)

Sol: $\overline{\mathrm{OA}}=\mathrm{i}+2 \mathrm{j}+3 \mathrm{k}$

$$
\overline{\mathrm{OB}}=2 \mathrm{i}+3 \mathrm{j}+\mathrm{k}
$$

$$
\overline{\mathrm{OC}}=3 \mathrm{i}+\mathrm{j}+2 \mathrm{k}
$$

$$
\overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=\mathrm{i}+\mathrm{j}-2 \mathrm{k}
$$

$$
\overline{\mathrm{AC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OA}}=2 \mathrm{i}-\mathrm{j}-\mathrm{k}
$$

$$
\overline{\mathrm{AB}} \times \overline{\mathrm{AC}}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
1 & 1 & -2 \\
2 & -1 & -1
\end{array}\right|
$$

$$
=\mathrm{i}(-1-2)-\mathrm{j}(-1+4)+\mathrm{k}(-1-2)
$$

$$
=-3 \mathrm{i}-3 \mathrm{j}-3 \mathrm{k}
$$

$$
|\overline{\mathrm{AB}} \times \overline{\mathrm{AC}}|=\sqrt{9+9+9}=\sqrt{27}=3 \sqrt{3}
$$

Area of triangle $=\frac{1}{2}|\overline{\mathrm{AB}} \times \overline{\mathrm{AC}}|$

$$
=\frac{1}{2}(3 \sqrt{3})=\frac{3 \sqrt{3}}{2}
$$

30. If $\overline{\mathrm{a}}=2 \mathrm{i}+\mathrm{j}-\mathrm{k}, \overline{\mathrm{b}}=-\mathrm{i}+2 \mathrm{j}-4 \mathrm{k}, \overline{\mathrm{c}}=\mathrm{i}+\mathrm{j}+\mathrm{k}$, then find $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) .(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) . \quad$ (4M)

Sol: $\quad \bar{a} \times \bar{b}=\left|\begin{array}{lll}i & j & k \\ 2 & 1 & -1 \\ -1 & 2 & -4\end{array}\right|$

$$
\begin{aligned}
& =\mathrm{i}(-4+2)-\mathrm{j}(-8-1)+\mathrm{k}(4+1) \\
& =-2 \mathrm{i}+9 \mathrm{j}+5 \mathrm{k} \\
\overline{\mathrm{~b}} \times \overline{\mathrm{c}} & =\left|\begin{array}{lrr}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
-1 & 2 & -4 \\
1 & 1 & 1
\end{array}\right| \\
& =\mathrm{i}(2+4)-\mathrm{j}(-1+4)+\mathrm{k}(-1-2) \\
& =6 \mathrm{i}-3 \mathrm{j}-3 \mathrm{k} \\
(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) & =(-2 \mathrm{i}+9 \mathrm{j}+5 \mathrm{k}) \cdot(6 \mathrm{i}-3 \mathrm{j}-3 \mathrm{k}) \\
& =(-2)(6)+(9)(-3)+(5)(-3) \\
& =-12-27-15 \\
& =-54
\end{aligned}
$$

31. Find a unit vector perpendicular to the plane determined by the points $\mathrm{P}(1,-1,2)$, $\mathrm{Q}(2,0,-1)$ and $\mathrm{R}(0,2,1)$. (4M)
Sol: $\quad \mathrm{OP}=\mathrm{i}-\mathrm{j}+2 \mathrm{k} ; \mathrm{OQ}=2 \mathrm{i}-\mathrm{k} ; \mathrm{OR}=2 \mathrm{j}+\mathrm{k}$
$\mathrm{PQ}=\mathrm{OQ}-\mathrm{OP}=\mathrm{i}+\mathrm{j}-3 \mathrm{k}$ $P R=O R-O P=-i+3 j-k$

$$
\begin{aligned}
P Q \times P R & =\left|\begin{array}{ccc}
i & j & k \\
1 & 1 & -3 \\
-1 & 3 & -1
\end{array}\right| \\
& =i(-1+9)-j(-1-3)+k(3+1) \\
& =8 i+4 j+4 k \\
& =4(2 i+j+k)
\end{aligned}
$$

$$
|\mathrm{PQ} \times \mathrm{PR}|=4 \sqrt{4+1+1}=4 \sqrt{6}
$$

$$
\text { Required unit vector }= \pm \frac{(\mathrm{PQ} \times \mathrm{PR})}{|\mathrm{PQ} \times \mathrm{PR}|}
$$

$$
\begin{aligned}
& = \pm \frac{4(2 i+j+k)}{4 \sqrt{6}} \\
& = \pm \frac{(2 i+j+k)}{\sqrt{6}}
\end{aligned}
$$

32. If $|\overline{\mathrm{a}}|=13,|\overline{\mathrm{~b}}|=5, \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=60$, then find $|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|$. (2M)

Sol: $|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|^{2}=|\overline{\mathrm{a}}|^{2}|\overline{\mathrm{~b}}|^{2}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}})^{2}$

$$
\begin{aligned}
& =(13)^{2}(5)^{2}-(60)^{2} \\
& =4225-3600=625 \\
\Rightarrow|\overline{\mathrm{a}} \times \overline{\mathrm{b}}| & =25
\end{aligned}
$$

33. If $\bar{a}=2 i+3 j+4 k, \bar{b}=i+j-k, \bar{c}=i-j+k$, then compute $\bar{a} \times(\bar{b} \times \bar{c})$ and verify that it is perpendicular to $\overline{\mathrm{a}}$. (4M)

Sol: $\quad \bar{b} \times \bar{c}=\left|\begin{array}{rrr}i & j & k \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right|$

$$
\begin{aligned}
& =\mathrm{i}(1-1)-\mathrm{j}(1+1)+\mathrm{k}(-1-1) \\
& =-2 \mathrm{j}-2 \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
\begin{aligned}
\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) & =\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
2 & 3 & 4 \\
0 & -2 & -2
\end{array}\right| \\
& =\mathrm{i}(-6+8)-j(-4-0)+\mathrm{k}(-4-0) \\
& =2 \mathrm{i}+4 j-4 \mathrm{k}
\end{aligned} \\
\begin{aligned}
(\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})) \cdot \overline{\mathrm{a}} & =(2 \mathrm{i}+4 \mathrm{j}-4 \mathrm{k}) \cdot(2 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k}) \\
& =2(2)+4(3)+(-4)(4) \\
& =4+12-16 \\
& =0
\end{aligned}
\end{aligned}
$$

$\therefore \overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$ is perpendicular to $\overline{\mathrm{a}}$.
34. If $\bar{a}=7 i-2 j+3 k, \bar{b}=2 i+8 k$ and $\bar{c}=i+j+k$ then compute $\bar{a} \times \bar{b}, \bar{a} \times \bar{c}$, $\overline{\mathrm{a}} \times(\overline{\mathrm{b}}+\overline{\mathrm{c}})$. Verify whether the cross product is distributive over the vector addition.(7M)

Sol: $\quad \overline{\mathrm{a}} \times \overline{\mathrm{b}} \quad=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ 7 & -2 & 3 \\ 2 & 0 & 8\end{array}\right|$

$$
\begin{align*}
& =\mathrm{i}(-16-0)-\mathrm{j}(56-6)+\mathrm{k}(0+4) \\
& =-16 \mathrm{i}-50 \mathrm{j}+4 \mathrm{k} \\
\overline{\mathrm{a}} \times \overline{\mathrm{c}} \quad & =\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
7 & -2 & 3 \\
1 & 1 & 1
\end{array}\right| \\
& =\mathrm{i}(-2-3)-\mathrm{j}(7-3)+\mathrm{k}(7+2) \\
& =-5 \mathrm{i}-4 \mathrm{j}+9 \mathrm{k} \\
\overline{\mathrm{~b}}+\overline{\mathrm{c}} & =2 \mathrm{i}+8 \mathrm{k}+\mathrm{i}+\mathrm{j}+\mathrm{k} \\
& =3 \mathrm{i}+\mathrm{j}+9 \mathrm{k} \\
\overline{\mathrm{a}} \times(\overline{\mathrm{b}}+\overline{\mathrm{c}}) & =\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
7 & -2 & 3 \\
3 & 1 & 9
\end{array}\right| \\
& =\mathrm{i}(-18-3)-\mathrm{j}(63-9)+\mathrm{k}(7+6) \\
& =-21 \mathrm{i}-54 \mathrm{j}+13 \mathrm{k} \tag{1}
\end{align*}
$$

$$
\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{a}} \times \overline{\mathrm{c}}=-16 \mathrm{i}-50 \mathrm{j}+4 \mathrm{k}+(-5 \mathrm{i}-4 \mathrm{j}+9 \mathrm{k})
$$

$$
\begin{equation*}
=-21 \mathrm{i}-54 \mathrm{j}+13 \mathrm{k} \tag{2}
\end{equation*}
$$

From (1) \& (2),
$\overline{\mathrm{a}} \times(\overline{\mathrm{b}}+\overline{\mathrm{c}})=(\overline{\mathrm{a}} \times \overline{\mathrm{b}})+(\overline{\mathrm{a}} \times \overline{\mathrm{c}})$
\therefore Cross product is distributive over the vector addition.
35. If $\overline{\mathrm{a}}=\mathrm{i}+\mathrm{j}+\mathrm{k}, \overline{\mathrm{c}}=\mathrm{j}-\mathrm{k}$, then find vector $\overline{\mathrm{b}}$ such that $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{c}}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$. (7M)

Sol: Let $\bar{b}=b_{1} i+b_{2} j+b_{3} k$
Given, $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{c}}$

$$
\begin{aligned}
& \left|\begin{array}{llr}
i & j & k \\
1 & 1 & 1 \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=j-k \\
& \\
& \begin{array}{l}
i\left(b_{3}-b_{2}\right)-j\left(b_{3}-b_{1}\right)+k\left(b_{2}-b_{1}\right)=j-k \\
\Rightarrow \\
b_{3}-b_{2}=0 ; b_{1}-b_{3}=1 ; \\
b_{2}-b_{1}=-1 \\
\text { Let } b_{3}=b_{2}=k \\
b_{1}-k=1 \\
b_{1}=1+k ;
\end{array} \quad k-b_{1}=-1 \\
&
\end{aligned} \quad b_{1}=k+1 .
$$

Given, $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$
$(i+j+k) \cdot\left(b_{1} i+b_{2} j+b_{3} k\right)=3$
$b_{1}+b_{2}+b_{3}=3$
$\mathrm{k}+1+\mathrm{k}+\mathrm{k}=3$
$3 \mathrm{k}=2$
$\mathrm{k}=\frac{2}{3}$
$\therefore \mathrm{b}_{1}=\frac{2}{3}+1=\frac{5}{3}, \mathrm{~b}_{2}=\mathrm{b}_{3}=\mathrm{k}=\frac{2}{3}$

$$
\begin{aligned}
\therefore \overline{\mathrm{b}} & =\mathrm{b}_{1} \mathrm{i}+\mathrm{b}_{2} \mathrm{j}+\mathrm{b}_{3} \mathrm{k} \\
& =\frac{5}{3} \mathrm{i}+\frac{2}{3} j+\frac{2}{3} \mathrm{k}=\frac{1}{3}(5 i+2 j+2 \mathrm{k})
\end{aligned}
$$

36. If $\bar{a}, \bar{b}, \bar{c}$ are unit vectors such that \bar{a} is perpendicular to the plan of \bar{b}, \bar{c} and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{3}$, then find $|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|$. (7M)
Sol: $|\overrightarrow{\mathrm{a}}|=|\stackrel{\rightharpoonup}{\mathrm{b}}|=|\stackrel{\mathrm{c}}{\mathrm{c}}|=1$

$$
\begin{aligned}
& \overline{\mathrm{a}} \perp \overline{\mathrm{~b}} \Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=0 \\
& \overline{\mathrm{a}} \perp \overline{\mathrm{c}} \Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=0
\end{aligned}
$$

$$
\begin{aligned}
|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|^{2} & =|\overline{\mathrm{a}}|^{2}+|\overline{\mathrm{b}}|^{2}+|\overline{\mathrm{c}}|^{2}+2(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}) \\
& =1+1+1+2\left(0+|\mathrm{b}||\mathrm{c}| \operatorname{Cos} \frac{\pi}{3}+0\right) \\
& =1+1+1+2\left(1 \cdot 1 \cdot \frac{1}{2}\right) \\
& =1+1+1+1 \\
|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|^{2} & =4 \\
\therefore|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}| & =2
\end{aligned}
$$

37. $\overline{\mathrm{a}}=3 \mathrm{i}-\mathrm{j}+2 \mathrm{k}, \overline{\mathrm{b}}=-\mathrm{i}+3 \mathrm{j}+2 \mathrm{k}, \overline{\mathrm{c}}=4 \mathrm{i}+5 \mathrm{j}-2 \mathrm{k}, \quad \overline{\mathrm{d}}=\mathrm{i}+3 \mathrm{j}+5 \mathrm{k}$, then compute
(i) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})$ (ii) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \cdot \overline{\mathrm{c}}-(\overline{\mathrm{a}} \times \overline{\mathrm{d}}) \cdot \overline{\mathrm{b}}$.

Sol: $\overline{\mathrm{a}} \times \overline{\mathrm{b}} \quad=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ 3 & -1 & 2 \\ -1 & 3 & 2\end{array}\right|$

$$
\begin{aligned}
& =\mathrm{i}(-2-6)-\mathrm{j}(6+2)+\mathrm{k}(9-1) \\
& =-8 \mathrm{i}-8 \mathrm{j}+8 \mathrm{k}
\end{aligned}
$$

$\overline{\mathrm{c}} \times \overline{\mathrm{d}} \quad=\left|\begin{array}{llr}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ 4 & 5 & -2 \\ 1 & 3 & 5\end{array}\right|$
$=\mathrm{i}(25+6)-\mathrm{j}(20+2)+\mathrm{k}(12-5)$
$=31 \mathrm{i}-22 \mathrm{j}+7 \mathrm{k}$
(i) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ -8 & -8 & 8 \\ 31 & -22 & 7\end{array}\right|$

$$
\begin{aligned}
& =\mathrm{i}(-56+176)-\mathrm{j}(-56-248)+\mathrm{k}(176+248) \\
& =120 \mathrm{i}+304 \mathrm{j}+424 \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}} & =(-8 \mathrm{i}-8 \mathrm{j}+8 \mathrm{k}) \cdot(4 \mathrm{i}+5 \mathrm{j}-2 \mathrm{k}) \\
& =(-8)(4)+(-8)(5)+(8)(-2) \\
& =-32-40-16 \\
& =-88
\end{aligned}
$$

$$
\begin{aligned}
(\overline{\mathrm{a}} \times \overline{\mathrm{d}}) & =\left|\begin{array}{rrr}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
3 & -1 & 2 \\
1 & 3 & 5
\end{array}\right| \\
& =\mathrm{i}(-5-6)-\mathrm{j}(15-2)+\mathrm{k}(9+1) \\
& =-11 \mathrm{i}-13 \mathrm{j}+10 \mathrm{k}
\end{aligned} \quad \begin{aligned}
&(\overline{\mathrm{a}} \times \overline{\mathrm{d}}) \cdot \overline{\mathrm{b}}=(-11 \mathrm{i}-13 \mathrm{j}+10 \mathrm{k}) \cdot(-\mathrm{i}+3 \mathrm{j}+2 \mathrm{k}) \\
&=(-11)(-1)+(-13)(3)+10(2) \\
&=11-39+20 \\
&=-8 \\
& \therefore \quad(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}-(\overline{\mathrm{a}} \times \overline{\mathrm{d}}) \cdot \overline{\mathrm{b}}=-88-(-8) \\
&=-88+8 \\
&=-80
\end{aligned}
$$

Trignometric Ratios upto Transformations

1. In a right angled triangle ABC, θ is an acute angle. x is opposite side, y is an adjacent side, z is hypotenuse, then
$\operatorname{Sin} \theta=\frac{x}{z}$
$\operatorname{Cos} \theta=\frac{\mathrm{y}}{\mathrm{z}}$
$\tan \theta=\frac{x}{y}$

$\operatorname{Cosec} \theta=\frac{\mathrm{z}}{\mathrm{x}}$
$\operatorname{Sec} \theta=\frac{\mathrm{z}}{\mathrm{y}}$
$\operatorname{Cot} \theta=\frac{\mathrm{y}}{\mathrm{x}}$

* From the definitions of trigonometric ratios, we can observe the following

1) $\tan \theta=\frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}$
2) $\operatorname{Cot} \theta=\frac{\operatorname{Cos} \theta}{\operatorname{Sin} \theta}$.
3) $\operatorname{Sec} \theta=\frac{1}{\operatorname{Cos} \theta}$
4) $\operatorname{Cos} \theta=\frac{1}{\operatorname{Sec} \theta}$
5) $\operatorname{Sin} \theta=\frac{1}{\operatorname{Cosec} \theta}$
6) $\operatorname{Cosec} \theta=\frac{1}{\operatorname{Sin} \theta}$

Trigonometric Identities

1) $\operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta=1$
$\operatorname{Cos}^{2} \theta=1-\operatorname{Sin}^{2} \theta$
$\operatorname{Sin}^{2} \theta=1-\operatorname{Cos}^{2} \theta$
2) $\quad \operatorname{Sec}^{2} \theta-\tan ^{2} \theta=1$
$\operatorname{Sec}^{2} \theta=1+\tan ^{2} \theta$
$\tan ^{2} \theta=\operatorname{Sec}^{2} \theta-1$
3) $\operatorname{Cosec}^{2} \theta-\operatorname{Cot}^{2} \theta=1$
$\operatorname{Cosec}^{2} \theta=1+\operatorname{Cot}^{2} \theta$
$\operatorname{Cot}^{2} \theta=\operatorname{Cosec}^{2} \theta-1$
Values of the Trigonometric Functions

Angle (θ)	0^{0}	$\frac{\pi}{6}=30^{0}$	$\frac{\pi}{4}=45^{0}$	$\frac{\pi}{3}=60^{0}$	$\frac{\pi}{2}=90^{0}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞
$\cot \theta$	∞	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
$\operatorname{cosec} \theta$	∞	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	∞

* We can remember the sign of trigonometric functions in four quadrants by using the following figure.

Add	Sugar	To	Coffee
$\begin{array}{l}\text { All Trignometric } \\ \text { functions are }+\mathrm{ve}\end{array}$	$\left.\begin{array}{l}\operatorname{Sin} \\ \operatorname{Cosec}\end{array}\right\}+v e$	$\left.\begin{array}{l}\tan \\ \operatorname{Cot}\end{array}\right\}+v e$	$\left.\begin{array}{l}\operatorname{Cos} \\ \operatorname{Sec}\end{array}\right\}+v e$
	Cos		
Cot			
	Sec		

\operatorname{Cos}

\operatorname{Sec}

\operatorname{Cosec}\end{array}\right\}-v e $$
\begin{array}{l}\operatorname{Sin} \\
\operatorname{Cosec} \\
\tan \\
\operatorname{Cot}\end{array}
$$\right\}-v e\)

Angle (α)	$\operatorname{Sin} \alpha$	$\operatorname{Cos} \alpha$	$\tan \alpha$
$\mathrm{n} \pi-\theta$	$(-1)^{\mathrm{n}+1} \operatorname{Sin} \theta$	$(-1)^{\mathrm{n}} \operatorname{Cos} \theta$	$-\tan \theta$
$\mathrm{n} \pi+\theta$	$(-1)^{\mathrm{n}} \operatorname{Sin} \theta$	$(-1)^{\mathrm{n}} \operatorname{Cos} \theta$	$\tan \theta$
$(2 \mathrm{n}+1) \frac{\pi}{2}-\theta$	$(-1)^{\mathrm{n}} \operatorname{Cos} \theta$	$(-1)^{\mathrm{n}} \operatorname{Sin} \theta$	$\operatorname{Cot} \theta$
$(2 \mathrm{n}+1) \frac{\pi}{2}+\theta$	$(-1)^{\mathrm{n}} \operatorname{Cos} \theta$	$(-1)^{\mathrm{n}+1} \operatorname{Sin} \theta$	$-\operatorname{Cot} \theta$

* Any trigonometric function for the angle $\frac{n \pi}{2} \pm \theta(\mathrm{n} \in \mathrm{Z})$,
(i) If ' n ' is even integer, then there is no change in trigonometric function.
(ii) If ' n ' is odd integer, then there is change in trigonometric function as follows

Sin $\rightleftharpoons \operatorname{Cos} \quad$ tan $\rightleftharpoons \operatorname{Cot} \quad$ Sec \rightleftharpoons Cosec

* $\operatorname{Sin}(-\theta)=-\operatorname{Sin} \theta, \operatorname{Cos}(-\theta)=\operatorname{Cos} \theta ; \tan (-\theta)=-\tan \theta$
$\operatorname{Cot}(-\theta)=-\operatorname{Cot} \theta, \operatorname{Sec}(-\theta)=\operatorname{Sec} \theta ; \operatorname{Cosec}(-\theta)=-\operatorname{Cosec} \theta$
* All trigonometric functions are periodic functions.

Period of Sinx is 2π
Period of Cosx is 2π
Period of $\tan x$ is π

* Range of $\operatorname{Sin} \theta$ (or) $\operatorname{Cos} \theta$ is $[-1,1]$

Range of $\tan \theta$ (or) $\operatorname{Cot} \theta$ is R
Range of $\operatorname{Sec} \theta($ or $) \operatorname{Cosec} \theta$ is $(-\infty,-1] \cup[1, \infty)$

Compound Angles

* A, B are any two angles, then
i) $\quad \operatorname{Sin}(\mathrm{A}+\mathrm{B})=\operatorname{Sin} \mathrm{ACosB}+\operatorname{Cos} \mathrm{ASin} \mathrm{B}$
ii) $\quad \operatorname{Sin}(A-B)=\operatorname{Sin} A \operatorname{Cos} B-\operatorname{Cos} A \operatorname{Sin} B$
iii) $\quad \operatorname{Cos}(\mathrm{A}+\mathrm{B})=\operatorname{Cos} \mathrm{A} \operatorname{Cos} \mathrm{B}-\operatorname{Sin} \mathrm{A} \operatorname{Sin} \mathrm{B}$
iv) $\operatorname{Cos}(\mathrm{A}-\mathrm{B})=\operatorname{Cos} \mathrm{ACos} \mathrm{B}+\operatorname{Sin} \mathrm{ASin} \mathrm{B}$
* If none of $\mathrm{A}, \mathrm{B}, \mathrm{A}+\mathrm{B}, \mathrm{A}-\mathrm{B}$ is an odd multiple of $\frac{\pi}{2}$, then

$$
\begin{aligned}
& \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \\
& \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
\end{aligned}
$$

* If none of $\mathrm{A}, \mathrm{B}, \mathrm{A}+\mathrm{B}, \mathrm{A}-\mathrm{B}$ is an integral multiple of π, then

$$
\begin{aligned}
& \operatorname{Cot}(\mathrm{A}+\mathrm{B})=\frac{\operatorname{Cot} \mathrm{A} \operatorname{Cot} \mathrm{~B}-1}{\cot \mathrm{~B}+\operatorname{Cot} \mathrm{A}} \\
& \operatorname{Cot}(\mathrm{~A}-\mathrm{B})=\frac{\operatorname{Cot} \mathrm{ACot} \mathrm{~B}+1}{\operatorname{Cot} \mathrm{~B}-\operatorname{Cot} \mathrm{A}}
\end{aligned}
$$

* If $A, B, C \in R$ then

$$
\begin{aligned}
& \operatorname{Sin}(\mathrm{A}+\mathrm{B}+\mathrm{C})=\Sigma(\operatorname{Sin} \mathrm{ACos} \mathrm{BCos} \mathrm{C})-\operatorname{Sin} \mathrm{ASinBSinC} \\
& \operatorname{Cos}(\mathrm{~A}+\mathrm{B}+\mathrm{C})=\operatorname{Cos} \mathrm{A} \operatorname{Cos} \mathrm{BCos} \mathrm{C}-\Sigma(\operatorname{Cos} \mathrm{A} \operatorname{Sin} B \operatorname{Sin} \mathrm{C})
\end{aligned}
$$

Trigonometric ratios of multiple and sub multiple angles

1. $\operatorname{Sin} 2 \theta=2 \operatorname{Sin} \theta \operatorname{Cos} \theta$,

$$
=\frac{2 \tan \theta}{1+\tan ^{2} \theta}
$$

2. $\operatorname{Cos} 2 \theta=\operatorname{Cos}^{2} \theta-\operatorname{Sin}^{2} \theta$
$=1-2 \operatorname{Sin}^{2} \theta$
$=2 \operatorname{Cos}^{2} \theta-1$
$=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$
3. $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
4. $\operatorname{Cot} 2 \theta=\frac{\operatorname{Cot}^{2} \theta-1}{2 \operatorname{Cot} \theta} \quad \operatorname{Cot} \theta=\frac{\operatorname{Cot}^{2} \theta / 2-1}{2 \operatorname{Cot} \theta / 2}$
5. $1+\operatorname{Cos} 2 \theta=2 \operatorname{Cos}^{2} \theta$
$1+\operatorname{Cos} \theta=2 \operatorname{Cos}^{2} \theta / 2$
6. $1-\operatorname{Cos} 2 \theta=2 \operatorname{Sin}^{2} \theta$
$1-\operatorname{Cos} \theta=2 \operatorname{Sin}^{2} \theta / 2$
7. $\operatorname{Sin} \theta= \pm \sqrt{\frac{1-\operatorname{Cos} 2 \theta}{2}} \quad \operatorname{Sin} \theta / 2= \pm \sqrt{\frac{1-\operatorname{Cos} \theta}{2}}$
8. $\operatorname{Cos} \theta= \pm \sqrt{\frac{1+\operatorname{Cos} 2 \theta}{2}}$
$\operatorname{Cos} \theta / 2= \pm \sqrt{\frac{1+\operatorname{Cos} \theta}{2}}$
9. $\tan \theta= \pm \sqrt{\frac{1-\operatorname{Cos} 2 \theta}{1+\operatorname{Cos} 2 \theta}}$
$\tan \theta / 2= \pm \sqrt{\frac{1-\operatorname{Cos} \theta}{1+\operatorname{Cos} \theta}}$

* $\quad \operatorname{Sin} 3 \theta=3 \operatorname{Sin} \theta-4 \operatorname{Sin}^{3} \theta$
$\operatorname{Cos} 3 \theta=4 \operatorname{Cos}^{3} \theta-3 \operatorname{Cos} \theta$
$\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$
$\operatorname{Cot} 3 \theta=\frac{3 \operatorname{Cot} \theta-\operatorname{Cot}^{3} \theta}{1-3 \operatorname{Cot}^{2} \theta}$

Transformations

I.

* $\quad \operatorname{Sin}(A+B)+\operatorname{Sin}(A-B)=2 \operatorname{Sin} A \operatorname{Cos} B$
* $\quad \operatorname{Sin}(A+B)-\operatorname{Sin}(A-B)=2 \operatorname{Cos} A \operatorname{Sin} B$
* $\quad \operatorname{Cos}(\mathrm{A}+\mathrm{B})+\operatorname{Cos}(\mathrm{A}-\mathrm{B})=2 \operatorname{Cos} \mathrm{Cos} \mathrm{B}$
* $\quad \operatorname{Cos}(\mathrm{A}-\mathrm{B})-\operatorname{Cos}(\mathrm{A}+\mathrm{B})=2 \operatorname{Sin} \mathrm{ASin} \mathrm{B}$
II.
* $\quad \operatorname{Sin} \mathrm{C}+\operatorname{Sin} \mathrm{D}=2 \operatorname{Sin}\left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \operatorname{Cos}\left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$
* $\quad \operatorname{Sin} \mathrm{C}-\operatorname{Sin} \mathrm{D}=2 \operatorname{Cos}\left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \operatorname{Sin}\left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$
* $\quad \operatorname{Cos} \mathrm{C}+\operatorname{Cos} \mathrm{D}=2 \operatorname{Cos}\left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \operatorname{Cos}\left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$
* $\quad \operatorname{Cos} \mathrm{C}-\operatorname{Cos} \mathrm{D}=-2 \operatorname{Sin}\left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \operatorname{Sin}\left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$

Some Important Problmes with Solutions

1. Simplify the following problems
i. $\operatorname{Cos} 315^{\circ}=\operatorname{Cos}\left(360^{\circ}-45^{\circ}\right)=\operatorname{Cos} 45^{\circ}=\frac{1}{\sqrt{2}}$
ii. $\operatorname{Cot}\left(-300^{\circ}\right)=-\operatorname{Cot} 300^{\circ}=-\operatorname{Cot}\left(360-60^{\circ}\right)=-\operatorname{Cot}\left(-60^{\circ}\right)=\frac{1}{\sqrt{3}}$
iii. $\quad \operatorname{Sin}\left(\frac{5 \pi}{3}\right)=\operatorname{Sin}\left(2 \pi-\frac{\pi}{3}\right)=-\operatorname{Sin} \frac{\pi}{3}=-\frac{\sqrt{3}}{2}$
2. Find the value of $\operatorname{Cos}^{2} 45^{0}+\operatorname{Cos}^{2} 135^{0}+\operatorname{Cos}^{2} 225^{\circ}+\operatorname{Cos}^{2} 315^{0}$.

Sol: $\quad \operatorname{Cos}^{2} 45^{0}+\operatorname{Cos}^{2} 135^{0}+\operatorname{Cos}^{2} 225^{\circ}+\operatorname{Cos}^{2} 315^{\circ}$
$=\operatorname{Cos}^{2} 45^{0}+\operatorname{Cos}^{2}\left(180-45^{\circ}\right)+\operatorname{Cos}^{2}\left(180+45^{\circ}\right)+\operatorname{Cos}^{2}\left(360-45^{\circ}\right)$
$=\operatorname{Cos}^{2} 45^{\circ}+\operatorname{Cos}^{2} 45^{0}+\operatorname{Cos}^{2} 45^{0}+\operatorname{Cos}^{2} 45^{0}$
$=\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}$
$=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2$
3. Find the value of $\operatorname{Cot} \frac{\pi}{20} \cdot \operatorname{Cot} \frac{3 \pi}{20} \cdot \operatorname{Cot} \frac{5 \pi}{20} \cdot \operatorname{Cot} \frac{7 \pi}{20} \cdot \operatorname{Cot} \frac{9 \pi}{20}$.

Sol: $\quad \operatorname{Cot} \frac{\pi}{20} \cdot \operatorname{Cot} \frac{3 \pi}{20} \cdot \operatorname{Cot} \frac{5 \pi}{20} \cdot \operatorname{Cot} \frac{7 \pi}{20} \cdot \operatorname{Cot} \frac{9 \pi}{20}=\operatorname{Cot} 9^{0} \cdot \operatorname{Cot} 27^{\circ} \cdot \operatorname{Cot} 45^{\circ} \cdot \operatorname{Cot} 63^{\circ} \cdot \operatorname{Cot} 81^{0}$
$\operatorname{Cot} 9^{0} \cdot \operatorname{Cot} 27^{0} \cdot \operatorname{Cot}\left(90^{0}-27\right) \cdot \operatorname{Cot}\left(90^{0}-9^{0}\right)$
$=\operatorname{Cot} 9^{0} \cdot \operatorname{Cot} 27^{0} \cdot \tan 27^{0} \cdot \tan 9^{0}=1$
4. Find the value of $\operatorname{Sin} 330^{\circ} \cdot \operatorname{Cos} 120^{\circ}+\operatorname{Cos} 210^{\circ} \cdot \operatorname{Sin} 300^{\circ}$.

Sol: $\quad \operatorname{Sin} 330^{\circ} . \operatorname{Cos} 120^{\circ}+\operatorname{Cos} 210^{\circ} . \operatorname{Sin} 300^{\circ}$
$=\operatorname{Sin}\left(360-30^{\circ}\right) \operatorname{Cos}\left(180-60^{\circ}\right)+\operatorname{Cos}\left(180+30^{\circ}\right) \operatorname{Sin}\left(360-60^{\circ}\right)$
$=\left(-\operatorname{Sin} 30^{\circ}\right)\left(-\operatorname{Cos} 60^{\circ}\right)+\left(-\operatorname{Cos} 30^{\circ}\right)\left(-\operatorname{Sin} 60^{\circ}\right)$
$=\frac{1}{2} \cdot \frac{1}{2}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}=\frac{1}{4}+\frac{3}{4}=1$
5. If $\operatorname{Sin} \alpha+\operatorname{Cosec} \alpha=2, n \in Z$, then find the value of $\operatorname{Sin}^{\mathrm{n}} \alpha+\operatorname{Cosec}^{\mathrm{n}} \alpha$.

Sol: $\quad \operatorname{Sin} \alpha+\operatorname{Coses} \alpha=2$
$\operatorname{Sin} a+\frac{1}{\operatorname{Sin} \alpha}=2$
$\Rightarrow \quad \operatorname{Sin}^{2} \alpha+1=2 \operatorname{Sin} \alpha$
$\Rightarrow \quad 1-2 \operatorname{Sin}^{2} \alpha+\operatorname{Sin}^{2} \alpha=0$
$\Rightarrow \quad(1-\operatorname{Sin} \alpha)^{2}=0$
$\Rightarrow \quad 1-\operatorname{Sin} \alpha=0$
$\Rightarrow \quad \operatorname{Sin} \alpha=1 \Rightarrow \alpha=90^{\circ}$
$\therefore \operatorname{Sin}^{\mathrm{n}} \mathrm{a}+\operatorname{Cosec}^{\mathrm{n}} \mathrm{a}=\operatorname{Sin}^{\mathrm{n}} 90^{0}+\operatorname{Cosec}^{\mathrm{n}} 90^{\circ}=1^{\mathrm{n}}+1^{\mathrm{n}}=1+1=2$
6. Eliminate θ from the following.
(i) $\mathrm{x}=\mathrm{a} \operatorname{Cos}^{3} \theta ; \mathrm{y}=\mathrm{b} \operatorname{Sin}^{3} \theta$

Sol: $\quad \frac{x}{a}=\operatorname{Cos}^{3} \theta \quad \frac{y}{b}=\operatorname{Sin}^{3} \theta$
$\operatorname{Cos} \theta=\left(\frac{x}{a}\right)^{1 / 3} \quad \operatorname{Sin} \theta=\left(\frac{y}{b}\right)^{1 / 3}$
$\because \operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta=1$
$\Rightarrow\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1$
ii. $\quad \mathrm{x}=\mathrm{a}(\operatorname{Sec} \theta+\tan \theta) ; \mathrm{y}=\mathrm{b}(\operatorname{Sec} \theta-\tan \theta)$

Sol: $\quad x y=a b\left(\operatorname{Sec}^{2} \theta-\tan ^{2} \theta\right)$
$=\mathrm{ab}(1)$
$x y=a b$
7. Find the period of the following functions.
i) $\quad \operatorname{Cos}(3 x+5)+7$

Sol: $\quad f(x)=\operatorname{Cos}(3 x+5)+7$
Period $=\frac{\mathrm{p}}{|\mathrm{a}|}=\frac{2 \pi}{3}$
ii) $\tan 5 x$

Sol: $\quad \mathrm{f}(\mathrm{x})=\tan 5 \mathrm{x}$
Period $=\frac{\pi}{5}$
iii) $\operatorname{Cos}\left(\frac{4 x+9}{5}\right)$

Sol: $\quad \mathrm{f}(\mathrm{x})=\operatorname{Cos}\left(\frac{4 x+9}{5}\right)$
Period $=\frac{2 \pi}{4 / 5}=\frac{10 \pi}{4}=\frac{5 \pi}{2}$
8. θ is not in 3 rd quadrant, if $\operatorname{Sin} \theta=-\frac{1}{3}$ then find the values of a) $\operatorname{Cos} \theta$ b) $\operatorname{Cot} \theta$.

Sol: $\quad \operatorname{Sin} \theta=-\frac{1}{3}<0 ; \theta \notin \mathrm{Q}_{3}$.

$$
\Rightarrow \theta \in \mathrm{Q}_{4}
$$

a) $\cos \theta=\frac{\sqrt{8}}{3}$
b) $\operatorname{Cot} \theta=-\sqrt{8}$
9. Find the value of $\operatorname{Sin}^{2} 82 \frac{1}{2}^{0}-\operatorname{Sin}^{2} 22 \frac{1}{2}^{\circ}$.

Sol: $\quad \operatorname{Sin}^{2} 82 \frac{1}{2}^{0}-\operatorname{Sin}^{2} 22 \frac{1}{2}^{\circ}=\operatorname{Sin}^{2} \mathrm{~A}-\operatorname{Sin}^{2} \mathrm{~B}$

$$
\begin{aligned}
& =\operatorname{Sin}(A+B) \operatorname{Sin}(A-B) \\
& =\operatorname{Sin} 105^{0} \cdot \operatorname{Sin} 60^{\circ} \\
& =\operatorname{Sin}\left(90+15^{\circ}\right) \operatorname{Sin} 60^{\circ} \\
& =\operatorname{Cos} 15^{0} \cdot \operatorname{Sin} 60^{\circ} \\
& =\frac{\sqrt{3}+1}{2 \sqrt{2}} \cdot \frac{\sqrt{3}}{2} \\
& =\frac{3+\sqrt{3}}{4 \sqrt{2}}
\end{aligned}
$$

10. Find the value of $\operatorname{Cos}^{2} 112 \frac{1}{2}^{\circ}-\operatorname{Sin}^{2} 52 \frac{1}{2}^{\circ}$

Sol: Let $\mathrm{A}=112 \frac{1}{2}^{0} ; \mathrm{B}=52 \frac{1}{2}^{0}$

$$
\begin{aligned}
& \operatorname{Cos}^{2} 112 \frac{1}{2}^{0}-\operatorname{Sin}^{2} 52 \frac{1}{2}^{0}=\operatorname{Cos}^{2} \mathrm{~A}-\operatorname{Sin}^{2} \mathrm{~B} \\
& =\operatorname{Cos}(\mathrm{A}+\mathrm{B}) \cdot \operatorname{Cos}(\mathrm{A}-\mathrm{B}) \Rightarrow \operatorname{Cos}\left(165^{\circ}\right) \cdot \operatorname{Cos} 60^{\circ} \\
& =\operatorname{Cos}\left(180-15^{\circ}\right) \cdot \operatorname{Cos} 60^{\circ} \\
& =-\operatorname{Cos} 15^{\circ} \cdot \operatorname{Cos} 60^{\circ} \\
& =-\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right)\left(\frac{1}{2}\right) \\
& =-\left(\frac{\sqrt{3}+1}{4 \sqrt{2}}\right)
\end{aligned}
$$

11. Find the minimum and maximum value of the function $3 \cos x+4 \sin x$.

Sol: \quad Let $f(x)=3 \cos x+4 \sin x$
Comparing with $f(x)=a \sin x+b \cos x+c$, we get $a=4, b=3, c=0$.
Minimum value $=c-\sqrt{a^{2}+b^{2}}$

$$
\begin{aligned}
& =0-\sqrt{4^{2}+3^{2}} \\
& =-\sqrt{25} \\
& =-5
\end{aligned}
$$

Maximum value $=c+\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$

$$
\begin{aligned}
& =0+\sqrt{4^{2}+3^{2}} \\
& =\sqrt{25} \\
& =5
\end{aligned}
$$

12. Find the minimum and maximum value of the function $\operatorname{Sin} 2 x-\operatorname{Cos} 2 x$.

Sol: Let $f(x)=\operatorname{Sin} 2 x-\operatorname{Cos} 2 x$
Comparing with $\mathrm{f}(\mathrm{x})=\mathrm{a} \sin \mathrm{x}+\mathrm{b} \cos \mathrm{x}+\mathrm{c}$, we get $\mathrm{a}=1, \mathrm{~b}=-1, \mathrm{c}=0$.
Minimum value $=c-\sqrt{a^{2}+b^{2}}$

$$
\begin{aligned}
& =-\sqrt{1^{2}+(-1)^{2}} \\
& =-\sqrt{2}
\end{aligned}
$$

Maximum value $=c+\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$

$$
\begin{aligned}
& =\sqrt{1^{2}+(-1)^{2}} \\
& =\sqrt{1+1} \\
& =\sqrt{2}
\end{aligned}
$$

13. Find the range of the function $7 \operatorname{Cos} x-24 \operatorname{Sin} x+5$.

Sol: \quad Let $\mathrm{f}(\mathrm{x})=7 \operatorname{Cos} \mathrm{x}-24 \operatorname{Sin} \mathrm{x}+5$
Comparing with $\mathrm{f}(\mathrm{x})=\mathrm{a} \sin \mathrm{x}+\mathrm{b} \cos \mathrm{x}+\mathrm{c}$, we get $\mathrm{a}=-24, \mathrm{~b}=7, \mathrm{c}=5$.
Minimum value of $f(x)=c-\sqrt{a^{2}+b^{2}}$

$$
\begin{aligned}
& =5-\sqrt{(-24)^{2}+7^{2}} \\
& =5-\sqrt{576+49}
\end{aligned}
$$

$$
\begin{aligned}
& =5-\sqrt{625} \\
& =5-25 \\
& =-20
\end{aligned}
$$

$$
\text { Maximum value of } \begin{aligned}
\mathrm{f}(\mathrm{x}) & =\mathrm{c}+\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}} \\
& =5+\sqrt{625} \\
& =5+25 \\
& =30
\end{aligned}
$$

\therefore Range $=[-20,30]$
14. If $\tan 20^{\circ}=\mathrm{p}$, then prove that $\frac{\tan 610^{\circ}+\tan 700^{\circ}}{\tan 560^{\circ}-\tan 470^{\circ}}=\frac{1-\mathrm{p}^{2}}{1+\mathrm{p}^{2}}$.

Sol: $\frac{\tan 610^{\circ}+\tan 700^{\circ}}{\tan 560^{\circ}-\tan 470^{\circ}}=\frac{\tan \left(360^{\circ}+250^{\circ}\right)+\tan \left(360^{\circ}+340^{\circ}\right)}{\tan \left(360^{\circ}+200^{\circ}\right)-\tan \left(360^{\circ}+110^{\circ}\right)}$
$=\frac{\tan 250^{\circ}+\tan 340^{\circ}}{\tan 200^{\circ}-\tan 110^{\circ}}$
$=\frac{\tan \left(270^{\circ}-20^{\circ}\right)+\tan \left(360^{\circ}-20^{\circ}\right)}{\tan \left(180^{\circ}+20^{\circ}\right)-\tan \left(90^{\circ}+20^{\circ}\right)}$
$=\frac{\cot 20^{\circ}-\tan 20^{\circ}}{\tan 20^{\circ}+\operatorname{Cot} 20^{\circ}}$
$=\frac{\frac{1}{\mathrm{p}}-\mathrm{p}}{\mathrm{p}+\frac{1}{\mathrm{p}}}=\frac{1-\mathrm{p}^{2}}{1+\mathrm{p}^{2}}=$ RHS $\quad\left[\because \tan 20^{\circ}=\mathrm{p}\right]$
15. Prove that $\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}=\frac{1+\sin \theta}{\cos \theta}$.

Sol: \quad LHS $=\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}$

$$
\begin{aligned}
& =\frac{\tan \theta+\sec \theta-\left(\sec { }^{2} \theta-\tan ^{2} \theta\right)}{\tan \theta-\sec \theta+1} \\
& =\frac{(\tan \theta+\sec \theta)-(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}{\tan \theta-\sec \theta+1} \\
& =\frac{(\tan \theta+\sec \theta)(1-\sec \theta+\tan \theta)}{(\tan \theta-\sec \theta+1)}
\end{aligned}
$$

$$
\begin{aligned}
& =\tan \theta+\operatorname{Sec} \theta \\
& =\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta} \\
& =\frac{1+\sin \theta}{\cos \theta}=\text { RHS }
\end{aligned}
$$

16. Prove that $(1+\operatorname{Cot} \theta-\operatorname{Cosec} \theta)(1+\tan \theta+\operatorname{Sec} \theta)=2$.

Sol: \quad LHS $=(1+\operatorname{Cot} \theta-\operatorname{Cosec} \theta)(1+\tan \theta+\operatorname{Sec} \theta)$

$$
\begin{aligned}
& =\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right)\left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right) \\
& =\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right)\left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right) \\
& =\frac{(\sin \theta+\cos \theta)^{2}-1}{\sin \theta \cos \theta} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\
& =\frac{1+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\
& =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta} \\
& =2=R H S
\end{aligned}
$$

17. If θ is in 3 rd Quadrant and $\tan \theta=\frac{\operatorname{Cos} 11^{0}+\operatorname{Sin} 11^{0}}{\operatorname{Cos} 11^{0}-\operatorname{Sin} 11^{0}}$, then find the value of θ.

Sol: $\quad \tan \theta=\frac{\operatorname{Cos} 11^{0}+\operatorname{Sin} 11^{0}}{\operatorname{Cos} 11^{0}-\operatorname{Sin} 11^{0}}$

$$
\begin{aligned}
& =\frac{\operatorname{Cos} 11^{0}\left(1+\frac{\operatorname{Sin} 11^{0}}{\operatorname{Cos} 11^{0}}\right)}{\operatorname{Cos} 11^{0}\left(1-\frac{\operatorname{Sin} 11^{0}}{\operatorname{Cos} 11^{0}}\right)} \\
& =\frac{1+\tan 11^{0}}{1-\tan 11^{0}} \\
= & \tan \left(45^{\circ}+11^{0}\right) \\
& =\tan 56^{\circ} \\
\tan \theta & =\tan \left(180+56^{\circ}\right)=\tan 236^{\circ} \\
\Rightarrow \theta & =236^{\circ}
\end{aligned}
$$

18. Prove that $\frac{\operatorname{Cos} 9^{0}+\operatorname{Sin} 9^{0}}{\operatorname{Cos} 9^{0}-\operatorname{Sin} 9^{0}}=\operatorname{Cot} 36^{\circ}$

Sol: \quad LHS $=\frac{\operatorname{Cos} 9^{0}+\operatorname{Sin} 9^{0}}{\operatorname{Cos} 9^{0}-\operatorname{Sin} 9^{0}}$

$$
\begin{aligned}
& =\frac{1+\tan 9^{0}}{1-\tan 9^{0}} \quad\left[\because \text { on dividing numerator and denominator by } \cos 9^{\circ}\right] \\
& =\tan \left(45^{0}+9^{\circ}\right) \\
& =\tan 54^{\circ} \\
& =\tan \left(90-36^{\circ}\right) \\
& =\cot 36^{\circ}=\text { RHS }
\end{aligned}
$$

19. If $\mathrm{A}+\mathrm{B}=\frac{\pi}{4}$, then prove that $(1+\tan \mathrm{A})(1+\tan \mathrm{B})=2$.

Sol: $\quad \mathrm{A}+\mathrm{B}=45^{\circ}$

$$
\begin{align*}
& \Rightarrow \tan (A+B)=\tan 45^{\circ}=1 \\
& \Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B}=1 \\
& \Rightarrow \tan A+\tan B=1-\tan A \tan B \\
& \Rightarrow \tan A+\tan B+\tan A \tan B=1 \tag{1}
\end{align*}
$$

$\Rightarrow \quad$ Now $(1+\tan \mathrm{A})(1+\tan \mathrm{B})=1+\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{Atan} \mathrm{B}=2 \quad(\because$ from 1$)$
20. Show that $\cos ^{2} \theta+\cos ^{2}\left(\frac{2 \pi}{3}+\theta\right)+\cos ^{2}\left(\frac{2 \pi}{3}-\theta\right)=\frac{3}{2}$.

Sol: $\quad \cos ^{2}\left(\frac{2 \pi}{3}+\theta\right)+\cos ^{2}\left(\frac{2 \pi}{3}-\theta\right)$
$=\cos ^{2}(120+\theta)+\cos ^{2}(120-\theta)$
$=\left(\cos 120^{\circ} \cos \theta-\sin 120^{\circ} \sin \theta\right)^{2}+\left(\cos 120^{\circ} \cos \theta+\sin 120^{\circ} \sin \theta\right)^{2}$
$=2\left[\cos ^{2} 120^{\circ} \cos ^{2} \theta+\sin ^{2} 120^{\circ} \sin ^{2} \theta\right]$
$\left[\because(a+b)^{2}+(a-b)^{2}=2\left(a^{2}+b^{2}\right)\right]$
$=2\left[\left(\frac{-1}{2}\right)^{2} \operatorname{Cos}^{2} \theta+\left(\frac{\sqrt{3}}{2}\right)^{2} \operatorname{Sin}^{2} \theta\right]$
$=2\left[\frac{1}{4} \operatorname{Cos}^{2} \theta+\frac{3}{4} \operatorname{Sin}^{2} \theta\right]$
$=\frac{2}{4}\left[\operatorname{Cos}^{2} \theta+3 \operatorname{Sin}^{2} \theta\right]$

$$
\begin{aligned}
& =\frac{1}{2}\left[\operatorname{Cos}^{2} \theta+3 \operatorname{Sin}^{2} \theta\right] \\
& =\operatorname{Cos}^{2} \theta+\operatorname{Cos}^{2}\left(\frac{2 \pi}{3}+\theta\right)+\operatorname{Cos}^{2}\left(\frac{2 \pi}{3}-\theta\right) \\
& \text { LHS }=\operatorname{Cos}^{2} \theta+\frac{1}{2} \operatorname{Cos}^{2} \theta+\frac{3}{2} \operatorname{Sin}^{2} \theta \quad[\because \text { From (1) }] \\
& \quad=\frac{3}{2} \operatorname{Cos}^{2} \theta+\frac{3}{2} \operatorname{Sin}^{2} \theta \\
& \quad=\frac{3}{2}\left(\operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta\right)=\frac{3}{2}=\text { RHS }
\end{aligned}
$$

21. If $\frac{\operatorname{Sin} a}{a}=\frac{\operatorname{Cos} a}{b}$, then show that $\operatorname{aSin} 2 a+b \operatorname{Cos} 2 a=b$.

Sol: $\quad \frac{\text { Sina }}{\mathrm{a}}=\frac{\operatorname{Cos} a}{b}=\mathrm{k}$

$$
\begin{aligned}
& \operatorname{Sin} a=a k, \operatorname{Cos} a=b k \\
& \begin{aligned}
\text { LHS } & =a \operatorname{Sin} 2 a+b \operatorname{Cos} 2 a \\
& =a(2 \operatorname{Sin} a \operatorname{Cos} a)+b\left(1-2 \operatorname{Sin}^{2} a\right) \\
& =a[2(a k)(b k)]+b\left[1-2(a k)^{2}\right] \\
& =2 a^{2} b k^{2}+b-2 a^{2} b k^{2} \\
& =b=\text { RHS }
\end{aligned}
\end{aligned}
$$

22. Prove that $\frac{1}{\sin 10^{0}}-\frac{\sqrt{3}}{\cos 10^{0}}=4$.

Sol: \quad LHS $=\frac{1}{\operatorname{Sin} 10^{0}}-\frac{\sqrt{3}}{\operatorname{Cos} 10^{0}}$

$$
\begin{aligned}
& =\frac{\operatorname{Cos} 10^{\circ}-\sqrt{3} \operatorname{Sin} 10^{\circ}}{\operatorname{Sin} 10^{\circ} \operatorname{Cos} 10^{\circ}} \\
& =\frac{2\left[\frac{1}{2} \operatorname{Cos} 10^{\circ}-\frac{\sqrt{3}}{2} \operatorname{Sin} 10^{\circ}\right]}{\frac{1}{2}\left(2 \operatorname{Sin} 10^{\circ} \operatorname{Cos} 10^{\circ}\right)} \\
& =\frac{4\left[\operatorname{Sin} 30^{\circ} \operatorname{Cos} 10^{\circ}-\operatorname{Cos} 30^{\circ} \operatorname{Sin} 10^{\circ}\right]}{\operatorname{Sin} 20^{\circ}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4 \operatorname{Sin}\left(30^{\circ}-10^{\circ}\right)}{\operatorname{Sin} 20^{\circ}} \\
& =\frac{4 \operatorname{Sin} 20^{\circ}}{\operatorname{Sin} 20^{\circ}} \\
& =4=\text { RHS }
\end{aligned}
$$

23. In a $\triangle A B C, \tan \frac{A}{2}=\frac{5}{6}, \tan \frac{B}{2}=\frac{20}{37}$, then show that $\tan \frac{C}{2}=\frac{2}{5}$.

Sol: $\quad \mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ} \Rightarrow \mathrm{A}+\mathrm{B}=180^{\circ}-\mathrm{C} \Rightarrow \frac{\mathrm{A}+\mathrm{B}}{2}=90-\frac{\mathrm{C}}{2}$

$$
\tan \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right) \Rightarrow \frac{\mathrm{A}+\mathrm{B}}{2}=90-\frac{\mathrm{C}}{2}
$$

$$
\begin{aligned}
& \Rightarrow \tan \left(\frac{\mathrm{A}}{2}+\frac{\mathrm{B}}{2}\right)=\operatorname{Cot} \frac{\mathrm{C}}{2} \\
& \Rightarrow \frac{\tan \frac{\mathrm{~A}}{2}+\tan \frac{\mathrm{B}}{2}}{1-\tan \frac{\mathrm{A}}{2} \tan \frac{\mathrm{~B}}{2}}=\operatorname{Cot} \frac{\mathrm{C}}{2}
\end{aligned}
$$

$$
\Rightarrow \frac{\frac{5}{6}+\frac{20}{37}}{1-\frac{5}{6} \cdot \frac{20}{37}}=\operatorname{Cot} \frac{\mathrm{C}}{2} \quad\left[\because \tan \frac{\mathrm{~A}}{2}=\frac{5}{6}, \tan \frac{\mathrm{~B}}{2}=\frac{20}{37}\right]
$$

$$
185+120
$$

$$
\Rightarrow \frac{\overline{222}}{\frac{222-100}{222}}=\operatorname{Cot} \frac{\mathrm{C}}{2}
$$

$$
\Rightarrow \frac{305}{122}=\frac{1}{\tan \frac{\mathrm{C}}{2}}
$$

$$
\Rightarrow \tan \frac{C}{2}=\frac{122}{305}=\frac{2}{5}
$$

$$
\Rightarrow \tan \frac{C}{2}=\frac{2}{5}
$$

24. Prove that $\operatorname{Cos}^{2} \frac{\pi}{8}+\operatorname{Cos}^{2} \frac{3 \pi}{8}+\operatorname{Cos}^{2} \frac{5 \pi}{8}+\operatorname{Cos}^{2} \frac{7 \pi}{8}=2$.

Sol: LHS $=\operatorname{Cos}^{2} \frac{\pi}{8}+\operatorname{Cos}^{2} \frac{3 \pi}{8}+\operatorname{Cos}^{2} \frac{5 \pi}{8}+\operatorname{Cos}^{2} \frac{7 \pi}{8}$

$$
\begin{aligned}
& =\operatorname{Cos}^{2} \frac{\pi}{8}+\operatorname{Cos}^{2} \frac{3 \pi}{8}+\operatorname{Cos}^{2}\left(\pi-\frac{3 \pi}{8}\right)+\operatorname{Cos}^{2}\left(\pi-\frac{\pi}{8}\right) \\
& =\operatorname{Cos}^{2} \frac{\pi}{8}+\operatorname{Cos}^{2} \frac{3 \pi}{8}+\operatorname{Cos}^{2} \frac{3 \pi}{8}+\operatorname{Cos}^{2} \frac{\pi}{8} \\
& =2\left(\operatorname{Cos}^{2} \frac{\pi}{8}+\operatorname{Cos}^{2} \frac{3 \pi}{8}\right) \\
& =2\left(\cos ^{2} \frac{\pi}{8}+\operatorname{Cos}^{2}\left(\frac{\pi}{2}-\frac{\pi}{8}\right)\right) \\
& =2\left(\operatorname{Cos}^{2} \frac{\pi}{8}+\operatorname{Sin}^{2} \frac{\pi}{8}\right) \quad=2(1)=2=\text { RHS }
\end{aligned}
$$

25. Show that $\operatorname{Sin} \frac{\pi}{5} \cdot \operatorname{Sin} \frac{2 \pi}{5} \cdot \operatorname{Sin} \frac{3 \pi}{5} \cdot \operatorname{Sin} \frac{4 \pi}{5}=\frac{5}{16}$.

Sol: \quad LHS $=\operatorname{Sin} \frac{\pi}{5} \cdot \operatorname{Sin} \frac{2 \pi}{5} \cdot \operatorname{Sin} \frac{3 \pi}{5} \cdot \operatorname{Sin} \frac{4 \pi}{5}$

$$
\begin{aligned}
& =\operatorname{Sin} 36^{0} \cdot \operatorname{Sin} 72^{0} \cdot \operatorname{Sin} 108^{0} \cdot \operatorname{Sin} 144^{0} \\
& =\operatorname{Sin} 36^{0} \cdot \operatorname{Sin}\left(90-18^{0}\right) \cdot \operatorname{Sin}\left(90+18^{\circ}\right) \cdot \operatorname{Sin}\left(180-36^{0}\right) \\
& =\operatorname{Sin} 36^{\circ} \cdot \operatorname{Cos} 18^{0} \cdot \operatorname{Cos} 18^{0} \cdot \operatorname{Sin} 36^{0} \\
& =\operatorname{Sin}^{2} 36^{0} \cdot \operatorname{Cos}^{2} 18^{0}
\end{aligned}
$$

$$
=\left(\frac{10-2 \sqrt{5}}{16}\right) \cdot\left(\frac{10+2 \sqrt{5}}{16}\right)
$$

$$
=\frac{100-20}{16 \times 16}=\frac{80}{16 \times 16}=\frac{5}{16}=\text { RHS }
$$

26. Prove that $\left(1+\operatorname{Cos} \frac{\pi}{10}\right)\left(1+\operatorname{Cos} \frac{3 \pi}{10}\right)\left(1+\operatorname{Cos} \frac{7 \pi}{10}\right)\left(1+\operatorname{Cos} \frac{9 \pi}{10}\right)=\frac{1}{16}$.

Sol: \quad LHS $=\left(1+\operatorname{Cos} \frac{\pi}{10}\right)\left(1+\operatorname{Cos} \frac{3 \pi}{10}\right)\left(1+\operatorname{Cos} \frac{7 \pi}{10}\right)\left(1+\operatorname{Cos} \frac{9 \pi}{10}\right)$

$$
=\left(1+\operatorname{Cos} \frac{\pi}{10}\right)\left(1+\operatorname{Cos} \frac{3 \pi}{10}\right)\left(1+\operatorname{Cos}\left(\pi-\frac{3 \pi}{10}\right)\right)\left(1+\operatorname{Cos}\left(\pi-\frac{\pi}{10}\right)\right)
$$

$$
\begin{aligned}
& =\left(1+\operatorname{Cos} \frac{\pi}{10}\right)\left(1+\operatorname{Cos} \frac{3 \pi}{10}\right)\left(1-\operatorname{Cos} \frac{3 \pi}{10}\right)\left(1-\operatorname{Cos} \frac{\pi}{10}\right) \\
& =\left(1-\operatorname{Cos}^{2} \frac{\pi}{10}\right)\left(1-\operatorname{Cos}^{2} \frac{3 \pi}{10}\right) \\
& =\operatorname{Sin}^{2} \frac{\pi}{10} \operatorname{Sin}^{2} \frac{3 \pi}{10} \\
& =\operatorname{Sin}^{2} 18^{0} \cdot \operatorname{Sin}^{2} 54^{0} \\
& =\left(\frac{\sqrt{5}-1}{4}\right)^{2}\left(\frac{\sqrt{5}+1}{4}\right)^{2} \\
& =\left(\frac{(\sqrt{5}-1)(\sqrt{5}+1)}{16}\right)^{2} \\
& =\frac{(5-1)^{2}}{16 \times 16}=\frac{16}{16 \times 16}=\frac{1}{16}=\text { RHS }
\end{aligned}
$$

27. If α, β are acute angles and $\cos \alpha=\frac{3}{5}, \cos \beta=\frac{5}{13}$, then show that
(i) $\sin ^{2}\left(\frac{\alpha-\beta}{2}\right)=\frac{1}{65}$, (ii) $\cos ^{2}\left(\frac{\alpha+\beta}{2}\right)=\frac{16}{65}$

Sol: $\quad \operatorname{Cos} \alpha=\frac{3}{5}$

$$
\operatorname{Sin} \alpha=\frac{4}{5}
$$

$$
\begin{aligned}
& \operatorname{Cos} \beta=\frac{5}{13} \\
& \operatorname{Sin} \beta=\frac{12}{13}
\end{aligned}
$$

(i) $2 \operatorname{Sin}^{2}\left(\frac{\alpha-\beta}{2}\right)=1-\operatorname{Cos}(\alpha-\beta)$

$$
\begin{aligned}
& =1-[\operatorname{Cos} \alpha \operatorname{Cos} \beta+\operatorname{Sin} \alpha \operatorname{Sin} \beta] \\
& =1-\left[\frac{3}{5} \cdot \frac{5}{13}+\frac{4}{5} \cdot \frac{12}{13}\right] \\
& =1-\frac{15}{65}-\frac{48}{65} \\
& =\frac{65-15-48}{65}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{65-63}{65}=\frac{2}{65} \\
\therefore \operatorname{Sin}^{2}\left(\frac{a-\beta}{2}\right) & =\frac{1}{65}
\end{aligned}
$$

(ii) $2 \operatorname{Cos}^{2}\left(\frac{\alpha+\beta}{2}\right)=1+\operatorname{Cos}(\alpha+\beta) \quad\left[\because 2 \operatorname{Cos}^{2} \theta=1+\operatorname{Cos} 2 \theta\right]$

$$
\begin{aligned}
& =1+\operatorname{Cos} \alpha \operatorname{Cos} \beta-\operatorname{Sin} \alpha \operatorname{Sin} \beta \\
& =1+\left[\frac{3}{5} \cdot \frac{5}{13}-\frac{4}{5} \cdot \frac{12}{13}\right] \\
& =1+\frac{15}{65}-\frac{48}{65} \\
& =\frac{65+15-48}{65} \\
& =\frac{80-48}{65} \\
& \therefore 2 \operatorname{Cos}^{2}\left(\frac{a+\beta}{2}\right)=\frac{32}{65} \\
& \\
& \operatorname{Cos}^{2}\left(\frac{a+\beta}{2}\right)=\frac{16}{65}
\end{aligned}
$$

28. A, B, C are angles in a triangle. Then prove that

$$
\operatorname{Sin} 2 \mathrm{~A}+\operatorname{Sin} 2 \mathrm{~B}+\operatorname{Sin} 2 \mathrm{C}=4 \operatorname{Sin} \mathrm{ASin} \mathrm{BSinC} .
$$

Sol: \quad LHS $=\operatorname{Sin} 2 A+\operatorname{Sin} 2 B+\operatorname{Sin} 2 C$

$$
\begin{aligned}
& =2 \operatorname{Sin}(\mathrm{~A}+\mathrm{B}) \operatorname{Cos}(\mathrm{A}-\mathrm{B})+\operatorname{Sin} 2 \mathrm{C} \\
& =2 \operatorname{Sin} \mathrm{C} \operatorname{Cos}(\mathrm{~A}-\mathrm{B})+2 \operatorname{Sin} \operatorname{Cos} \mathrm{C} \quad\left[\because \mathrm{~A}+\mathrm{B}+\mathrm{C}=180^{\circ}, \mathrm{A}+\mathrm{B}=180-\mathrm{C}\right] \\
& =2 \operatorname{SinC}[\operatorname{Cos}(\mathrm{~A}-\mathrm{B})+\operatorname{Cos} \mathrm{C}] \\
& =2 \operatorname{SinC}[\operatorname{Cos}(\mathrm{~A}-\mathrm{B})-\operatorname{Cos}(\mathrm{A}+\mathrm{B})] \\
& =2 \operatorname{SinC}[2 \operatorname{Sin} \mathrm{Sin} \mathrm{~B}] \\
& =4 \operatorname{Sin} \mathrm{~A} \operatorname{Sin} \mathrm{SinC} \\
& =\text { RHS }
\end{aligned}
$$

29. Prove that $\operatorname{Cos} 2 \mathrm{~A}-\operatorname{Cos} 2 \mathrm{~B}+\operatorname{Cos} 2 \mathrm{C}=1-4 \operatorname{Sin} \mathrm{ACos} \mathrm{BSinC}$.

Sol: $\quad \operatorname{Cos} 2 \mathrm{~A}-\operatorname{Cos} 2 \mathrm{~B}+\operatorname{Cos} 2 \mathrm{C}$

$$
\begin{aligned}
& =-2 \operatorname{Sin}(\mathrm{~A}+\mathrm{B}) \operatorname{Sin}(\mathrm{A}-\mathrm{B})+\operatorname{Cos} 2 \mathrm{C} \\
& =-2 \operatorname{Sin} \mathrm{CSin}(\mathrm{~A}-\mathrm{B})+1-2 \operatorname{Sin}^{2} \mathrm{C}
\end{aligned}
$$

$$
\left[\because \mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}, \mathrm{A}+\mathrm{B}=180-\mathrm{C}\right]
$$

$$
\begin{aligned}
& =1-2 \operatorname{SinC}[\operatorname{Sin}(A-B)+\operatorname{SinC}] \\
& =1-2 \operatorname{SinC}[\operatorname{Sin}(\mathrm{~A}-\mathrm{B})+\operatorname{Sin}(\mathrm{A}+\mathrm{B})] \\
& =1-2 \operatorname{SinC}[2 \operatorname{Sin} \mathrm{ACos} \mathrm{~B}] \\
& =1-4 \operatorname{Sin} \mathrm{ACosBSinC}
\end{aligned}
$$

30. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are angles in a triangle. Then prove that

$$
\operatorname{Sin} \mathrm{A}+\operatorname{Sin} \mathrm{B}-\operatorname{Sin} \mathrm{C}=4 \operatorname{Sin} \frac{\mathrm{~A}}{2} \cdot \operatorname{Sin} \frac{\mathrm{~B}}{2} \cdot \operatorname{Cos} \frac{\mathrm{C}}{2}
$$

Sol: \quad LHS $=\operatorname{Sin} A+\operatorname{SinB}-\operatorname{Sin} C$

$$
\begin{array}{lr}
=2 \operatorname{Sin} \frac{(A+B)}{2} \operatorname{Cos} \frac{A-B}{2}-\operatorname{SinC} & \\
=2 \operatorname{Cos} \frac{C}{2} \operatorname{Cos} \frac{A-B}{2}-2 \operatorname{Sin} \frac{C}{2} \operatorname{Cos} \frac{C}{2} & {\left[\because \operatorname{Sin}\left(\frac{A+B}{2}\right)=\operatorname{Sin}\left(\frac{180-C}{2}\right)\right]} \\
=2 \operatorname{Cos} \frac{C}{2}\left[\operatorname{Cos} \frac{A-B}{2}-\operatorname{Sin} \frac{C}{2}\right] & \left.\operatorname{Sin}\left(90-\frac{C}{2}\right)=\operatorname{Cos} \frac{C}{2}\right] \\
=2 \operatorname{Cos} \frac{C}{2}\left[\operatorname{Cos} \frac{A-B}{2}-\operatorname{Cos} \frac{A+B}{2}\right] & \left(\because \operatorname{Sin} \frac{C}{2}=\operatorname{Sin}\left(90-\frac{A+B}{2}\right)\right) \\
=2 \operatorname{Cos} \frac{C}{2}\left[2 \operatorname{Sin} \frac{A}{2} \cdot \operatorname{Sin} \frac{B}{2}\right] & =\operatorname{Cos}\left(\frac{A+B}{2}\right) \\
=4 \operatorname{Sin} \frac{A}{2} \operatorname{Sin} \frac{B}{2} \operatorname{Cos} \frac{C}{2} & \\
=\text { RHS }
\end{array}
$$

31. Prove that $\operatorname{Cos} \mathrm{A}+\operatorname{Cos} \mathrm{B}-\operatorname{Cos} \mathrm{C}=-1+4 \operatorname{Cos} \frac{\mathrm{~A}}{2} \operatorname{Cos} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}$

Sol: \quad LHS $=\operatorname{Cos} \mathrm{A}+\operatorname{Cos} \mathrm{B}-\operatorname{Cos} \mathrm{C}$

$$
\begin{aligned}
& =2 \operatorname{Cos}\left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \operatorname{Cos}\left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)-\cos \mathrm{C} \\
& =2 \operatorname{Sin} \frac{\mathrm{C}}{2} \operatorname{Cos} \frac{\mathrm{~A}-\mathrm{B}}{2}-\left(1-2 \operatorname{Sin}^{2} \frac{\mathrm{C}}{2}\right) \\
& =2 \operatorname{Sin} \frac{\mathrm{C}}{2} \operatorname{Cos} \frac{\mathrm{~A}-\mathrm{B}}{2}-1+2 \operatorname{Sin}^{2} \frac{\mathrm{C}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-1+2 \operatorname{Sin} \frac{\mathrm{C}}{2}\left[\operatorname{Cos} \frac{\mathrm{~A}-\mathrm{B}}{2}+\operatorname{Sin} \frac{\mathrm{C}}{2}\right] \\
& =-1+2 \operatorname{Sin} \frac{\mathrm{C}}{2}\left[\operatorname{Cos} \frac{\mathrm{~A}-\mathrm{B}}{2}+\operatorname{Cos} \frac{\mathrm{A}+\mathrm{B}}{2}\right] \\
& =-1+2 \operatorname{Sin} \frac{\mathrm{C}}{2}\left[2 \operatorname{Cos} \frac{\mathrm{~A}}{2} \cdot \operatorname{Cos} \frac{\mathrm{~B}}{2}\right] \\
& =-1+4 \operatorname{Cos} \frac{\mathrm{~A}}{2} \operatorname{Cos} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}=\text { RHS }
\end{aligned}
$$

32． $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are angles in a triangle．Then prove that $\operatorname{Sin}^{2} \mathrm{~A}+\operatorname{Sin}^{2} \mathrm{~B}-\operatorname{Sin}^{2} \mathrm{C}=2 \operatorname{Sin} \mathrm{~A} \operatorname{Sin} \mathrm{~B} \operatorname{Cos} \mathrm{C}$ ．
Sol：\quad LHS $=\operatorname{Sin}^{2} A+\operatorname{Sin}^{2} B-\operatorname{Sin}^{2} C$

$$
\begin{aligned}
& =1-\operatorname{Cos}^{2} \mathrm{~A}+\operatorname{Sin}^{2} \mathrm{~B}-\operatorname{Sin}^{2} \mathrm{C} \\
& =1-\left(\operatorname{Cos}^{2} \mathrm{~A}-\operatorname{Sin}^{2} \mathrm{~B}\right)-\operatorname{Sin}^{2} \mathrm{C} \\
& =1-\operatorname{Cos}(\mathrm{A}+\mathrm{B}) \operatorname{Cos}(\mathrm{A}-\mathrm{B})-1+\operatorname{Cos}^{2} \mathrm{C} \\
& =\operatorname{CosC} \operatorname{Cos}(\mathrm{A}-\mathrm{B})+\operatorname{Cos}^{2} \mathrm{C} \\
& =\operatorname{Cos} \mathrm{C}[\operatorname{Cos} \mathrm{C}+\operatorname{Cos}(\mathrm{A}-\mathrm{B})] \\
& =+\operatorname{Cos} \mathrm{C}[\operatorname{Cos}(\mathrm{~A}-\mathrm{B})-\operatorname{Cos}(\mathrm{A}+\mathrm{B})] \\
& =\operatorname{CosC}[2 \operatorname{Sin} \mathrm{ASinB}] \\
& =2 \operatorname{Sin} \mathrm{SinBCosC} \\
& =\text { RHS }
\end{aligned}
$$

33． $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are angles in a triangle．Then prove that $\operatorname{Cos}^{2} \mathrm{~A}+\operatorname{Cos}^{2} \mathrm{~B}-\operatorname{Cos}^{2} \mathrm{C}=1-2 \operatorname{Sin} \mathrm{~A} \operatorname{Sin} \mathrm{~B} \operatorname{Cos} \mathrm{C}$

Sol：\quad LHS $=\operatorname{Cos}^{2} \mathrm{~A}+\operatorname{Cos}^{2} \mathrm{~B}-\operatorname{Cos}^{2} \mathrm{C}$

$$
\begin{aligned}
& =\operatorname{Cos}^{2} \mathrm{~A}+1-\operatorname{Sin}^{2} \mathrm{~B}-\operatorname{Cos}^{2} \mathrm{C} \\
& =1+\left(\operatorname{Cos}^{2} \mathrm{~A}-\operatorname{Sin}^{2} \mathrm{~B}\right)-\operatorname{Cos}^{2} \mathrm{C} \\
& =1+\operatorname{Cos}(\mathrm{A}+\mathrm{B}) \operatorname{Cos}(\mathrm{A}-\mathrm{B})-\operatorname{Cos}^{2} \mathrm{C} \\
& =1-\operatorname{Cos} \mathrm{C} \cdot \operatorname{Cos}(\mathrm{~A}-\mathrm{B})-\operatorname{Cos}^{2} \mathrm{C} \\
& =1-\operatorname{Cos} \mathrm{C}[\operatorname{Cos}(\mathrm{~A}-\mathrm{B})+\operatorname{Cos} \mathrm{C}] \\
& =1-\operatorname{Cos} \mathrm{C}[\operatorname{Cos}(\mathrm{~A}-\mathrm{B})-\operatorname{Cos}(\mathrm{A}+\mathrm{B})] \\
& =1-\operatorname{Cos} \mathrm{C}[2 \operatorname{Sin} \mathrm{ASinB}] \\
& =1-2 \operatorname{Sin} \mathrm{ASinBCosC} \\
& =\text { RHS }
\end{aligned}
$$

Hyperbolic Functions

1. $\forall \mathrm{x} \in \mathrm{R}, \operatorname{Sinh} x=\frac{e^{x}-e^{-x}}{2}$
2. $\forall \mathrm{x} \in \mathrm{R}, \operatorname{Cosh} x=\frac{e^{x}+e^{-x}}{2}$
3. $\forall \mathrm{x} \in \mathrm{R}, \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
4. $\forall \mathrm{x} \in \mathrm{R}-\{0\}, \operatorname{Coth} x=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$
5. $\forall \mathrm{x} \in \mathrm{R}, \operatorname{Sech} x=\frac{2}{e^{x}+e^{-x}}$
6. $\forall \mathrm{x} \in \mathrm{R}-\{0\}, \operatorname{Cosech} x=\frac{2}{e^{x}-e^{-x}}$

Note:

1) $\operatorname{Cosh}(0)=\frac{e^{0}+e^{-0}}{2}=\frac{1+1}{2}=\frac{2}{2}=1$
2) $\operatorname{Sinh}(0)=\frac{e^{0}-e^{-0}}{2}=\frac{1-1}{2}=\frac{0}{2}=0$
3) $\operatorname{Cosh}(-x)=\frac{e^{-x}+e^{-(-x)}}{2}=\frac{e^{-x}+e^{x}}{2}=\operatorname{Cosh} x$
$\mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})$
$\therefore \operatorname{Cosh} x$ is an even function.
(4) $\operatorname{Sinh}(-x)=\frac{e^{-x}-e^{-(-x)}}{2}=\frac{e^{-x}-e^{x}}{2}$

$$
=-\left(\frac{e^{x}-e^{-x}}{2}\right)=-\operatorname{Sinh} x
$$

$$
\Rightarrow f(-x)=-f(x) \quad \therefore f(x)=\operatorname{Sinh} x \text { is an odd function }
$$

IDENTITIES

1. $\quad \forall x \in \mathrm{R}, \operatorname{Cosh}^{2} x-\operatorname{Sinh}^{2} x=1$
2. $\forall x \in \mathrm{R}, 1-\tanh ^{2} x=\operatorname{Sech}^{2} x$
3. $\forall x \in \mathrm{R}-\{0\}, \operatorname{Coth}^{2} x-1=\operatorname{Cosech}^{2} x$

Theorm - 1

(i) $\operatorname{Sinh}(x+y)=\operatorname{Sinh} x \operatorname{Cosh} y+\operatorname{Cosh} x \operatorname{Sinh} y$
(ii) $\operatorname{Sinh}(x-y)=\operatorname{Sinh} x \operatorname{Cosh} y-\operatorname{Cosh} x \operatorname{Sinh} y$
(iii) $\operatorname{Cosh}(x+y)=\operatorname{Cosh} x \operatorname{Cosh} y+\operatorname{Sinh} x \operatorname{Sinh} y$
(iii) $\operatorname{Cosh}(x-y)=\operatorname{Cosh} x \operatorname{Cosh} y-\operatorname{Sinh} x \operatorname{Sinh} y$
4. $\forall x \in \mathrm{R}$
(i) $\operatorname{Sinh} 2 x=2 \operatorname{Sinh} x \operatorname{Cosh} x=\frac{2 \tanh x}{1-\tanh ^{2} x}$
(ii) $\operatorname{Cosh} 2 x=2 \operatorname{Cosh}^{2} x-1$

$$
\begin{aligned}
& =1+2 \operatorname{Sinh}^{2} x \\
& =\frac{1+\tanh ^{2} x}{1-\tanh ^{2} x} \\
& =\operatorname{Cosh}^{2} x+\operatorname{Sinh}^{2} x
\end{aligned}
$$

5. $\forall x, y \in \mathrm{R}$
(i) $\tanh (x+y)=\frac{\tanh x+\tanh y}{1+\tanh x \tanh y}$
(ii) $\tanh (x-y)=\frac{\tanh x-\tanh y}{1-\tanh x \tanh y}$
6. $\forall x \in \mathrm{R}$
(i) $\tanh 2 x=\frac{2 \tanh x}{1+\tanh ^{2} x}$
(ii) $\operatorname{Coth} 2 x=\frac{\operatorname{Coth}^{2} x+1}{2 \operatorname{Coth} x}$

Theorm: $\forall x \in \mathrm{R}$
$\operatorname{Sinh}^{-1} x=\log _{e}\left(x+\sqrt{x^{2}+1}\right)$
Theorm: $\forall x \in[1, \infty)$
$\operatorname{Cosh}^{-1} x=\log _{e}\left(x+\sqrt{x^{2}-1}\right)$
Theorm: $\forall x \in(-1,1)$
$\tanh ^{-1} x=\frac{1}{2} \log _{e}\left(\frac{1+x}{1-x}\right)$

PROBLEMS

1. If $\operatorname{Sinh} x=\frac{3}{4}$, then find $\operatorname{Cosh}(2 x), \operatorname{Sinh}(2 x)$

Sol: $\operatorname{Cosh}^{2} x=1+\operatorname{Sinh}^{2} x$

$$
\begin{aligned}
& =1+\left(\frac{3}{4}\right)^{2} \\
& =1+\frac{9}{16} \\
& =\frac{25}{16}
\end{aligned}
$$

$\operatorname{Cosh} x=\frac{5}{4}$
$\operatorname{Cosh} 2 x=\operatorname{Cosh}^{2} x+\operatorname{Sinh}^{2} x$

$$
\begin{aligned}
& =\left(\frac{5}{4}\right)^{2}+\left(\frac{3}{4}\right)^{2} \\
& =\frac{25}{16}+\frac{9}{16} \\
& =\frac{34}{16}=\frac{17}{8}
\end{aligned}
$$

$\operatorname{Sinh} 2 x=2 \operatorname{Sinh} x \operatorname{Cosh} x=2\left(\frac{3}{4}\right)\left(\frac{5}{4}\right)=\frac{15}{8}$
2. If $\operatorname{Sinh} x=3$, then show that $x=\log _{e}(3+\sqrt{10)}$

Sol: $\operatorname{Sinh} x=3$
$x=\operatorname{Sinh}^{-1}(3)$

$$
\begin{aligned}
& =\log _{e}\left(3+\sqrt{3^{2}+1}\right) \quad\left[\because \operatorname{Sinh}^{-1} x=\log _{e}\left(x+\sqrt{x^{2}+1}\right)\right] \\
x & =\log _{e}(3+\sqrt{10})
\end{aligned}
$$

3. $\forall n \in \mathrm{R}$
(i) $(\operatorname{Cosh} x-\operatorname{Sinh} x)^{\mathrm{n}}=\operatorname{Cosh}(\mathrm{n} x)-\operatorname{Sinh}(\mathrm{n} x)$
(ii) $(\operatorname{Cosh} x+\operatorname{Sinh} x)^{\mathrm{n}}=\operatorname{Cosh}(\mathrm{n} x)+\operatorname{Sinh}(\mathrm{n} x)$

Sol: (i) $(\operatorname{Cosh} x-\operatorname{Sinh} x)^{\mathrm{n}}=\left(\frac{e^{x}+e^{-x}}{2}-\frac{e^{x}-e^{-x}}{2}\right)^{n}$

$$
=\left(\frac{e^{x}+e^{-x}-e^{x}+e^{-x}}{2}\right)^{n}
$$

$$
\begin{aligned}
& =\left(\frac{2 e^{-x}}{2}\right)^{n} \\
& =\mathrm{e}^{-n x} \\
& =\left(\frac{e^{n x}+e^{-n x}}{2}\right)-\left(\frac{e^{n x}-e^{-n x}}{2}\right) \\
& =\operatorname{Cosh}(\mathrm{n} x)-\operatorname{Sinh}(\mathrm{n} x)
\end{aligned}
$$

（ii）$(\operatorname{Cosh} x+\operatorname{Sinh} x)^{\mathrm{n}}=\left(\frac{e^{x}+e^{-x}}{2}+\frac{e^{x}-e^{-x}}{2}\right)^{n}$

$$
=\left(\frac{e^{x}+e^{-x}+e^{x}+e^{-x}}{2}\right)^{n}
$$

$$
=\left(\frac{2 e^{x}}{2}\right)^{n}
$$

$$
=\mathrm{e}^{\mathrm{nx}}
$$

$$
=\left(\frac{e^{n x}+e^{-n x}}{2}\right)+\left(\frac{e^{n x}-e^{-n x}}{2}\right)
$$

$$
=\operatorname{Cosh}(\mathrm{n} x)+\operatorname{Sinh}(\mathrm{n} x)
$$

4．If $\forall x \in \mathrm{R}$ ，prove that $\operatorname{Cosh}^{4} x-\operatorname{Sinh}^{4} x=\operatorname{Cosh}(2 x)$ ．
Sol： $\operatorname{Cosh}^{4} x-\operatorname{Sinh}^{4} x=\left(\operatorname{Cosh}^{2} x+\operatorname{Sinh}^{2} x\right)\left(\operatorname{Cosh}^{2} x-\operatorname{Sinh}^{2} x\right)$

$$
=\operatorname{Cosh}(2 x)(1)
$$

$$
=\operatorname{Cosh}(2 x)
$$

5．Show that $\operatorname{Tanh}^{-1}\left(\frac{1}{2}\right)=\frac{1}{2} \log _{e} 3$ ．
Sol：$\quad \operatorname{Tanh}^{-1} x=\frac{1}{2} \log _{e}\left(\frac{1+x}{1-x}\right)$

$$
\begin{aligned}
\operatorname{Tanh}^{-1}\left(\frac{1}{2}\right) & =\frac{1}{2} \log _{e}\left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right) \\
& =\frac{1}{2} \log _{e}\left(\frac{3 / 2}{1 / 2}\right) \\
& =\frac{1}{2} \log _{e} 3
\end{aligned}
$$

Unit
 10

PROPERTIES OF TRIANGLES

Important Points - Formulas

1. In $\triangle \mathrm{ABC}, \mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}, \mathrm{AB}=\mathrm{c}$
$\mathrm{a}+\mathrm{b}+\mathrm{c}=2 \mathrm{~S} \Rightarrow \mathrm{~S}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$
2. Sine Rule: In $\triangle \mathrm{ABC}$

$\frac{a}{\operatorname{Sin} \mathrm{~A}}=\frac{\mathrm{b}}{\operatorname{Sin} \mathrm{B}}=\frac{\mathrm{c}}{\operatorname{Sin} \mathrm{C}}=2 \mathrm{R}$
R - circumradius of $\triangle \mathrm{ABC}$.
3. Cosine Rule: $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \operatorname{Cos} \mathrm{A}$
$\mathrm{b}^{2}=\mathrm{c}^{2}+\mathrm{a}^{2}-2 \mathrm{ca} \operatorname{Cos} \mathrm{B}$
$\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab} \operatorname{Cos} \mathrm{C}$
$\operatorname{Cos} \mathrm{A}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}} ; \operatorname{Cos} \mathrm{B}=\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ca}} ; \operatorname{Cos} \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{2 \mathrm{ab}}$
4. Projection Rule:
$\mathrm{a}=\mathrm{bCos} \mathrm{C}+\mathrm{cCos} \mathrm{B}$
$\mathrm{b}=\mathrm{cCos} \mathrm{A}+\mathrm{aCos} \mathrm{C}$
$\mathrm{c}=\mathrm{a} \operatorname{Cos} \mathrm{B}+\mathrm{b} \operatorname{Cos} \mathrm{A}$
5. Tangent or Napier's Rule:
$\tan \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)=\left(\frac{\mathrm{b}-\mathrm{c}}{\mathrm{b}+\mathrm{c}}\right) \operatorname{Cot} \frac{\mathrm{A}}{2}$
$\tan \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)=\left(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}\right) \operatorname{Cot} \frac{\mathrm{C}}{2}$
$\tan \left(\frac{\mathrm{C}-\mathrm{A}}{2}\right)=\left(\frac{\mathrm{c}-\mathrm{a}}{\mathrm{c}+\mathrm{a}}\right) \operatorname{Cot} \frac{\mathrm{B}}{2}$
6. $\quad \operatorname{Sin} \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}}} ; \operatorname{Sin} \frac{\mathrm{B}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{c})}{\mathrm{ac}}} ; \operatorname{Sin} \frac{\mathrm{C}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}{\mathrm{ab}}}$
$\operatorname{Cos} \frac{\mathrm{A}}{2}=\sqrt{\frac{\mathrm{s}(\mathrm{s}-\mathrm{a})}{\mathrm{bc}}} ; \operatorname{Cos} \frac{\mathrm{B}}{2}=\sqrt{\frac{\mathrm{s}(\mathrm{s}-\mathrm{b})}{\mathrm{ac}}} ; \operatorname{Cos} \frac{\mathrm{C}}{2}=\sqrt{\frac{\mathrm{s}(\mathrm{s}-\mathrm{c})}{\mathrm{ab}}}$
$\tan \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{s}(\mathrm{s}-\mathrm{a})}} ; \tan \frac{\mathrm{B}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{c})}{\mathrm{s}(\mathrm{s}-\mathrm{b})}} ; \tan \frac{\mathrm{C}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}{\mathrm{s}(\mathrm{s}-\mathrm{c})}}$
7. $\Delta \mathrm{ABC}$ Area $\rightarrow \Delta=\frac{1}{2} \mathrm{bcSin} \mathrm{A}=\frac{1}{2} \operatorname{caSin} \mathrm{~B}=\frac{1}{2} \mathrm{abSinC}$
$\Delta=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}=2 \mathrm{R}^{2} \operatorname{Sin} A \operatorname{Sin} B \operatorname{SinC}$.
8. $\quad \tan \frac{\mathrm{A}}{2}=\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\Delta} ; \tan \frac{\mathrm{B}}{2}=\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{c})}{\Delta} ; \tan \frac{\mathrm{C}}{2}=\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}{\Delta}$

$$
\operatorname{Cot} \frac{\mathrm{A}}{2}=\frac{\mathrm{s}(\mathrm{~s}-\mathrm{a})}{\Delta} ; \operatorname{Cot} \frac{\mathrm{B}}{2}=\frac{\mathrm{s}(\mathrm{~s}-\mathrm{b})}{\Delta} ; \operatorname{Cot} \frac{\mathrm{C}}{2}=\frac{\mathrm{s}(\mathrm{~s}-\mathrm{c})}{\Delta}
$$

9. $\mathrm{r}=\frac{\Delta}{\mathrm{s}} ; \mathrm{r}_{1}=\frac{\Delta}{\mathrm{s}-\mathrm{a}} ; \mathrm{r}_{2}=\frac{\Delta}{\mathrm{s}-\mathrm{b}} ; \mathrm{r}_{3}=\frac{\Delta}{\mathrm{s}-\mathrm{c}}$
r - radius of incircle
r_{1}, r_{2}, r_{3} - radii of excircles.
10. $r=\frac{\Delta}{s}=4 R \operatorname{Sin} \frac{A}{2} \operatorname{Sin} \frac{B}{2} \operatorname{Sin} \frac{C}{2}$
11. $\mathrm{r}_{1}=\frac{\Delta}{\mathrm{s}-\mathrm{a}}=4 \mathrm{R} \operatorname{Sin} \frac{\mathrm{A}}{2} \operatorname{Cos} \frac{\mathrm{~B}}{2} \operatorname{Cos} \frac{\mathrm{C}}{2}=\mathrm{S} \tan \frac{\mathrm{A}}{2}$
12. $\mathrm{r}_{2}=\frac{\Delta}{\mathrm{s}-\mathrm{b}}=4 \mathrm{R} \operatorname{Cos} \frac{\mathrm{A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Cos} \frac{\mathrm{C}}{2}=\mathrm{S} \tan \frac{\mathrm{B}}{2}$
13. $\mathrm{r}_{3}=\frac{\Delta}{\mathrm{s}-\mathrm{c}}=4 \mathrm{R} \operatorname{Cos} \frac{\mathrm{A}}{2} \operatorname{Cos} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}=\mathrm{S} \tan \frac{\mathrm{C}}{2}$
14. $\Delta^{2}=\mathrm{rr}_{1} \mathrm{r}_{2} \mathrm{r}_{3}$
15. $\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$

Short \& Long Answer Questions

(Note: In all problems are refer to $\triangle \mathrm{ABC}$)

1. In $\triangle A B C$, if $a=3, b=4$ and $\operatorname{Sin} A=\frac{3}{4}$ then find angle B.

Sol: From Sine Rule, $\frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B}$
$\mathrm{aSinB}=\mathrm{bSin} \mathrm{A}$
$\operatorname{Sin} \mathrm{B}=\frac{\mathrm{bSin} \mathrm{A}}{\mathrm{a}}=\frac{4\left(\frac{3}{4}\right)}{3}=1 \quad\left(\because\right.$ from assumption $\left.\mathrm{b}=4 ; \mathrm{a}=3 ; \operatorname{Sin} \mathrm{A}=\frac{3}{4}\right)$

$$
\begin{aligned}
\sin B & =1=\sin 90^{\circ} \\
\angle B & =90^{\circ}
\end{aligned}
$$

2. If $\mathrm{a}=26 \mathrm{~cm} ; \mathrm{b}=30 \mathrm{~cm}$ and $\operatorname{Cos} \mathrm{C}=\frac{63}{65}$ then find the value of c .

Sol: From Cosine rule, $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{abCosC}$

$$
\begin{aligned}
\mathrm{c}^{2}=(26)^{2}+(30)^{2}-2(26)(30)\left(\frac{63}{65}\right) \quad(\because \text { from assumption rule } \mathrm{a} & =26 \mathrm{~cm} ; \mathrm{b}=30 \mathrm{~cm}, \\
\operatorname{CosC} & \left.=\frac{63}{65}\right)
\end{aligned}
$$

$$
=676+900-1512=64
$$

$$
c^{2}=64
$$

$$
\mathrm{c}=8
$$

3. Show that $(b+c) \operatorname{Cos} A+(c+a) \operatorname{Cos} B+(a+b) \operatorname{Cos} C=a+b+c$.

Sol: \quad LHS $=(b+c) \operatorname{Cos} A+(c+a) \operatorname{Cos} B+(a+b) \operatorname{CosC}$

$$
\begin{aligned}
& =\mathrm{b} \operatorname{Cos} \mathrm{~A}+\mathrm{c} \operatorname{Cos} \mathrm{~A}+\mathrm{c} \operatorname{Cos} \mathrm{~B}+\mathrm{a} \operatorname{Cos} \mathrm{~B}+\mathrm{a} \operatorname{Cos} \mathrm{C}+\mathrm{b} \operatorname{Cos} \mathrm{C} \\
& =(\mathrm{a} \operatorname{Cos} \mathrm{~B}+\mathrm{b} \operatorname{Cos} \mathrm{~A})+(\mathrm{b} \operatorname{Cos} \mathrm{C}+\mathrm{cos} \mathrm{~B})+(\mathrm{c} \operatorname{Cos} \mathrm{~A}+\mathrm{a} \operatorname{Cos} \mathrm{C}) \\
& =\mathrm{c}+\mathrm{a}+\mathrm{b} \quad \quad(\because \text { from projection rule }) \\
& =\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{RHS} \\
& \therefore(\mathrm{~b}+\mathrm{c}) \operatorname{Cos} \mathrm{A}+(\mathrm{c}+\mathrm{a}) \operatorname{Cos} \mathrm{B}+(\mathrm{a}+\mathrm{b}) \operatorname{Cos} \mathrm{C}=\mathrm{a}+\mathrm{b}+\mathrm{c}
\end{aligned}
$$

4. Show that $\operatorname{bos}^{2} \frac{\mathrm{C}}{2}+\cos ^{2} \frac{\mathrm{~B}}{2}=\mathrm{s}$.

Sol: \quad LHS $=b \operatorname{Cos}^{2} \frac{\mathrm{C}}{2}+\mathrm{cCos}^{2} \frac{\mathrm{~B}}{2}$

$$
\begin{aligned}
& =b\left[\frac{s(s-c)}{a b}\right]+c\left[\frac{s(s-b)}{a c}\right] \\
& =\frac{s(s-c)}{a}+\frac{s(s-b)}{a}=\frac{s}{a}[s-c+s-b]=\frac{s}{a}[2 s-b-c] \\
& =\frac{s}{a}[a+b+c-b-c] \\
& =\frac{s}{a}[a]=s=\text { RHS }
\end{aligned}
$$

$\therefore \mathrm{b} \operatorname{Cos}^{2} \frac{\mathrm{C}}{2}+\mathrm{c}^{2} \operatorname{Cos}^{2} \frac{\mathrm{~B}}{2}=\mathrm{s}$.

Maths-IA

5. Show that $\frac{\mathrm{a}}{\mathrm{bc}}+\frac{\operatorname{Cos} \mathrm{A}}{\mathrm{a}}=\frac{\mathrm{b}}{\mathrm{ca}}+\frac{\operatorname{Cos} \mathrm{B}}{\mathrm{b}}=\frac{\mathrm{c}}{\mathrm{ab}}+\frac{\operatorname{Cos} \mathrm{C}}{\mathrm{c}}$.

Sol: $\quad \frac{a}{b c}+\frac{\operatorname{Cos} A}{a}=\frac{a}{b c}+\frac{\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)}{a} \quad\left(\because\right.$ from Cosine rule, $\left.\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)$
$=\frac{a}{b c}+\frac{b^{2}+c^{2}-a^{2}}{2 a b c}=\frac{2 a^{2}+b^{2}+c^{2}-a^{2}}{2 a b c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$
Similarly, $\quad \frac{b}{c a}+\frac{\operatorname{Cos} B}{b}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$

$$
\frac{c}{a b}+\frac{\operatorname{Cos} C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}
$$

$\therefore \frac{\mathrm{a}}{\mathrm{bc}}+\frac{\operatorname{Cos} \mathrm{A}}{\mathrm{a}}=\frac{\mathrm{b}}{\mathrm{ca}}+\frac{\operatorname{Cos} \mathrm{B}}{\mathrm{b}}=\frac{\mathrm{c}}{\mathrm{ab}}+\frac{\operatorname{Cos} \mathrm{C}}{\mathrm{c}}$
6. Show that $\frac{\operatorname{Cos} \mathrm{A}}{\mathrm{a}}+\frac{\operatorname{Cos} \mathrm{B}}{\mathrm{b}}+\frac{\operatorname{Cos} \mathrm{C}}{\mathrm{c}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{2 \mathrm{abc}}$.

Sol: \quad LHS $=\frac{\operatorname{Cos} \mathrm{A}}{\mathrm{a}}+\frac{\operatorname{Cos} \mathrm{B}}{\mathrm{b}}+\frac{\operatorname{Cos} \mathrm{C}}{\mathrm{c}}$

$$
\begin{aligned}
& =\frac{\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)}{a}+\frac{\left(\frac{c^{2}+a^{2}-b^{2}}{2 c a}\right)}{b}+\frac{\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)}{c} \quad(\because \text { from Cosine rule }) \\
& =\frac{b^{2}+c^{2}-a^{2}}{2 a b c}+\frac{c^{2}+a^{2}-b^{2}}{2 a b c}+\frac{a^{2}+b^{2}-c^{2}}{2 a b c} \\
& =\frac{b^{2}+c^{2}-a^{2}+c^{2}-b^{2}+a^{2}+a^{2}+b^{2}-c^{2}}{2 a b c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}=\text { RHS } \\
& \therefore \frac{\operatorname{Cos} A}{a}+\frac{\operatorname{Cos} B}{b}+\frac{\operatorname{Cos} C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}
\end{aligned}
$$

7. Write the value of $a \operatorname{Sin}^{2} \frac{C}{2}+c \operatorname{Sin}^{2} \frac{\mathrm{~A}}{2}$ in terms of $\mathrm{s}, \mathrm{a}, \mathrm{b}, \mathrm{c}$.

Sol: $\quad \operatorname{aSin}^{2} \frac{\mathrm{C}}{2}+\operatorname{cSin}^{2} \frac{\mathrm{~A}}{2}=\mathrm{a}\left[\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}{\mathrm{ab}}\right]+\mathrm{c}\left[\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}}\right]$

$$
=\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}{\mathrm{b}}+\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{b}}
$$

$$
\begin{aligned}
& =\frac{\mathrm{s}-\mathrm{b}}{\mathrm{~b}}[\mathrm{~s}-\mathrm{a}+\mathrm{s}-\mathrm{c}]=\frac{\mathrm{s}-\mathrm{b}}{\mathrm{~b}}[2 \mathrm{~s}-\mathrm{a}-\mathrm{c}]=\frac{\mathrm{s}-\mathrm{b}}{\mathrm{~b}}[\mathrm{a}+\mathrm{b}+\mathrm{c}-\mathrm{a}-\mathrm{c}] \\
& =\frac{\mathrm{s}-\mathrm{b}}{\mathrm{~b}}[\mathrm{~b}]=\mathrm{s}-\mathrm{b} \\
& \therefore \operatorname{aSin}^{2} \frac{\mathrm{C}}{2}+\operatorname{cSin}^{2} \frac{\mathrm{~A}}{2}=\mathrm{s}-\mathrm{b}
\end{aligned}
$$

8. Prove that $\operatorname{Cot} \frac{\mathrm{A}}{2}+\operatorname{Cot} \frac{\mathrm{B}}{2}+\operatorname{Cot} \frac{\mathrm{C}}{2}=\frac{\mathrm{s}^{2}}{\Delta}$.

Sol: \quad LHS $=\operatorname{Cot} \frac{A}{2}+\operatorname{Cot} \frac{B}{2}+\operatorname{Cot} \frac{C}{2}$

$$
\begin{aligned}
& =\frac{\mathrm{s}(\mathrm{~s}-\mathrm{a})}{\Delta}+\frac{\mathrm{s}(\mathrm{~s}-\mathrm{b})}{\Delta}+\frac{\mathrm{s}(\mathrm{~s}-\mathrm{c})}{\Delta}=\frac{\mathrm{s}}{\Delta}[\mathrm{~s}-\mathrm{a}+\mathrm{s}-\mathrm{b}+\mathrm{s}-\mathrm{c}] \\
& =\frac{\mathrm{s}}{\Delta}[3 \mathrm{~s}-(\mathrm{a}+\mathrm{b}+\mathrm{c})]=\frac{\mathrm{s}}{\Delta}[3 \mathrm{~s}-2 \mathrm{~s}] \\
& =\frac{\mathrm{s}}{\Delta} \cdot[\mathrm{~s}]=\frac{\mathrm{s}^{2}}{\Delta}=\text { RHS } \\
& \therefore \operatorname{Cot} \frac{\mathrm{A}}{2}+\operatorname{Cot} \frac{\mathrm{B}}{2}+\operatorname{Cot} \frac{\mathrm{C}}{2}=\frac{\mathrm{s}^{2}}{\Delta}
\end{aligned}
$$

9. Prove that, $\tan \frac{\mathrm{A}}{2}+\tan \frac{\mathrm{B}}{2}+\tan \frac{\mathrm{C}}{2}=\frac{\mathrm{bc}+\mathrm{ca}+\mathrm{ab}-\mathrm{s}^{2}}{\Delta}$.

Sol: \quad LHS $=\tan \frac{\mathrm{A}}{2}+\tan \frac{\mathrm{B}}{2}+\tan \frac{\mathrm{C}}{2}=\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\Delta}+\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{c})}{\Delta}+\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}{\Delta}$

$$
\begin{aligned}
& =\frac{s^{2}-s(b+c)+b c+s^{2}-s(a+c)+a c+s^{2}-s(a+b)+a b}{\Delta} \\
& =\frac{3 s^{2}-2 s(a+b+c)+a b+b c+c a}{\Delta}=\frac{a b+b c+c a-s^{2}}{\Delta}=\text { RHS }
\end{aligned}
$$

$$
\therefore \tan \frac{\mathrm{A}}{2}+\tan \frac{\mathrm{B}}{2}+\tan \frac{\mathrm{C}}{2}=\frac{\mathrm{bc}+\mathrm{ca}+\mathrm{ab}-\mathrm{s}^{2}}{\Delta}
$$

10. If $\sin \theta=\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}$, show that $\operatorname{Cos} \theta=\frac{2 \sqrt{\mathrm{bc}}}{\mathrm{b}+\mathrm{c}} \operatorname{Cos} \frac{\mathrm{A}}{2}$.

Sol: Given $\operatorname{Sin} \theta=\frac{a}{b+c}$
$\operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta=1$

$$
\begin{aligned}
& \operatorname{Cos}^{2} \theta=1-\operatorname{Sin}^{2} \theta=1-\left(\frac{a}{b+c}\right)^{2} \quad[\because \text { from (1)] } \\
& =1-\frac{a^{2}}{(b+c)^{2}}=\frac{(b+c)^{2}-a^{2}}{(b+c)^{2}}=\frac{(b+c+a)(b+c-a)}{(b+c)^{2}} \\
& =\frac{2 s(2 s-a-a)}{(b+c)^{2}}=\frac{2 s \cdot 2(s-a)}{b c} \cdot \frac{b c}{(b+c)^{2}} \\
& \operatorname{Cos}^{2} \theta=\frac{4 s(s-a)}{b c} \cdot \frac{b c}{(b+c)^{2}}=4 \operatorname{Cos}^{2} \frac{A}{2} \cdot \frac{b c}{(b+c)^{2}}=\frac{4 b c}{(b+c)^{2}} \cdot \operatorname{Cos}^{2} \frac{A}{2} \\
& \therefore \operatorname{Cos} \theta=\frac{2 \sqrt{b c}}{b+c} \operatorname{Cos} \frac{A}{2}
\end{aligned}
$$

11. If $\mathrm{a}=(\mathrm{b}+\mathrm{c}) \operatorname{Cos} \theta$, show that $\operatorname{Sin} \theta=\frac{2 \sqrt{\mathrm{bc}}}{\mathrm{b}+\mathrm{c}} \operatorname{Cos} \frac{\mathrm{A}}{2}$.

Sol: Given, $\mathrm{a}=(\mathrm{b}+\mathrm{c}) \operatorname{Cos} \theta \Rightarrow \operatorname{Cos} \theta=\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}$
$\operatorname{Sin}^{2} \theta+\operatorname{Cos}^{2} \theta=1$
$\operatorname{Sin}^{2} \theta=1-\operatorname{Cos}^{2} \theta=1-\left(\frac{a}{b+c}\right)^{2}=1-\frac{a^{2}}{(b+c)^{2}}=\frac{(b+c)^{2}-a^{2}}{(b+c)^{2}}$
$=\frac{(\mathrm{b}+\mathrm{c}+\mathrm{a})(\mathrm{b}+\mathrm{c}-\mathrm{a})}{(\mathrm{b}+\mathrm{c})^{2}}=\frac{(2 \mathrm{~s})(2 \mathrm{~s}-\mathrm{a}-\mathrm{a})}{(\mathrm{b}+\mathrm{c})^{2}}=\frac{(2 \mathrm{~s}) 2(\mathrm{~s}-\mathrm{a})}{(\mathrm{b}+\mathrm{c})^{2}}$
$=4 \cdot \frac{\mathrm{~s}(\mathrm{~s}-\mathrm{a})}{\mathrm{bc}} \cdot \frac{\mathrm{bc}}{(\mathrm{b}+\mathrm{c})^{2}}=4 \cdot \operatorname{Cos}^{2} \frac{\mathrm{~A}}{2} \cdot \frac{\mathrm{bc}}{(\mathrm{b}+\mathrm{c})^{2}}$
$\operatorname{Sin}^{2} \theta=4 \frac{b c}{(b+c)^{2}} . \operatorname{Cos}^{2} \frac{A}{2}$
$\therefore \operatorname{Sin} \theta=\frac{2 \sqrt{b c}}{b+c} \operatorname{Cos} \frac{A}{2}$
12. If $\mathrm{a}=(\mathrm{b}-\mathrm{c}) \operatorname{Sec} \theta$, show that $\tan \theta=\frac{2 \sqrt{\mathrm{bc}}}{\mathrm{b}-\mathrm{c}} \operatorname{Sin} \frac{\mathrm{A}}{2}$.

Sol: $\quad a=(b-c) \operatorname{Sec} \theta \Rightarrow \operatorname{Sec} \theta=\frac{a}{b-c}$
$\tan ^{2} \theta=\operatorname{Sec}^{2} \theta-1=\left(\frac{a}{b-c}\right)^{2}-1$

$$
\begin{aligned}
\tan ^{2} \theta & =\frac{a^{2}-(b-c)^{2}}{(b-c)^{2}}=\frac{(a+b-c)(a-b+c)}{(b-c)^{2}} \\
& =\frac{2(s-c) \cdot 2(s-b)}{(b-c)^{2}}=\frac{4(s-c)(s-b)}{b c} \cdot \frac{b c}{(b-c)^{2}} \\
\tan ^{2} \theta & =4 \frac{b c}{(b-c)^{2}} \operatorname{Sin}^{2} \frac{A}{2} \\
\therefore \tan \theta & =\frac{2 \sqrt{b c}}{b-c} \operatorname{Sin} \frac{A}{2}
\end{aligned}
$$

13. Prove that $\operatorname{Cot} \mathrm{A}+\operatorname{Cot} \mathrm{B}+\operatorname{Cot} \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{4 \Delta}$.

Sol: $\quad \operatorname{Cot} \mathrm{A}+\operatorname{Cot} \mathrm{B}+\operatorname{Cot} \mathrm{C}=\sum \operatorname{Cot} \mathrm{A}=\sum \frac{\operatorname{Cos} \mathrm{A}}{\operatorname{Sin} \mathrm{A}}$

$$
\begin{aligned}
& =\sum\left(\frac{\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)}{\operatorname{Sin} A}\right)=\sum\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c \operatorname{Sin} A}\right) \\
& =\sum \frac{b^{2}+c^{2}-a^{2}}{4 \Delta} \quad\left[\because \Delta=\frac{1}{2} b c \operatorname{SinA}\right] \\
& =\frac{b^{2}+c^{2}-a^{2}}{4 \Delta}+\frac{c^{2}+a^{2}-b^{2}}{4 \Delta}+\frac{a^{2}+b^{2}-c^{2}}{4 \Delta} \\
& =\frac{b^{2}+c^{2}-a^{2}+c^{2}+a^{2}-b^{2}+a^{2}+b^{2}-c^{2}}{4 \Delta}=\frac{a^{2}+b^{2}+c^{2}}{4 \Delta}=\text { RHS } \\
& \therefore \operatorname{Cot} A+\operatorname{CotB}+\operatorname{Cot} C=\frac{a^{2}+b^{2}+c^{2}}{4 \Delta}
\end{aligned}
$$

14. In $\triangle \mathrm{ABC}$, if $\frac{1}{\mathrm{a}+\mathrm{c}}+\frac{1}{\mathrm{~b}+\mathrm{c}}=\frac{3}{\mathrm{a}+\mathrm{b}+\mathrm{c}}$, then show that $\angle \mathrm{C}=60^{\circ}$.

Sol: $\quad \frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$

$$
\begin{aligned}
& \frac{b+c+a+c}{(a+c)(b+c)}=\frac{3}{a+b+c} \\
& (a+b+2 c)(a+b+c)=3(a+c)(b+c) \\
& a^{2}+a b+a c+b a+b^{2}+b c+2 a c+2 b c+2 c^{2}=3\left[a b+a c+b c+c^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}=\mathrm{ab} \\
& 2 \mathrm{abCos} C=\mathrm{ab} \\
& 2 \operatorname{Cos} C=1 \\
& \operatorname{Cos} \mathrm{C}=\frac{1}{2}=\operatorname{Cos} 60^{\circ} \\
& \therefore \angle \mathrm{C}=60^{\circ}
\end{aligned}
$$

15. In $\triangle \mathrm{ABC}$, if $\mathrm{aCos} \mathrm{A}=\mathrm{b} \cos \mathrm{B}$, then show that triangle is either isosceles or right angle triangle.
Sol: $\quad \mathrm{aCos} \mathrm{A}=\mathrm{b} \operatorname{Cos} \mathrm{B}$
$2 \mathrm{RSin} \mathrm{ACos} \mathrm{A}=2 \mathrm{RSin} \mathrm{BCos} \mathrm{B} \quad(\because$ From Sine rule $)$
$\operatorname{Sin} 2 \mathrm{~A}=\operatorname{Sin} 2 \mathrm{~B}=\operatorname{Sin}(180-2 \mathrm{~B})$
$2 \mathrm{~A}=2 \mathrm{~B}$ (or) $2 \mathrm{~A}=180-2 \mathrm{~B}$
$\mathrm{A}=\mathrm{B}$ (or) $\mathrm{A}=90-\mathrm{B}$
$\mathrm{A}=\mathrm{B}\left(\right.$ or) $\mathrm{A}+\mathrm{B}=90^{\circ}$
$\Rightarrow \mathrm{a}=\mathrm{b}$ (or) $\angle \mathrm{C}=90^{\circ}$
$\therefore \quad \triangle \mathrm{ABC}$ is isosceles or right angle triangle.
16. If $\mathrm{a}: \mathrm{b}: \mathrm{c}=7: 8: 9$ then find $\cos \mathrm{A}: \operatorname{Cos} \mathrm{B}: \operatorname{Cos} \mathrm{C}$.

Sol: $\quad \mathrm{a}: \mathrm{b}: \mathrm{c}=7: 8: 9$
$\frac{\mathrm{a}}{7}=\frac{\mathrm{b}}{8}=\frac{\mathrm{c}}{9}=\mathrm{k}$
$\mathrm{a}=7 \mathrm{k} ; \mathrm{b}=8 \mathrm{k} ; \mathrm{c}=9 \mathrm{k}$
$\operatorname{Cos} \mathrm{A}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}=\frac{64 \mathrm{k}^{2}+81 \mathrm{k}^{2}-49 \mathrm{k}^{2}}{2(8 \mathrm{k})(9 \mathrm{k})}=\frac{96 \mathrm{k}^{2}}{144 \mathrm{k}^{2}}=\frac{2}{3}$
$\operatorname{CosB}=\frac{\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}{2 \mathrm{ac}}=\frac{49 \mathrm{k}^{2}+81 \mathrm{k}^{2}-64 \mathrm{k}^{2}}{2(7 \mathrm{k})(9 \mathrm{k})}=\frac{66 \mathrm{k}^{2}}{126 \mathrm{k}^{2}}=\frac{11}{21}$
$\operatorname{Cos} \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{2 \mathrm{ab}}=\frac{49 \mathrm{k}^{2}+64 \mathrm{k}^{2}-81 \mathrm{k}^{2}}{2(7 \mathrm{k})(8 \mathrm{k})}=\frac{32 \mathrm{k}^{2}}{112 \mathrm{k}^{2}}=\frac{2}{7}$
$\therefore \cos \mathrm{A}: \cos \mathrm{B}: \cos \mathrm{C}=\frac{2}{3}: \frac{11}{21}: \frac{2}{7}=\left(\frac{2 \times 7}{3 \times 7}\right): \frac{11}{21}:\left(\frac{2 \times 3}{7 \times 3}\right)$
$\operatorname{Cos} \mathrm{A}: \cos \mathrm{B}: \operatorname{Cos} \mathrm{C}=14: 11: 6$
17. In $\triangle \mathrm{ABC}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ are altitudes, then show that $\frac{1}{\mathrm{P}_{1}{ }^{2}}+\frac{1}{\mathrm{P}_{2}{ }^{2}}+\frac{1}{\mathrm{P}_{3}{ }^{2}}=\frac{\operatorname{Cot} \mathrm{A}+\operatorname{CotB}+\operatorname{CotC}}{\Delta}$.

Sol: In $\triangle \mathrm{ABC}, \mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ are altitudes.
Let $\mathrm{AD}=\mathrm{P}_{1}, \mathrm{BE}=\mathrm{P}_{2}, \mathrm{CF}=\mathrm{P}_{3}$
$\Delta=\frac{1}{2} \mathrm{BC} \times \mathrm{AD}=\frac{1}{2} \mathrm{CA} \times \mathrm{BE}=\frac{1}{2} \mathrm{AB} \times \mathrm{CF}$
$\Delta=\frac{1}{2} a \cdot P_{1}=\frac{1}{2} b \cdot P_{2}=\frac{1}{2} c \cdot P_{3}$
$\therefore \quad \mathrm{P}_{1}=\frac{2 \Delta}{\mathrm{a}} ; \mathrm{P}_{2}=\frac{2 \Delta}{\mathrm{~b}} ; \mathrm{P}_{3}=\frac{2 \Delta}{\mathrm{c}}$

$\frac{1}{\mathrm{P}_{1}{ }^{2}}+\frac{1}{\mathrm{P}_{2}{ }^{2}}+\frac{1}{\mathrm{P}_{3}{ }^{2}}=\frac{\mathrm{a}^{2}}{4 \Delta^{2}}+\frac{\mathrm{b}^{2}}{4 \Delta^{2}}+\frac{\mathrm{c}^{2}}{4 \Delta^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{4 \Delta^{2}}$
$=\frac{1}{\Delta}\left(\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{4 \Delta}\right)=\frac{1}{\Delta}(\operatorname{Cot} \mathrm{~A}+\operatorname{Cot} \mathrm{B}+\operatorname{Cot} \mathrm{C}) \quad(\because$ From problem 13 $)$
$\therefore \frac{1}{\mathrm{P}_{1}{ }^{2}}+\frac{1}{\mathrm{P}_{2}{ }^{2}}+\frac{1}{\mathrm{P}_{3}{ }^{2}}=\frac{\operatorname{Cot} \mathrm{A}+\operatorname{Cot} \mathrm{B}+\operatorname{Cot} \mathrm{C}}{\Delta}$
18. Show that $\sum \mathrm{aCot} \mathrm{A}=2(\mathrm{R}+\mathrm{r})$.

Sol: \quad LHS $=\sum \mathrm{aCot} \mathrm{A}=\sum 2 \mathrm{RSin} \mathrm{A} \frac{\operatorname{Cos} \mathrm{A}}{\operatorname{Sin} \mathrm{A}}=\sum 2 \mathrm{R} \operatorname{Cos} \mathrm{A}$
$=2 \mathrm{R}(\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C})$
$=2 R\left(1+4 \operatorname{Sin} \frac{A}{2} \operatorname{Sin} \frac{B}{2} \operatorname{Sin} \frac{C}{2}\right)$
$\left(\because\right.$ from transformations $\left.\operatorname{Cos} \mathrm{A}+\operatorname{Cos} \mathrm{B}+\operatorname{Cos} \mathrm{C}=1+4 \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}\right)$
$=2\left[\mathrm{R}+4 \mathrm{R} \operatorname{Sin} \frac{\mathrm{A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}\right]$
$=2[\mathrm{R}+\mathrm{r}]$
$\therefore \quad \sum \mathrm{aCot} \mathrm{A}=2(\mathrm{R}+\mathrm{r})$
19. Prove that $r\left(r_{1}+r_{2}+r_{3}\right)=a b+b c+c a-s^{2}$.

Sol: \quad LHS $=r\left(\mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{r}_{3}\right)=\frac{\Delta}{\mathrm{s}}\left(\frac{\Delta}{\mathrm{s}-\mathrm{a}}+\frac{\Delta}{\mathrm{s}-\mathrm{b}}+\frac{\Delta}{\mathrm{s}-\mathrm{c}}\right)$
$=\frac{\Delta^{2}}{\mathrm{~s}}\left(\frac{(\mathrm{~s}-\mathrm{b})(\mathrm{s}-\mathrm{c})+(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{c})+(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}\right)$

$$
\begin{aligned}
& =\frac{\Delta^{2}\left[s^{2}-s(b+c)+s^{2}-s(a+c)+s^{2}-s(a+b)+b c+a c+a b\right]}{\Delta^{2}} \\
& =3 s^{2}-2 s(a+b+c)+a b+b c+c a \\
& =3 s^{2}-2 s(2 s)+a b+b c+c a \\
& =a b+b c+c a-s^{2}=\text { RHS } \\
& \therefore r\left(r_{1}+r_{2}+r_{3}\right)=a b+b c+c a-s^{2}
\end{aligned}
$$

20. In $\triangle A B C$ show that $r_{1}+r_{2}+r_{3}-r=4 R$.

Sol: $\quad \mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{r}_{3}-\mathrm{r}$
$=4 R \operatorname{Sin} \frac{A}{2} \operatorname{Cos} \frac{B}{2} \operatorname{Cos} \frac{C}{2}+4 R \operatorname{Cos} \frac{A}{2} \operatorname{Sin} \frac{B}{2} \operatorname{Cos} \frac{C}{2}+4 R \operatorname{Cos} \frac{A}{2} \operatorname{Cos} \frac{B}{2} \operatorname{Sin} \frac{C}{2}$
$-4 R \operatorname{Sin} \frac{A}{2} \operatorname{Sin} \frac{B}{2} \operatorname{Sin} \frac{C}{2}$
$=4 R \operatorname{Cos} \frac{C}{2}\left[\operatorname{Sin} \frac{A}{2} \operatorname{Cos} \frac{B}{2}+\operatorname{Cos} \frac{A}{2} \operatorname{Sin} \frac{B}{2}\right]+4 R \operatorname{Sin} \frac{C}{2}\left[\operatorname{Cos} \frac{A}{2} \operatorname{Cos} \frac{B}{2}-\operatorname{Sin} \frac{A}{2} \operatorname{Sin} \frac{B}{2}\right]$
$=4 R \operatorname{Cos} \frac{C}{2} \operatorname{Sin}\left(\frac{\mathrm{~A}}{2}+\frac{\mathrm{B}}{2}\right)+4 \mathrm{R} \operatorname{Sin} \frac{\mathrm{C}}{2} \operatorname{Cos}\left(\frac{\mathrm{~A}}{2}+\frac{\mathrm{B}}{2}\right)$
$=4 \mathrm{RCos} \frac{\mathrm{C}}{2} \operatorname{Sin}\left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right)+4 \mathrm{R} \operatorname{Sin} \frac{\mathrm{C}}{2} \operatorname{Cos}\left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right)$
$=4 \mathrm{RSin}\left(\frac{\mathrm{A}+\mathrm{B}}{2}+\frac{\mathrm{C}}{2}\right)=4 \mathrm{RSin}\left(\frac{\mathrm{A}+\mathrm{B}+\mathrm{C}}{2}\right)=4 \mathrm{RSin}\left(\frac{\pi}{2}\right)$
$=4 \mathrm{R}(1)=4 \mathrm{R}=\mathrm{RHS}$
$\therefore \mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{r}_{3}-\mathrm{r}=4 \mathrm{R}$
21. In $\triangle A B C$ prove that $r+r_{1}+r_{2}-r_{3}=4 R \operatorname{Cos} C$.

Sol: \quad LHS $=r+r_{1}+r_{2}-r_{3}$
$4 R \operatorname{Sin} \frac{A}{2} \operatorname{Sin} \frac{B}{2} \operatorname{Sin} \frac{C}{2}+4 R \operatorname{Sin} \frac{A}{2} \operatorname{Cos} \frac{B}{2} \operatorname{Cos} \frac{C}{2}+4 R \operatorname{Cos} \frac{A}{2} \operatorname{Sin} \frac{B}{2} \operatorname{Cos} \frac{C}{2}$
$-4 R \operatorname{Cos} \frac{\mathrm{~A}}{2} \operatorname{Cos} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}$
$=4 R \operatorname{Sin} \frac{\mathrm{~A}}{2}\left[\operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}+\operatorname{Cos} \frac{\mathrm{B}}{2} \operatorname{Cos} \frac{\mathrm{C}}{2}\right]+4 \mathrm{RCos} \frac{\mathrm{A}}{2}\left[\operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Cos} \frac{\mathrm{C}}{2}-\operatorname{Cos} \frac{\mathrm{B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}\right]$
$=4 R \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Cos}\left(\frac{\mathrm{~B}}{2}-\frac{\mathrm{C}}{2}\right)+4 \mathrm{RCos} \frac{\mathrm{A}}{2} \operatorname{Sin}\left(\frac{\mathrm{~B}}{2}-\frac{\mathrm{C}}{2}\right)$

$$
\begin{aligned}
& =4 R\left[\operatorname{Sin} \frac{A}{2} \operatorname{Cos}\left(\frac{B-C}{2}\right)+\operatorname{Cos} \frac{A}{2} \operatorname{Sin}\left(\frac{B-C}{2}\right)\right] \\
& =4 R \cdot \operatorname{Sin}\left(\frac{A}{2}+\frac{B-C}{2}\right)=4 R \operatorname{Sin}\left(\frac{A+B-C}{2}\right) \\
& =4 R \operatorname{Sin}\left(\frac{\pi-C-C}{2}\right)=4 R \operatorname{Sin}\left(\frac{\pi}{2}-C\right) \\
& =4 R \operatorname{Cos} C=R H S \\
& \therefore r+r_{1}+r_{2}-r_{3}=4 R \operatorname{Cos} C
\end{aligned}
$$

22. Prove that $\left(\frac{1}{r}-\frac{1}{r_{1}}\right)\left(\frac{1}{r}-\frac{1}{r_{2}}\right)\left(\frac{1}{r}-\frac{1}{r_{3}}\right)=\frac{\mathrm{abc}}{\Delta^{3}}=\frac{4 \mathrm{R}}{\mathrm{r}^{2} \mathrm{~s}^{2}}$.

Sol: $\quad\left(\frac{1}{r}-\frac{1}{r_{1}}\right)\left(\frac{1}{r}-\frac{1}{r_{2}}\right)\left(\frac{1}{r}-\frac{1}{r_{3}}\right)$

$$
\begin{aligned}
& =\left(\frac{\mathrm{s}}{\Delta}-\frac{\mathrm{s}-\mathrm{a}}{\Delta}\right)\left(\frac{\mathrm{s}}{\Delta}-\frac{\mathrm{s}-\mathrm{b}}{\Delta}\right)\left(\frac{\mathrm{s}}{\Delta}-\frac{\mathrm{s}-\mathrm{c}}{\Delta}\right)=\left(\frac{\mathrm{s}-\mathrm{s}+\mathrm{a}}{\Delta}\right)\left(\frac{\mathrm{s}-\mathrm{s}+\mathrm{b}}{\Delta}\right)\left(\frac{\mathrm{s}-\mathrm{s}+\mathrm{c}}{\Delta}\right) \\
& =\left(\frac{\mathrm{a}}{\Delta}\right)\left(\frac{\mathrm{b}}{\Delta}\right)\left(\frac{\mathrm{c}}{\Delta}\right)=\frac{\mathrm{abc}}{\Delta^{3}}=\frac{4 \mathrm{R} \Delta}{\Delta^{3}}=\frac{4 \mathrm{R}}{\Delta^{2}} \quad\left[\because \Delta=\frac{\mathrm{abc}}{4 \mathrm{R}}, \mathrm{abc}=4 \mathrm{R} \Delta\right] \\
& =\frac{4 \mathrm{R}}{(\mathrm{rs})^{2}}=\frac{4 \mathrm{R}}{\mathrm{r}^{2} \mathrm{~s}^{2}} \\
& \left(\frac{1}{r}-\frac{1}{r_{1}}\right)\left(\frac{1}{r}-\frac{1}{r_{2}}\right)\left(\frac{1}{r}-\frac{1}{r_{3}}\right)=\frac{\mathrm{abc}}{\Delta^{3}}=\frac{4 \mathrm{R}}{\mathrm{r}^{2} \mathrm{~s}^{2}}
\end{aligned}
$$

23. Show that $\sum \frac{\mathrm{r}_{1}}{(\mathrm{~s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}=\frac{3}{\mathrm{r}}$.

Sol: \quad LHS $=\sum \frac{r_{1}}{(s-b)(s-c)}=\sum \frac{\Delta}{(s-a)(s-b)(s-c)} \quad\left[\because r_{1}=\frac{\Delta}{s-a}\right]$

$$
\begin{aligned}
& \sum \frac{\Delta}{\left(\frac{\Delta^{2}}{\mathrm{~s}}\right)} \quad\left[\because \Delta^{2}=\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})\right] \\
= & \sum \frac{\mathrm{s} \Delta}{\Delta^{2}}=\sum \frac{\mathrm{s}}{\Delta}=\frac{\mathrm{s}}{\Delta}+\frac{\mathrm{s}}{\Delta}+\frac{\mathrm{s}}{\Delta}=\frac{3 \mathrm{~s}}{\Delta} \\
= & 3\left(\frac{\mathrm{~s}}{\Delta}\right)=3\left(\frac{1}{r}\right)=\frac{3}{r}=\text { RHS } \\
\therefore & \sum \frac{\mathrm{r}_{1}}{(\mathrm{~s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}=\frac{3}{\mathrm{r}}
\end{aligned}
$$

24. Show that $\operatorname{Cos} \mathrm{A}+\operatorname{Cos} \mathrm{B}+\operatorname{Cos} \mathrm{C}=1+\frac{\mathrm{r}}{\mathrm{R}}$.

Sol: \quad HHS $=\operatorname{Cos} \mathrm{A}+\operatorname{Cos} \mathrm{B}+\operatorname{Cos} \mathrm{C}=2 \operatorname{Cos}\left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \operatorname{Cos}\left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)+\operatorname{Cos} \mathrm{C}$

$$
\begin{aligned}
& =2 \operatorname{Sin} \frac{\mathrm{C}}{2} \operatorname{Cos}\left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right)+1-2 \operatorname{Sin}^{2} \frac{\mathrm{C}}{2} \quad\left(\because \frac{\mathrm{~A}+\mathrm{B}}{2}=90-\frac{\mathrm{C}}{2}, \operatorname{Cos}\left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right)=\sin \frac{\mathrm{C}}{2}\right) \\
& =1+2 \operatorname{Sin} \frac{\mathrm{C}}{2}\left[\operatorname{Cos}\left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right)-\operatorname{Sin} \frac{\mathrm{C}}{2}\right] \\
& =1+2 \operatorname{Sin} \frac{\mathrm{C}}{2}\left[\operatorname{Cos}\left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right)-\operatorname{Cos}\left(\frac{\mathrm{A}+\mathrm{B}}{2}\right)\right] \\
& =1+2 \operatorname{Sin} \frac{\mathrm{C}}{2}\left[2 \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2}\right] \\
& =1+4 \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2} \\
& =1+\frac{4 R \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}}{\mathrm{R}}=1+\frac{r}{\mathrm{R}}=\mathrm{RHS} \\
& \therefore \operatorname{Cos} \mathrm{~A}+\operatorname{Cos} \mathrm{B}+\operatorname{Cos} \mathrm{C}=1+\frac{\mathrm{r}}{\mathrm{R}}
\end{aligned}
$$

25. Show that $\operatorname{Cos}^{2} \frac{\mathrm{~A}}{2}+\operatorname{Cos}^{2} \frac{\mathrm{~B}}{2}+\operatorname{Cos}^{2} \frac{\mathrm{C}}{2}=2+\frac{r}{2 \mathrm{R}}$.

Sol: $\quad \operatorname{Cos}^{2} \frac{\mathrm{~A}}{2}+\operatorname{Cos}^{2} \frac{\mathrm{~B}}{2}+\operatorname{Cos}^{2} \frac{\mathrm{C}}{2}=\operatorname{Cos}^{2} \frac{\mathrm{~A}}{2}+1-\operatorname{Sin}^{2} \frac{\mathrm{~B}}{2}+\operatorname{Cos}^{2} \frac{\mathrm{C}}{2}$

$$
\begin{aligned}
& =1+\left(\cos ^{2} \frac{\mathrm{~A}}{2}-\sin ^{2} \frac{\mathrm{~B}}{2}\right)+\operatorname{Cos}^{2} \frac{\mathrm{C}}{2}=1+\operatorname{Cos}\left(\frac{\mathrm{A}+\mathrm{B}}{2}\right) \operatorname{Cos}\left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)+\operatorname{Cos}^{2} \frac{\mathrm{C}}{2} \\
& =1+\sin \frac{\mathrm{C}}{2} \operatorname{Cos}\left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right)+1-\operatorname{Sin}^{2} \frac{\mathrm{C}}{2} \quad\left[\begin{array}{l}
\because \frac{\mathrm{A}+\mathrm{B}}{2}=90-\frac{\mathrm{C}}{2} \\
\left.\operatorname{Cos}\left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right)=\operatorname{Sin} \frac{\mathrm{C}}{2}\right] \\
=2+\sin \frac{\mathrm{C}}{2}\left[\operatorname{Cos}\left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right)-\sin \frac{\mathrm{C}}{2}\right] \\
=2+\sin \frac{\mathrm{C}}{2}\left[\cos \left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right)-\operatorname{Cos}\left(\frac{\mathrm{A}+\mathrm{B}}{2}\right)\right]
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =2+\operatorname{Sin} \frac{\mathrm{C}}{2}\left[2 \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2}\right]=2+2 \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2} \\
& =2+\frac{(2 \mathrm{R}) \cdot 2 \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}}{2 \mathrm{R}}=2+\frac{4 \mathrm{R} \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}}{2 \mathrm{R}} \\
& =2+\frac{r}{2 R}=\mathrm{RHS} \\
& \therefore \operatorname{Cos}^{2} \frac{\mathrm{~A}}{2}+\operatorname{Cos}^{2} \frac{\mathrm{~B}}{2}+\operatorname{Cos}^{2} \frac{\mathrm{C}}{2}=2+\frac{r}{2 R}
\end{aligned}
$$

26. In $\triangle A B C, P_{1}, P_{2}, P_{3}$ are the altitudes drawn from the vertices A, B, C to the opposite sides respectively, then show that
(i) $\frac{1}{\mathrm{P}_{1}}+\frac{1}{\mathrm{P}_{2}}+\frac{1}{\mathrm{P}_{3}}=\frac{1}{\mathrm{r}}$
(ii) $\frac{1}{\mathrm{P}_{1}}+\frac{1}{\mathrm{P}_{2}}-\frac{1}{\mathrm{P}_{3}}=\frac{1}{\mathrm{r}_{3}}$
(iii) $P_{1} P_{2} P_{3}=\frac{(a b c)^{2}}{8 R^{3}}=\frac{8 \Delta^{3}}{a b c}$

Sol: In $\triangle \mathrm{ABC}$
$\mathrm{AD}=\mathrm{P}_{1}, \mathrm{BE}=\mathrm{P}_{2}, \mathrm{CF}=\mathrm{P}_{3}$ are altitudes.

$$
\begin{aligned}
& \Delta=\frac{1}{2} \mathrm{a} \cdot \mathrm{P}_{1}=\frac{1}{2} \mathrm{~b} \cdot \mathrm{P}_{2}=\frac{1}{2} \mathrm{c} \cdot \mathrm{P}_{3} \\
& 2 \Delta=\mathrm{aP}_{1}, 2 \Delta=\mathrm{bP}_{2} ; 2 \Delta=\mathrm{cP}_{3} \\
& \mathrm{P}_{1}=\frac{2 \Delta}{\mathrm{a}} ; \mathrm{P}_{2}=\frac{2 \Delta}{\mathrm{~b}} ; \mathrm{P}_{3}=\frac{2 \Delta}{\mathrm{c}}
\end{aligned}
$$

a
(i) $\frac{1}{\mathrm{P}_{1}}+\frac{1}{\mathrm{P}_{2}}+\frac{1}{\mathrm{P}_{3}}=\frac{\mathrm{a}}{2 \Delta}+\frac{\mathrm{b}}{2 \Delta}+\frac{\mathrm{c}}{2 \Delta}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2 \Delta}=\frac{2 \mathrm{~s}}{2 \Delta}=\frac{\mathrm{s}}{\Delta}=\frac{1}{\mathrm{r}}$
(ii) $\frac{1}{\mathrm{P}_{1}}+\frac{1}{\mathrm{P}_{2}}-\frac{1}{\mathrm{P}_{3}}=\frac{\mathrm{a}}{2 \Delta}+\frac{\mathrm{b}}{2 \Delta}-\frac{\mathrm{c}}{2 \Delta}=\frac{\mathrm{a}+\mathrm{b}-\mathrm{c}}{2 \Delta}=\frac{2 \mathrm{~s}-\mathrm{c}-\mathrm{c}}{2 \Delta}=\frac{2(\mathrm{~s}-\mathrm{c})}{2 \Delta}=\frac{\mathrm{s}-\mathrm{c}}{\Delta}=\frac{1}{\mathrm{r}_{3}}$
(iii) $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}=\frac{2 \Delta}{\mathrm{a}} \times \frac{2 \Delta}{\mathrm{~b}} \times \frac{2 \Delta}{\mathrm{c}}=\frac{8 \Delta^{3}}{\mathrm{abc}}$

$$
\begin{aligned}
& =\frac{8\left(\frac{\mathrm{abc}}{4 \mathrm{R}}\right)^{3}}{\mathrm{abc}}=\frac{8(\mathrm{abc})^{3}}{\left(64 \mathrm{R}^{3}\right) \mathrm{abc}}=\frac{(\mathrm{abc})^{2}}{8 \mathrm{R}^{3}} \\
& \therefore \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}=\frac{(\mathrm{abc})^{2}}{8 \mathrm{R}^{3}}=\frac{8 \Delta^{3}}{\mathrm{abc}}
\end{aligned}
$$

27. If $\mathrm{a}=13, \mathrm{~b}=14, \mathrm{c}=15$, then show that $\mathrm{R}=\frac{65}{8}, \mathrm{r}=4, \mathrm{r}_{1}=\frac{21}{2}, \mathrm{r}_{2}=12$ and $\mathrm{r}_{3}=14$.

Sol: $\quad a=13, b=14, c=15$

$$
2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}=13+14+15=42
$$

$$
\mathrm{s}=21
$$

$$
\Delta^{2}=s(s-a)(s-b)(s-c)=21(21-13)(21-14)(21-15)
$$

$$
=(21)(8)(7)(6)
$$

$$
\Delta=\sqrt{21 \times 8 \times 7 \times 6}=\sqrt{7 \times 3 \times 2 \times 2 \times 2 \times 7 \times 2 \times 3}=7 \times 3 \times 2 \times 2=84
$$

$\Delta=84$
$\mathrm{R}=\frac{\mathrm{abc}}{4 \Delta}=\frac{13 \times 14 \times 15}{4 \times 84}=\frac{65}{8}$
$\mathrm{r}=\frac{\Delta}{\mathrm{s}}=\frac{84}{21}=4$
$\mathrm{r}_{1}=\frac{\Delta}{\mathrm{s}-\mathrm{a}}=\frac{84}{21-13}=\frac{84}{8}=\frac{21}{2}$
$\mathrm{r}_{2}=\frac{\Delta}{\mathrm{s}-\mathrm{b}}=\frac{84}{21-14}=\frac{84}{7}=12$
$r_{3}=\frac{\Delta}{s-c}=\frac{84}{21-15}=\frac{84}{6}=14$
$\therefore \mathrm{R}=\frac{65}{8}, \mathrm{r}=4, \mathrm{r}_{1}=\frac{21}{2}, \mathrm{r}_{2}=12, \mathrm{r}_{3}=14$
28. If $r_{1}=2, r_{2}=3, r_{3}=6$ and $r=1$, then show that $a=3, b=4, c=5$.

Sol: $\quad r_{1}=2, r_{2}=3, r_{3}=6, r=1$
$\Delta^{2}=\mathrm{rr}_{1} \mathrm{r}_{2} \mathrm{r}_{3}=(1)(2)(3)(6)=36$
$\Delta=6$
$\mathrm{r}=\frac{\Delta}{\mathrm{s}} \Rightarrow \mathrm{s}=\frac{\Delta}{r}=\frac{6}{1}=6$
$\mathrm{s}=6$
$\mathrm{r}_{1}=\frac{\Delta}{\mathrm{s}-\mathrm{a}} \Rightarrow \mathrm{s}-\mathrm{a}=\frac{\Delta}{r_{1}}=\frac{6}{2}=3$
$\mathrm{s}-\mathrm{a}=3$
$6-\mathrm{a}=3$
$\mathrm{a}=3$
$\mathrm{r}_{2}=\frac{\Delta}{\mathrm{s}-\mathrm{b}} \Rightarrow \mathrm{s}-\mathrm{b}=\frac{\Delta}{r_{2}}=\frac{6}{3}=2$
$\mathrm{s}-\mathrm{b}=2 \Rightarrow 6-\mathrm{b}=2$
$\mathrm{b}=4$

$$
\begin{aligned}
& r_{3}=\frac{\Delta}{\mathrm{s}-\mathrm{c}} \Rightarrow \mathrm{~s}-\mathrm{c}=\frac{\Delta}{r_{3}}=\frac{6}{6}=1 \\
& 6-\mathrm{c}=1 \\
& \mathrm{c}=5 \\
& \therefore \mathrm{a}=3, \mathrm{~b}=4, \mathrm{c}=5
\end{aligned}
$$

29. In $\triangle \mathrm{ABCr}_{1}=8, \mathrm{r}_{2}=12, \mathrm{r}_{3}=24$ then find the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$.

Sol: $\quad \mathrm{r}_{1}=8, \mathrm{r}_{2}=12, \mathrm{r}_{3}=24$
$\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}=\frac{1}{8}+\frac{1}{12}+\frac{1}{24}=\frac{3+2+1}{24}=\frac{6}{24}=\frac{1}{4}$
$\mathrm{r}=4$
$\Delta^{2}=\mathrm{rr}_{1} \mathrm{r}_{2} \mathrm{r}_{3}=(4)(8)(12)(24)=4 \times 8 \times 12 \times 12 \times 2=12 \times 8 \times 12 \times 8$
$\Delta=12 \times 8=96$
$\Delta=96$
$\Delta=\mathrm{rs} \Rightarrow \mathrm{s}=\frac{\Delta}{r}=\frac{96}{4}=24$
$\mathrm{s}=24$
$\mathrm{r}_{1}=\frac{\Delta}{\mathrm{s}-\mathrm{a}} \Rightarrow \mathrm{s}-\mathrm{a}=\frac{\Delta}{r_{1}}=\frac{96}{8}=12$
$\mathrm{s}-\mathrm{a}=12$
$24-\mathrm{a}=12 \Rightarrow \mathrm{a}=12$
$\mathrm{r}_{2}=\frac{\Delta}{\mathrm{s}-\mathrm{b}} \Rightarrow \mathrm{s}-\mathrm{b}=\frac{\Delta}{r_{2}}=\frac{96}{12}=8$
$s-b=8$
$24-b=8$
$\mathrm{b}=16$
$\mathrm{r}_{3}=\frac{\Delta}{\mathrm{s}-\mathrm{c}} \Rightarrow \mathrm{s}-\mathrm{c}=\frac{\Delta}{r_{3}}=\frac{96}{24}=4$
$\mathrm{s}-\mathrm{c}=4$
$24-\mathrm{c}=4$
$\mathrm{c}=20$
$\therefore \mathrm{a}=12, \mathrm{~b}=16, \mathrm{c}=20$
30. Show that $\frac{1}{r^{2}}+\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{\Delta^{2}}$.

Sol: $\frac{1}{r^{2}}+\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}=\frac{\mathrm{s}^{2}}{\Delta^{2}}+\frac{(\mathrm{s}-\mathrm{a})^{2}}{\Delta^{2}}+\frac{(\mathrm{s}-\mathrm{b})^{2}}{\Delta^{2}}+\frac{(\mathrm{s}-\mathrm{c})^{2}}{\Delta^{2}}$

$$
=\frac{1}{\Delta^{2}}\left[\mathrm{~s}^{2}+(\mathrm{s}-\mathrm{a})^{2}+(\mathrm{s}-\mathrm{b})^{2}+(\mathrm{s}-\mathrm{c})^{2}\right]
$$

$$
\begin{aligned}
& =\frac{1}{\Delta^{2}}\left[\mathrm{~s}^{2}+\mathrm{s}^{2}+\mathrm{a}^{2}-2 \mathrm{as}+\mathrm{s}^{2}+\mathrm{b}^{2}-2 \mathrm{bs}+\mathrm{s}^{2}+\mathrm{c}^{2}-2 \mathrm{cs}\right] \\
& =\frac{1}{\Delta^{2}}\left[4 \mathrm{~s}^{2}-2 \mathrm{~s}(\mathrm{a}+\mathrm{b}+\mathrm{c})+\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right] \\
& =\frac{1}{\Delta^{2}}\left[4 \mathrm{~s}^{2}-2 \mathrm{~s}(2 \mathrm{~s})+\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right] \\
& =\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{\Delta^{2}}=\text { RHS } \\
& \therefore \frac{1}{r^{2}}+\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{\Delta^{2}}
\end{aligned}
$$

31. Show that $\frac{\mathrm{r}_{1}}{\mathrm{bc}}+\frac{\mathrm{r}_{2}}{\mathrm{ca}}+\frac{\mathrm{r}_{3}}{\mathrm{ab}}=\frac{1}{r}-\frac{1}{2 \mathrm{R}}$.

Sol: \quad LHS $=\frac{\mathrm{r}_{1}}{\mathrm{bc}}+\frac{\mathrm{r}_{2}}{\mathrm{ca}}+\frac{\mathrm{r}_{3}}{\mathrm{ab}}=\frac{1}{\mathrm{abc}}\left[\mathrm{ar}_{1}+\mathrm{br}_{2}+\mathrm{cr}_{3}\right]$

$$
=\frac{1}{\mathrm{abc}} \sum \mathrm{ar}_{1}=\frac{1}{\mathrm{abc}} \sum 2 \mathrm{RSinA} \cdot \operatorname{stan} \frac{\mathrm{~A}}{2}
$$

$$
=\frac{1}{\mathrm{abc}} \sum 2 \mathrm{R} \cdot 2 \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Cos} \frac{\mathrm{~A}}{2} \mathrm{~s} \cdot \frac{\operatorname{Sin} \mathrm{~A} / 2}{\operatorname{Cos} \mathrm{~A} / 2}=\frac{1}{\mathrm{abc}} \mathrm{~s} \sum 4 \mathrm{R} \operatorname{Sin}^{2} \frac{\mathrm{~A}}{2}
$$

$$
=\frac{4 \mathrm{Rs}}{\mathrm{abc}} \sum \sin ^{2} \frac{\mathrm{~A}}{2}=\frac{\mathrm{s}}{\Delta} \sum \frac{1-\operatorname{Cos} \mathrm{A}}{2} \quad\left[\because \Delta=\frac{\mathrm{abc}}{4 \mathrm{R}}\right]
$$

$$
=\frac{1}{r}\left[\frac{1-\operatorname{Cos} \mathrm{A}}{2}+\frac{1-\operatorname{Cos} \mathrm{B}}{2}+\frac{1-\operatorname{Cos} \mathrm{C}}{2}\right]
$$

$$
=\frac{1}{r}\left[\frac{1-\cos \mathrm{A}+1-\cos \mathrm{B}+1-\cos \mathrm{C}}{2}\right]=\frac{1}{r}\left[\frac{3-(\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C})}{2}\right]
$$

$$
=\frac{1}{2 r}[3-(\operatorname{Cos} \mathrm{A}+\operatorname{Cos} \mathrm{B}+\operatorname{Cos} \mathrm{C})] \quad\left[\because \cos \mathrm{A}+\operatorname{Cos} \mathrm{B}+\operatorname{Cos} \mathrm{C}=1+4 \operatorname{Sin} \frac{\mathrm{~A}}{2} \sin \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{C}}{2}\right]
$$

$$
=\frac{1}{2 r}\left[3-\left(1+4 \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}\right)\right]
$$

$$
=\frac{1}{2 r}\left[2-4 \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}\right]
$$

$$
=\frac{2}{2 r}-\frac{4 \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}}{2 r}=\frac{1}{r}-\frac{4 \mathrm{R} \operatorname{Sin} \frac{\mathrm{~A}}{2} \operatorname{Sin} \frac{\mathrm{~B}}{2} \operatorname{Sin} \frac{\mathrm{C}}{2}}{2 r \mathrm{R}}=\frac{1}{r}-\frac{r}{2 r \mathrm{R}}
$$

$$
=\frac{1}{r}-\frac{1}{2 \mathrm{R}}=\mathrm{RHS}
$$

