SECTION - A

1. The least value of $|z|$ where z is complex number which satisfies the inequality exp $\left(\frac{(|z|+3)(|z|-1)}{|z|+1} \log _{e} 2\right) \geq \log _{\sqrt{2}}|5 \sqrt{7}+9 i|, i=\sqrt{-1}$ is equal to :
(1) 2
(2) 3
(3) 8
(4) $\sqrt{5}$

Ans. (2)
Sol. $2^{\frac{(|z|+3)(|z|-1)}{(|z|+1)}} \geq 2^{3} \Rightarrow \frac{(|z|+3)(|z|-1)}{|z|+1} \geq 3$
$\Rightarrow|z|^{2}+2|z|-3 \geq 3|z|+3$
$\Rightarrow|z|^{2}-|z|-6 \geq 0$
$(|z|-3)(|z|+2) \geq 0$
$|z|_{\text {min }}=3$
2. Let $f: S \rightarrow S$ where $S=(0, \infty)$ be a twice differentiable function such that $f(x+1)=x f(x)$. If g : $S \rightarrow R$ be defined as $g(x)=\log _{\mathrm{e}} f(x)$, then the value of $\left|g^{\prime \prime}(5)-g^{\prime \prime}(1)\right|$ is equal to :
(1) $\frac{197}{144}$
(2) $\frac{187}{144}$
(3) $\frac{205}{144}$
(4) 1

Ans. (3)
Sol. $f(x+1)=x f(x)$
$g(x+1)=\log _{e}(f(x+1))$
$g(x+1) \log _{e} x+\log f(x)$
$g(x+1)-g(x)=\log _{e} x$
$g^{\prime \prime}(x+1)-g^{\prime \prime}(x)=-\frac{1}{x^{2}}$
$g^{\prime \prime}(2)-g^{\prime \prime}(1)=-1$
$g^{\prime \prime}(3)-g^{\prime \prime}(2)=-\frac{1}{4}$
$g^{\prime \prime}(4)-g^{\prime \prime}(3)=-\frac{1}{9}$
$g^{\prime \prime}(5)-g^{\prime \prime}(4)=-\frac{1}{16}$
$g^{\prime \prime}(5)-g^{\prime \prime}(1)=-\left[1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}\right]$
$\left|g^{\prime \prime}(5)-g^{\prime \prime}(1)\right|=\left[\frac{144+36+16+9}{16 \times 9}\right]=\left[\frac{205}{16 \times 9}\right]$
3. If $y=y(x)$ is the solution of the differential equation $\frac{d y}{d x}+(\tan x) y=\sin x, 0 \leq x \leq \frac{\pi}{3}$, with $y(0)=$ 0 , then $\mathrm{y}\left(\frac{\pi}{4}\right)$ equal to :
(1) $\log _{e} 2$
(2) $\frac{1}{2} \log _{e} 2$
(3) $\left(\frac{1}{2 \sqrt{2}}\right) \log _{e} 2$
(4) $\frac{1}{4} \log _{e} 2$

Ans. (3)

Sol. I.f. $=\mathrm{e}^{\int \tan x d x}$
$=e^{\ln [\sec x]}$
$=\sec x$
Solution of the equation
$y(\sec x)=\int(\sin x)(\sec x) d x$
$\Rightarrow \frac{y}{\cos x}=\ln (\sec x)+c$
Put $x=0, c=0$
$\therefore y=\cos x \ell(\sec x)$
put $x=\pi / 4$
$y=\frac{1}{\sqrt{2}} \ln \sqrt{2}=\frac{1}{2 \sqrt{2}} \ln 2$
$y=\frac{\ln 2}{2 \sqrt{2}}$
4. If the foot of the perpendicular from point $(4,3,8)$ on the line $L_{1}: \frac{x-a}{\ell}=\frac{y-2}{3}=\frac{z-b}{4}, \ell \neq 0$ is $(3,5,7)$, then the shortest distance between the line L_{1} and line $L_{2}: \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$ is equal to :
(1) $\sqrt{\frac{2}{3}}$
(2) $\frac{1}{\sqrt{3}}$
(3) $\frac{1}{2}$
(4) $\frac{1}{\sqrt{6}}$

Ans. (4)
Sol. $(3,5,7)$ lie on given line L_{1}
$\frac{3-a}{\ell}=\frac{3}{3}=\frac{7-b}{4}$
$\frac{7-b}{4}=1 \Rightarrow b=3$
$\frac{3-a}{\ell}=1 \Rightarrow 3-a=\ell$
A $(4,3,8)$
B $(3,5,7)$
$D R^{\prime} S$ of $A B=(1,-2,1)$
$A B \perp$ line L_{1}
$(1)(\ell)+(-2)(3)+4(1)=0$
$\Rightarrow \ell=2$
$a=1$
$a=1, b=3, \ell=2$
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
$\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$
S.D. $=\frac{\left|\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|}{\| \hat{i}} \hat{\hat{j}} \begin{gathered}\hat{k} \\ 2\end{gathered} 3$
5. If (x, y, z) be an arbitrary point lying on a plane P which passes through the points $(42,0,0)$, $(0,42,0)$ and $(0,0,42)$, then the value of the expression
$3+\frac{x-11}{(y-19)^{2}(z-12)^{2}}+\frac{y-19}{(x-11)^{2}(z-12)^{2}}+\frac{z-12}{(z-11)^{2}(y-19)^{2}}-\frac{x+y+z}{14(x-11)(y-19)(z-12)} \quad$ is equal to :
(1) 3
(2) 0
(3) 39
(4) -45

Ans. (1)
Sol. equation of plane $x+y+z=42$
Let pt. on plane $x=10, y=21, z=11$
$3+\frac{(-1)}{(4)(1)}+\frac{(2)}{(1)(1)}+\frac{(-1)}{(1)(4)}-\frac{42}{14(-1)(2)(-1)}$
$3-\frac{1}{4}+2-\frac{1}{4}-\frac{3}{2}=3$
6. Consider the integral
$I=\int_{0}^{10} \frac{[x] e^{[x]}}{e^{x-1}} d x$
Where $[x]$ denotes the greatest integer less than or equal to x. Then the value of I is equal to :
(1) $45(e-1)$
(2) $45(e+1)$
(3) $9(e-1)$
(4) $9(e+1)$

Ans. (1)

Sol. $\quad \mathrm{I}=\int_{0}^{10}[\mathrm{x}] \cdot \mathrm{e}^{[\mathrm{x}]+1-\mathrm{x}} \mathrm{dx}$
$=\int_{1}^{2} e^{2-x} d x+\int_{2}^{3} 2 \cdot e^{3-x} d x+\int_{3}^{4} 3 \cdot e^{4-x} d x+\ldots \ldots+\int_{9}^{10} 9 e^{10-x} d x$
$=-\{(1-e)+2(1-e)+3(1-e)+\ldots . .+9(1-e)\}$
$=45(\mathrm{e}-1)$
7. Let $A(-1,1), B(3,4)$ and $C(2,0)$ be given three points. A line $y=m x, m>0$, intersects lines $A C$ and $B C$ at point P and Q respectively. Let A_{1} and A_{2} be the areas of $\triangle A B C$ and $\triangle P Q C$ respectively, such that $A_{1}=3 A_{2}$, then the value of m is equal to :
(1) $\frac{4}{15}$
(2) 1
(3) 2
(4) 3

Ans. (2)

Sol.

$B(3,4)$

$A_{1}=\Delta A B C=\frac{1}{2}\left\|\begin{array}{ccc}-1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 4 & 1\end{array}\right\|$
$A_{1}=\frac{13}{2}$
Equation of line $A C$ is $y-1=-\frac{1}{3}(x+1)$
solve it with line $y=m x$, we get $P\left(\frac{2}{3 m+1}, \frac{2 m}{3 m+1}\right)$
Equation of line $B C$ is $y-0=4(x-2)$

Solve it with line $y=m x$, we get $Q\left(\frac{-8}{m-4}, \frac{-8 m}{m-4}\right)$
$A_{2}=$ Area of $\Delta \mathrm{PQC}=\frac{1}{2}\left\|\frac{2}{2} \begin{array}{ccc}\frac{2}{3 m+1} & \frac{2 m}{3 m+1} & 1 \\ \frac{-8}{m-4} & \frac{-8 m}{m-4} & 1\end{array}\right\|=\frac{A_{1}}{3}=\frac{13}{6}$
$=\frac{1}{2}\left(2\left(\frac{2 m}{3 m+1}+\frac{8 m}{m-4}\right)-1\left(\frac{-16 m}{(3 m+1)(m-4)}+\frac{16 m}{(3 m+1)(m-4)}\right)\right)$
$= \pm \frac{13}{6}$
$\frac{26 m^{2}}{3 m^{2}-11 m-4}= \pm \frac{13}{6}$
$\Rightarrow 12 m^{2}= \pm\left(3 m^{2}-11 m-4\right)$
taking + ve sign
$9 m^{2}+11 m+4=0$ (Rejcted $\because m$ is imaginary)
taking - ve sing
$15 m^{2}-11 m-4=0$
$m=1,-\frac{4}{15}$
8. Let f be a real valued function, defined on $R-\{-1,1\}$ and given by $f(x)=3 \log _{e}\left|\frac{x-1}{x+1}\right|-\frac{2}{x-1}$.

Then in which of the following intervals, function $f(x)$ is increasing ?
(1) $(-\infty,-1) \cup\left(\left[\frac{1}{2}, \infty\right)-\{1\}\right)$
(2) $\left(-1, \frac{1}{2}\right]$
(3) $(-\infty, \infty)-\{-1,1\}$
(4) $\left(-\infty, \frac{1}{2}\right]-\{-1\}$

Ans. (1)

Sol. $f^{\prime}(x)=\left(\frac{x+1}{x-1} \times \frac{x+1-(x-1)}{(x+1)^{2}}\right) 3+\frac{2}{(x-1)^{2}}=\frac{6}{(x-1)(x+1)}+\frac{2}{(x-1)^{2}}$
$=\frac{2}{(x-1)}\left(\frac{3}{x+1}+\frac{1}{x+1}\right)=\frac{4(2 x-1)}{(x+1)(x-1)^{2}}$

+	-
-1	$\frac{1}{2}$

$x \in(-\infty,-1) \cup\left[\frac{1}{2}, \infty\right)-\{1\}$
9. Let the lengths of intercepts on x-axis and y-axis made by the circle $x^{2}+y^{2}+a x+2 a y+c=$ 0 , $(a<0)$ be $2 \sqrt{2}$ and $2 \sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line $x+2 y=0$, is equal to :
(1) $\sqrt{10}$
(2) $\sqrt{6}$
(3) $\sqrt{11}$
(4) $\sqrt{7}$

Ans. (2)
Sol. $\quad 2 \sqrt{a^{2} / 4-c}=2 \sqrt{2}$

$$
\begin{equation*}
\sqrt{a^{2}-4 c}=2 \sqrt{2} \tag{1}
\end{equation*}
$$

$a^{2}-4 c=8$
$2 \sqrt{a^{2}-c}=2 \sqrt{5}$
$\mathrm{a}^{2}-\mathrm{c}=5$
(2) - (1)
$3 c=-3 a \Rightarrow c=-1$
$a^{2}=4 \Rightarrow a=-2$
$x^{2}+y^{2}-2 x-4 y-1=0$
Equation of tangent $2 x-y+\lambda=0$
$\therefore \mathrm{p}=\mathrm{r}$
$\left|\frac{2-2+\lambda}{\sqrt{5}}\right|=\sqrt{6}$
$\Rightarrow \lambda= \pm \sqrt{30}$
\therefore tangent $2 \mathrm{x}-\mathrm{y} \pm \sqrt{30}=0$
Distance from origin $=\frac{\sqrt{30}}{\sqrt{5}}=\sqrt{6}$
10. Let A denote the event that a 6 -digit integer formed by $0,1,2,3,4,5,6$ without repetitions, be divisible by 3 . Then probability of event A is equal to :
(1) $\frac{4}{9}$
(2) $\frac{9}{56}$
(3) $\frac{3}{7}$
(4) $\frac{11}{27}$

Ans. (1)
Sol. Total case $=6 \mid 6$
Fav. case $=(0,1,2,3,4,5)+(0,1,2,4,5,6)+(1,2,3,4,5,6)$
$=5 \underline{5}+5[\underline{5}+\underline{6}$
$=1920$
Probability $=\frac{1920}{6 \underline{6}}=\frac{4}{9}$
11. Let $\alpha \in R$ be such that the function $f(x)=\left\{\begin{array}{cl}\frac{\cos ^{-1}\left(1-\{x\}^{2}\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^{3}} & x \neq 0 \\ \alpha & x=0\end{array}\right.$ is Continuous at $x=0$, where $\{x\}=x-[x],[x]$ is the greatest integer less than or equal to x. Then :
(1) $\alpha=\frac{\pi}{4}$
(2) No such α exists
(3) $\alpha=0$
(4) $\alpha=\frac{\pi}{\sqrt{2}}$

Ans. (2)
Sol. RHL $=\lim _{x \rightarrow 0^{+}} \frac{\cos ^{-1}\left(1-x^{2}\right) \sin ^{-1}(1-x)}{x\left(1-x^{2}\right)}=\frac{\pi}{2} \lim _{x \rightarrow 0^{+}} \frac{\cos ^{-1}\left(1-x^{2}\right)}{x}$
$=\frac{\pi}{2} \lim _{x \rightarrow 0^{+}} \frac{-1}{\sqrt{1-\left(1-x^{2}\right)^{2}}}(-2 x) \quad$ (L' Hospital Rule)
$=\pi \lim _{x \rightarrow 0^{+}} \frac{x}{\sqrt{2 x^{2}-x^{4}}}=\pi \lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{2-x^{2}}}=\frac{\pi}{\sqrt{2}}$
LHL $=\lim _{x \rightarrow 0^{-}} \frac{\cos ^{-1}\left(1-(1+x)^{2}\right) \sin ^{-1}(-x)}{(1+x)-(1+x)^{3}}=\frac{\pi}{2} \lim _{x \rightarrow 0^{-}} \frac{\sin ^{-1} x}{(1+x)\left[(1+x)^{2}-1\right]}=\frac{\pi}{2} \lim _{x \rightarrow 0^{-}} \frac{\sin ^{-1} x}{x^{2}+2 x}$
$=\frac{\pi}{2}\left(\frac{1}{2}\right)=\frac{\pi}{4}$
As LHL \neq RHL so $f(x)$ is not continuous at $x=0$
12. The maximum value of $f(x)=\left|\begin{array}{ccc}\sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x\end{array}\right|, x \in R$ is :
(1) $\sqrt{7}$
(2) $\sqrt{5}$
(3) 5
(4) $\frac{3}{4}$

Ans. (2)
Sol. $\quad \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}$
$\left|\begin{array}{ccc}2 & 1+\cos ^{2} x & \cos 2 x \\ 2 & \cos ^{2} x & \cos 2 x \\ 1 & \cos ^{2} x & \sin 2 x\end{array}\right|$
$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$
$\left|\begin{array}{ccc}0 & 1 & 0 \\ 2 & \cos ^{2} x & \cos 2 x \\ 1 & \cos ^{2} x & \sin 2 x\end{array}\right|$
$=(-1)[2 \sin 2 x-\cos 2 x]=\cos 2 x-2 \sin 2 x$
maximum value $=\sqrt{5}$
13. Consider a rectangle $A B C D$ having $5,7,6,9$ points in the interior of the line segments $A B, C D$, BC , DA respectively. Let α be the number of triangles having these points from different sides as vertices and β be the number of quadrilaterals having these points from different sides as vertices. Then $(\beta-\alpha)$ is equal to:
(1) 1890
(2) 795
(3) 717
(4) 1173

Ans. (3)
Sol. $\alpha={ }^{6} \mathrm{C}_{1}{ }^{7} \mathrm{C}_{1}{ }^{9} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{1}{ }^{7} \mathrm{C}_{1}{ }^{9} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{1}{ }^{6} \mathrm{C}_{1}{ }^{9} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{1}{ }^{6} \mathrm{C}_{1}{ }^{7} \mathrm{C}_{1}=378+315+270+210=1173$
$\beta={ }^{5} \mathrm{C}_{1}{ }^{6} \mathrm{C}_{1}{ }^{7} \mathrm{C}_{1}{ }^{7} \mathrm{C}_{1}{ }^{9} \mathrm{C}_{1}=1890$
$\Rightarrow \beta-\alpha=1890-1173=717$
14. Let C be the locus of the mirror image of a point on the parabola $y^{2}=4 x$ with respect to the line $y=x$. Then the equation of tangent to C at $P(2,1)$ is :
(1) $2 x+y=5$
(2) $x+2 y=4$
(3) $x+3 y=5$
(4) $x-y=1$

Ans. (4)

Sol. Image of $y^{2}=4 x$ w.r.t. $y=x$ is $x^{2}=4 y$
tangent from $(2,1)$
$x_{1}=2\left(y+y_{1}\right)$
$2 x=2(y+1)$
$x=y+1$
15. Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy $\sin ^{-1}\left(\frac{3 x}{5}\right)+\sin ^{-1}\left(\frac{4 x}{5}\right)=\sin ^{-1} x$ is equal to :
(1) 1
(2) 2
(3) 3
(4) 0

Ans. (3)
Sol. Taking sine both sides
$\frac{3 x}{5} \sqrt{1-\frac{16 x^{2}}{25}}+\frac{4 x}{5} \sqrt{1-\frac{9 x^{2}}{25}}=x$
$\Rightarrow 3 x \sqrt{25-16 x^{2}}=25 x-4 x \sqrt{25-9 x^{2}}$
$\Rightarrow x=0$ or $3 \sqrt{25-16 x^{2}}=25-4 \sqrt{25-9 x^{2}}$
$\Rightarrow 9\left(25-16 x^{2}\right)=625-200 \sqrt{25-9 x^{2}}+16\left(25-9 x^{2}\right)$
$\Rightarrow 200 \sqrt{25-9 x^{2}}=800$
$\Rightarrow \sqrt{25-9 x^{2}}=4$
$\Rightarrow \mathrm{x}^{2}=1$
$\Rightarrow \mathrm{x} \pm 1$
\therefore Total number of solution $=3$
16. Let C_{1} be the curve obtained by solution of differential equation $2 x y \frac{d y}{d x}=y^{2}-x^{2}, x>0$ Let the curve C_{2} be the solution of $\frac{2 x y}{x^{2}-y^{2}}=\frac{d y}{d x}$, If both the curves pass through $(1,1)$ then the area enclosed by the curves C_{1} and C_{2} is equal to :
(1) $\frac{\pi}{2}-1$
(2) $\frac{\pi}{4}+1$
(3) $\pi-1$
(4) $\pi+1$

Ans. (1)

Sol.

$$
\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}
$$

Put $y=v x$
$\mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{v}^{2} \mathrm{x}^{2}-\mathrm{x}^{2}}{2 \mathrm{vx}^{2}}=\frac{\mathrm{v}^{2}-1}{2 \mathrm{v}}$
$x \frac{d v}{d x}=\frac{v^{2}-1-2 v^{2}}{2 v}=-\frac{\left(v^{2}+1\right)}{2 v}$
$\Rightarrow \frac{2 v}{v^{2}+1} d v=-\frac{d x}{x}$
$\ell n\left(v^{2}+1\right)=-\ell n x+\ell n c \Rightarrow v^{2}+1=\frac{c}{x}$
$\Rightarrow \frac{\mathrm{y}^{2}}{\mathrm{x}^{2}}+1=\frac{\mathrm{c}}{\mathrm{x}} \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{cx}$
If pass through $(1,1)$
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}=0$
Similarly for second differential equation $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$
Equation of curve is $x^{2}+y^{2}-2 y=0$
Now required area is

17. Let $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=2 \hat{i}-3 \hat{j}+5 \hat{k}$. If $\vec{r} \times \vec{a}=\vec{b} \times \vec{r}, \vec{r} \cdot(\alpha \hat{i}+2 \hat{j}+\hat{k})=3$ and $\vec{r} \cdot(2 \hat{i}+5 \hat{j}-\alpha \hat{k})=-1, \alpha \in R$, then the value of $\alpha+|\vec{r}|^{2}$ is equal to:
(1) 11
(2) 15
(3) 9
(4) 13

Ans. (2)
Sol. $\vec{r} \times \vec{a}=-\vec{r} \times \vec{b}$
$\vec{r} \times(\vec{a}+\vec{b})=0 \quad(\vec{a}+\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k})$
$\vec{r} \|(\vec{a}+\vec{b})$
$\vec{r}=\lambda(\vec{a}+\vec{b})$
$\because \vec{r} \cdot(2 \hat{i}+5 \hat{j}-\alpha \hat{k})=-1$
$\lambda[3 \hat{i}-\hat{j}+2 \hat{k}] \cdot[2 \hat{i}+5 \hat{j}-\alpha \hat{k}]=-1$
$\Rightarrow \lambda(6-5-2 \alpha)=-1$
$\lambda(1-2 \alpha)=-1$
$\vec{r} \cdot(\alpha \hat{i}+2 \hat{j}+\hat{k})=3$
$\lambda(3 \hat{i}-\hat{j}+2 \hat{k}) \cdot(\alpha \hat{i}+2 \hat{j}+\hat{k})=3$
$\Rightarrow \lambda[3 \alpha-2+2]=3 \Rightarrow \lambda \alpha=1$
(1) \& (2)
$\lambda\left[1-\frac{2}{\lambda}\right]=-1$
$\lambda-2=-1 \Rightarrow \lambda=1 \quad \alpha=1$
$\vec{r}=3 \hat{i}-\hat{j}+2 \hat{k}$
$\alpha+|\overrightarrow{\mathbf{r}}|^{2} \Rightarrow 1+14=15$
18. Let $P(x)=x^{2}+b x+c$ be a quadratic polynomial with real coefficients such that $\int_{0}^{1} P(x) d x=1$ and $P(x)$ leaves remainder 5 when it is divided by $(x-2)$. Then the value of $9(b+c)$ is equal to :
(1) 7
(2) 11
(3) 15
(4) 9

Ans. (1)
Sol. $\quad(x-2) Q(x)+5=x^{2}+b x+c$
Put $x=2$
$5=2 b+c+4$
$\int_{0}^{1}\left(x^{2}+b x+c\right) d x=1$
$\Rightarrow \frac{1}{3}+\frac{\mathrm{b}}{2}+\mathrm{c}=1$
$\frac{b}{2}+c=\frac{2}{3}$
Solve (1) \& (2)
$b=\frac{2}{9}$
$c=\frac{5}{9}$
$9(b+c)=7$
19. If the points of intersections of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the circle $x^{2}+y^{2}=4 b, b>4$ lie on the curve $y^{2}=3 x^{2}$, then b is equal to :
(1) 5
(2) 6
(3) 12
(4) 10

Ans. (3)
Sol. $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$
$x^{2}+y^{2}=4 b$
$y^{2}=3 x^{2}$
From eq (2) and (3) $x^{2}=b$ and $y^{2}=3 b$
From equation (1) $\frac{b}{16}+\frac{3 b}{b^{2}}=1$
$\Rightarrow b^{2}+48=16 b$
$\Rightarrow b=12$
20. Let $A=\{2,3,4,5 \ldots ., 30\}$ and ' \simeq ' be an equivalence relation on $A \times A$, defined by $(a, b) \simeq(c$, d), if and only if $a d=b c$. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4,3)$ is equal to :
(1) 7
(2) 5
(3) 6
(4) 8

Ans. (1)
Sol. $\quad a d=b c$
$(\mathrm{a}, \mathrm{b}) \mathrm{R}(4,3) \Rightarrow 3 \mathrm{a}=4 \mathrm{~b}$
$a=\frac{4}{3} b$
b must be multiple of 3
$b=\{3,6,9 \ldots .30\}$
$(a, b)=(4,3),(8,6),(12,9)(16,12),(20,15),(24,18),(28,21)$
$\Rightarrow 7$ ordered pair

SECTION - B

1. Let \vec{c} be a vector perpendicular to the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$. If $\vec{c} \cdot(\hat{i}+\hat{j}+3 \hat{k})-8$ then the value of $\vec{c} \cdot(\vec{a} \times \vec{b})$ is equal to \qquad
Ans. (28)
Sol. $\vec{c} \cdot(\vec{a} \times \vec{b})=[\vec{c} \vec{a} \vec{b}]$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -1 \\ 1 & 2 & 1\end{array}\right|=(3,-2,1)$
$\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b} \Rightarrow C \| \vec{a} \times \vec{b}$
$\vec{c}=\lambda(\vec{a} \times \vec{b})$
$\Rightarrow \overrightarrow{\mathrm{c}}=\lambda(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
$\vec{c}(\hat{i}+\hat{j}+3 \hat{k})=8$
$\Rightarrow 3 \lambda-2 \lambda+3 \lambda=8$
$\Rightarrow 4 \lambda=8 \Rightarrow \lambda=2$
$\vec{c}=6 \hat{i}-4 \hat{j}+2 \hat{k}$
$\vec{c} \cdot(\vec{a} \times \vec{b})=[\overrightarrow{\mathrm{c}} \overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}}]=\left|\begin{array}{ccc}6 & -4 & 2 \\ 1 & 1 & -1 \\ 1 & 2 & 1\end{array}\right|$
$\Rightarrow 18+8+2=28$
2. In $\triangle A B C$, the lengths of sides $A C$ and $A B$ are 12 cm and 5 cm , respectively. If the area of $\triangle A B C$ is $30 \mathrm{~cm}^{2}$ and R and r are respectively the radii of circumcircle and incircle of $\triangle A B C$, then the value of $2 R+r($ in cm$)$ is equal to \qquad
Ans. (15)

Sol.

$$
\text { Area }=\frac{1}{2}(5)(12) \sin \theta=30
$$

$\sin \theta=1 \Rightarrow \theta=\frac{\pi}{2}$
Δ is right angle Δ

3. Consider the statistics of observations as follows:

	Size	Mean	Variance
Observation I	10	2	2
Observation II	n	3	1

If the variance of the combined set of these two observations is $\frac{17}{9}$, then the value of n is equal to \qquad
Ans. (5)
Sol. For group-1: $\frac{\sum \mathrm{x}_{\mathrm{i}}}{10}=2 \Rightarrow \sum \mathrm{x}_{\mathrm{i}}=20$
$\frac{\sum x_{i}}{10}-(2)^{2}=2 \Rightarrow \sum x_{i}^{2}=60$
For group-2: $\frac{\sum y_{i}}{n}=3 \Rightarrow \sum y_{i}=3 n$
$\frac{\sum y_{i}^{2}}{n}-3^{2}=1 \Rightarrow \sum y_{i}^{2}=10 n$
Now, combined variance
$\sigma^{2}=\frac{\sum\left(x_{i}^{2}+y_{i}^{2}\right)}{10+n}-\left(\frac{\left.\sum\left(x_{i}+y_{i}\right)\right)^{2}}{10+n}\right)^{2}$
$\Rightarrow \frac{17}{9}=\frac{60+10 n}{10+n}-\frac{(20+3 n)^{2}}{(10+n)^{2}}$
$\Rightarrow 17\left(\mathrm{n}^{2}+20 \mathrm{n}+100\right)=9\left(\mathrm{n}^{2}+40 \mathrm{n}+200\right)$
$\Rightarrow 8 \mathrm{n}^{2}-20 \mathrm{n}-100=0$
$\Rightarrow 2 \mathrm{n}^{2}-5 \mathrm{n}-25=0 \Rightarrow \mathrm{n}=5$
4. Let
$S_{n}(x)=\log _{a^{\frac{1}{2}}} x+\log _{a^{\frac{1}{3}}} x+\log _{a^{\frac{1}{6}}} x+\log _{a^{\frac{1}{11}}} x+\log _{a^{\frac{1}{18}}} x+\log _{a^{\frac{1}{27}}} x+\ldots .$. up to n-terms,
Where $a>1$. If $\mathrm{S}_{24}(\mathrm{x})=1093$ and $\mathrm{S}_{12}(2 \mathrm{x})=265$, the value of a is equal to $\ldots \ldots .$.
Ans. (16)
Sol. $\quad S_{n}(x)=\log _{a} x^{2}+\log _{a} x^{3}+\log _{a} x^{6}+\log _{a} x^{11}$
$S_{n}(x)=2 \log _{a} x+3 \log _{a} x+6 \log _{a} x+11 \log _{a} x+\ldots .$.
$S_{n}(x)=\log _{a} x(2+3+6+11+\ldots \ldots)$
$S_{r}=2+3+6+11$
General term $\mathrm{T}_{\mathrm{r}}=\mathrm{r}^{2}-2 \mathrm{r}+3$
$S_{n}(x)=\sum_{r=1}^{n} \log _{a} x\left(r^{2}-2 r+3\right)$
$S_{24}(x)=\sum_{r=1}^{24} \log _{a} x\left(r^{2}-2 r+3\right)$
$\mathrm{S}_{24}(\mathrm{x})=\log _{\mathrm{a}} \sum_{\mathrm{r}=1}^{24}\left(\mathrm{r}^{2}-2 \mathrm{r}+3\right)$
$1093=4372 \log _{\mathrm{a}} \mathrm{x}$
$\log _{a} x=\frac{1}{4}$
$x=a^{1 / 4}$
$S_{12}(2 x)=\log _{a}(2 x) \sum_{r=1}^{12}\left(r^{2}-2 r+3\right)$
$265=530 \log _{a}(2 x)$
$\log _{a}(2 x)=\frac{1}{2}$
$2 x=a^{1 / 2}$
After solving (i) and (ii), we get
$\mathrm{a}^{1 / 4}=2$
$a=16$
5. Let n be a positive integer. Let $\mathrm{A}=\sum_{\mathrm{k}=0}^{\mathrm{n}}(-1)^{\mathrm{k}} \mathrm{C}_{\mathrm{k}}\left[\left(\frac{1}{2}\right)^{k}+\left(\frac{3}{4}\right)^{k}+\left(\frac{7}{8}\right)^{k}+\left(\frac{15}{16}\right)^{k}+\left(\frac{31}{32}\right)^{k}\right]$ If $63 \mathrm{~A}=1$ $-\frac{1}{2^{30}}$, then n is equal to \qquad
Ans. (6)
Sol. $A=\left(\frac{1}{2}\right)^{n}+\left(\frac{1}{4}\right)^{n}+\left(\frac{1}{8}\right)^{n}+\left(\frac{1}{16}\right)^{n}+\left(\frac{1}{32}\right)^{n}$
$=\frac{1}{2^{n}}+\frac{1}{2^{2 n}}+\frac{1}{2^{3 n}}+\frac{1}{2^{4 n}}+\frac{1}{2^{5 n}}$
$=\frac{1}{2^{n}}\left[\frac{1-\left(\frac{1}{2^{n}}\right)^{5}}{1-\frac{1}{2^{n}}}\right]$
$A=\frac{2^{5 n}-1}{2^{5 n}\left(2^{n}-1\right)}$
$63 \mathrm{~A}=\frac{63\left(2^{5 \mathrm{n}}-1\right)}{2^{5 \mathrm{n}}\left(2^{\mathrm{n}}-1\right)}$
$\frac{63}{2^{\mathrm{n}}-1}\left(1-\frac{1}{2^{5 \mathrm{n}}}\right)=63 \mathrm{~A}=\left(1-\frac{1}{2^{30}}\right)$
$=\frac{63}{2^{\mathrm{n}}-1}\left(1-\frac{1}{2^{5 \mathrm{n}}}\right)=\left(1-\frac{1}{2^{30}}\right)$
$\mathrm{n}=6$
6. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined as
$f(x)=\left\{\begin{array}{l}x+a, x<0 \\ |x-1|, x \geq 0\end{array}\right.$ and $g(x)\left\{\begin{array}{l}x+1, x<0 \\ (x-1)^{2}+b, x \geq 0\end{array}\right.$
Where a, b are non-negative real numbers. If (gof) (x) is continuous for all $x \in R$, then $a+b$ is equal to \qquad
Ans. (1)
Sol. $g[f(x)]=\left[\begin{array}{cc}f(x)+1 & f(x)<0 \\ (f(x)-1)^{2}+b & f(x) \geq 0\end{array}\right.$

$$
\begin{aligned}
& g[f(x)]=\left[\begin{array}{ll}
x+a+1 & x+a<0 \& x<0 \\
|x-1|+1 & |x-1|<0 \& x \geq 0 \\
(x+a-1)^{2}+b & x+a \geq 0 \& x<0 \\
(|x-1|-1)^{2}+b & |x-1| \geq 0 \& x \geq 0
\end{array}\right. \\
& g[f(x)]=\left[\begin{array}{ll}
x+a+1 & x \in(-\infty,-a) \& x \in(-\infty, 0) \\
|x-1|+1 & x \in \phi \\
(x+a-1)^{2}+b & x \in[-a, \infty) \& x \in(-\infty, 0) \\
(|x-1|-1)^{2}+b & x \in R \& x \in[0, \infty)
\end{array}\right. \\
& g[f(x)]=\left[\begin{array}{ll}
x+a+1 & x \in(-\infty,-a) \\
(x+a-1)^{2}+b & x \in[-a, 0) \\
(|x-1|-1)^{2}+b & x \in[0, \infty)
\end{array}\right.
\end{aligned}
$$

$g(f(x))$ is continuous
at $x=-a$ \& at $x=0$
$1=b+1 \&(a-1)^{2}+b=b$
$b=0 \quad \& \quad a=1$
$\Rightarrow \mathrm{a}+\mathrm{b}=1$
7. If the distance of the point (1, -2, 3) from the plane $x+2 y-3 z+10=0$ measured parallel to the line, $\frac{x-1}{3}=\frac{2-y}{m}=\frac{z+3}{1}$ is $\sqrt{\frac{7}{2}}$, then the value of $|m|$ is equal to
Ans. (2)

Sol.

$\frac{x-1}{3}=\frac{y+2}{-m}=\frac{z-3}{1}=\lambda$
Pt. $\mathrm{Q}(3 \lambda+1,-\mathrm{m} \lambda-2, \lambda+3)$ lie on plane
$(3 \lambda+1)+2(-m \lambda-2)-3(\lambda+3)+10=0$
$\Rightarrow 3 \lambda-2 m \lambda-3 \lambda+1-4-9+10=0$
$\Rightarrow-2 m \lambda=2$
$\mathrm{m} \lambda=-1 \Rightarrow \lambda=-\frac{1}{\mathrm{~m}}$
$Q\left[-\frac{3}{m}+1,-1,-\frac{1}{m}+3\right]$
$P Q=\sqrt{\frac{7}{2}}$
$\sqrt{\left(-\frac{3}{m}\right)^{2}+1+\left(-\frac{1}{m}\right)^{2}}=\sqrt{\frac{7}{2}}$
$\Rightarrow \frac{10+\mathrm{m}^{2}}{\mathrm{~m}^{2}}=\frac{7}{2}$
$\Rightarrow 20+2 \mathrm{~m}^{2}=7 \mathrm{~m}^{2}$
$m^{2}=4 \quad \Rightarrow|m|=2$
8. Let $\frac{1}{16}, a$ and b be in G.P. and $\frac{1}{a}, \frac{1}{b}, 6$ be in A.P. where $a, b,>0$. Then $72(a+b)$ is equal to

Ans. (14)
Sol. $\mathrm{a}^{2}=\frac{\mathrm{b}}{16}$ and $\frac{2}{\mathrm{~b}}=\frac{1}{\mathrm{a}}+6$

Solving, we get $\mathrm{a}=\frac{1}{12}$ or $\mathrm{a}=-\frac{1}{4}$ [rejected]
if $a=\frac{1}{12} \Rightarrow b=\frac{1}{9}$
$\therefore 72(\mathrm{a}+\mathrm{b})=72\left(\frac{1}{12}+\frac{1}{9}\right)=14$
9. Let $A=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ and $B=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ be two 2×1 matrices with real entries such that $A=X B$, where $x=$ $\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & -1 \\ 1 & k\end{array}\right]$, and $k \in R$. If $a_{1}^{2}+a_{2}^{2}=\frac{2}{3}\left(b_{1}^{2}+b_{2}^{2}\right)$ and $\left(k^{2}+1\right) b_{2}^{2} \neq-2 b_{1} b_{2}$ then the value of k is

Ans. (1)

Sol.

$X B=A$
$\frac{1}{\sqrt{3}}\left[\begin{array}{l}b_{1}-b_{2} \\ b_{1}+k b_{2}\end{array}\right]=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$
$\mathrm{b}_{1}-\mathrm{b}_{2}=\sqrt{3} \mathrm{a}_{1} \Rightarrow 3 \mathrm{a}_{1}^{2}=\mathrm{b}_{1}^{2}+\mathrm{b}_{2}^{2}-2 \mathrm{~b}_{1} \mathrm{~b}_{2}$
$\mathrm{b}_{1}+\mathrm{kb} \mathrm{b}_{2}=\sqrt{3} \mathrm{a}_{2} \Rightarrow 3 \mathrm{a}_{2}^{2}=\mathrm{b}_{1}^{2}+\mathrm{k}^{2} \mathrm{~b}_{2}^{2}+2 k \mathrm{~b}_{1} \mathrm{~b}_{2}$
$3\left(a_{1}^{2}+a_{2}^{2}\right)=2 b_{1}^{2}+\left(k^{2}+1\right) b_{2}^{2}+2 b_{1} b_{2}(k-1)$
$\left(k^{2}-1\right) b_{2}^{2}+2 b_{1} b_{2}(k-1)$
$(k-1)\left((k+1) b_{2}^{2}+2 b_{1} b_{2}\right)=0$
$\Rightarrow \mathrm{k}=1$
10. For real number α, β, γ and δ, if

$$
\int \frac{\left(x^{2}-1\right)+\tan ^{-1}\left(\frac{x^{2}+1}{x}\right)}{\left(x^{4}+3 x^{2}+1\right) \tan ^{-1}\left(\frac{x^{2}+1}{x}\right)} d x
$$

$=\alpha \log _{e}\left(\tan ^{-1}\left(\frac{x^{2}+1}{x}\right)\right)+\beta \tan ^{-1}\left(\frac{\gamma\left(\mathrm{x}^{2}-1\right)}{\mathrm{x}}\right)+\delta \tan ^{-1}\left(\frac{\mathrm{x}^{2}+1}{\mathrm{x}}\right)+\mathrm{C}$
Where C is an arbitrary constant, then the value of $10(\alpha+\beta \gamma+\delta)$ is equal to
Ans. (6)
Sol. $\int \frac{x^{2}-1}{\left(x^{4}+3 x^{2}+1\right) \tan ^{-1}\left(\frac{x^{2}+1}{x}\right)} d x+\int \frac{1}{x^{4}+3 x^{2}+1} d x$

$$
\begin{aligned}
& \int \frac{1-\frac{1}{x^{2}}}{\left[\left(x+\frac{1}{x}\right)^{2}+1\right] \tan ^{-1}\left(x+\frac{1}{x}\right)} d x+\int \frac{d x}{\mathrm{x}^{4}+3 x^{2}+1} \\
& \tan _{1}^{-1}\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)=\mathrm{t} \\
& \mathrm{I}_{1}=\int \frac{\mathrm{dt}}{\mathrm{t}} \\
& \mathrm{I}_{1}=\ln (\mathrm{t})=\ln \left|\tan ^{-1}\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)\right|
\end{aligned}
$$

Now

$$
\begin{aligned}
& I_{2}=\int \frac{d x}{x^{4}+3 x^{2}+1} \\
& =\frac{1}{2} \int \frac{\left(x^{2}+1\right)-\left(x^{2}-1\right)}{x^{4}+3 x^{2}+1} d x \\
& =\frac{1}{2}\left[\int \frac{1+\frac{1}{x^{2}}}{x^{2}+3+\frac{1}{x^{2}}} d x-\int \frac{\left(1-\frac{1}{x^{2}}\right)}{x^{2}+3+\frac{1}{x^{2}}} d x\right] \\
& =\frac{1}{2}\left[\int \frac{1+\frac{1}{x^{2}}}{\left(x-\frac{1}{x}\right)^{2}+5}-\int \frac{\left(1-\frac{1}{x^{2}}\right)}{\left(x+\frac{1}{x}\right)^{2}+1} d x\right] \\
& \downarrow \\
& x-\frac{1}{x}=u
\end{aligned}
$$

$$
=\frac{1}{2}\left[\int \frac{d u}{u^{2}+(\sqrt{5})^{2}}-\int \frac{d v}{v^{2}+1}\right]
$$

$$
I_{2}=\frac{1}{2 \sqrt{5}} \tan ^{-1}\left(\frac{x-\frac{1}{x}}{\sqrt{5}}\right)-\frac{1}{2} \tan ^{-1}\left(x+\frac{1}{x}\right)
$$

$$
I=I_{1}+I_{2}=\ln \left|\tan ^{-1}\left(x+\frac{1}{x}\right)\right|+\frac{1}{2 \sqrt{5}} \ln \left(\frac{x^{2}-1}{\sqrt{5} x}\right)-\frac{1}{2} \tan ^{-1}\left(\frac{x^{2}+1}{x}\right)+C
$$

$$
\begin{aligned}
& \alpha=1, \beta=\frac{1}{2 \sqrt{5}}, \lambda=\frac{1}{\sqrt{5}}, \delta=-\frac{1}{2} \\
& 10(\alpha+\beta \lambda+\delta)=10\left[1+\frac{1}{10}-\frac{1}{2}\right] \\
& =10\left(\frac{1}{10}+\frac{1}{2}\right) \\
& =1+5=6
\end{aligned}
$$

