NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

EXERCISE 8.1

1. In $\triangle A B C$, right-angled at $B, A B=24 \mathrm{~cm}, B C=7 \mathrm{~cm}$. Determine:
(i) $\sin A, \cos A(i i)$
$\sin C, \cos C$
Solution:
In a given triangle $A B C$, right angled at $B=\angle B=$
90° Given: $\mathrm{AB}=24 \mathrm{~cm}$ and $\mathrm{BC}=7 \mathrm{~cm}$
According to the Pythagoras Theorem,
In a right- angled triangle, the squares of the hypotenuse side is equal to the sum of the squares of the othertwo sides.

By applying Pythagoras theorem, we
$\operatorname{get} \mathrm{AC}^{2}=A B^{2}+\mathrm{BC}^{2}$
$\mathrm{AC}_{2}=(24)_{2}+7_{2}$
$\mathrm{AC}_{2}=$
(576+49)
$\mathrm{AC}_{2}=$
$625 \mathrm{~cm}^{2}$ AC
$=\sqrt{ } 625=25$
Therefore, $A C=25 \mathrm{~cm}$
(i) To find $\operatorname{Sin}(A), \operatorname{Cos}(A)$

We know that sine (or) Sin function is the equal to the ratio of length of the opposite side to the hypotenuseside. So it becomes

Sin $(A)=$ Opposite side $/$ Hypotenuse $=B C / A C=7 / 25$
Cosine or Cos function is equal to the ratio of the length of the adjacent side to the hypotenuse side and itbecomes,
$\operatorname{Cos}(A)=$ Adjacent side $/$ Hypotenuse $=A B / A C=24 / 25$
(ii) To find $\operatorname{Sin}(\mathrm{C})$, Cos
(C) $\operatorname{Sin}(C)=A B / A C=$

24/25 Cos (C) =
$B C / A C=7 / 25$
2. In Fig. 8.13, find tan $P-\cot R$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

Solution:
In the given triangle $P Q R$, the given triangle is right angled at Q and the given measures are:PR
$=13 \mathrm{~cm}$,
$P Q=12 \mathrm{~cm}$
Since the given triangle is right angled triangle, to find the side QR, apply the Pythagorean theoremAccording to Pythagorean theorem,

In a right- angled triangle, the squares of the hypotenuse side is equal to the sum of the squares of the othertwo sides.
$P R_{2}=Q R_{2}+P Q_{2}$
Substitute the values of PR and
$\mathrm{PQ}^{2} 3^{2}=\mathrm{QR}^{2+12^{2}}$
$169=$ QR $^{2}+144$
Therefore, $\mathrm{QR}^{2}=169-144$
$\mathrm{QR}^{2}=25$
$Q R=\sqrt{ } 25=5$
Therefore, the side QR $=5 \mathrm{cmTo}$
find $\tan P-\cot R$:
According to the trigonometric ratio, the tangent function is equal to the ratio of the length of the oppositeside to the adjacent sides, the value of $\tan (P)$ becomes $\tan (P)=$ Opposite side
/Adjacent side $=$ QR/PQ $=5 / 12$
Since cot function is the reciprocal of the tan function, the ratio of cot function
becomes, Cot $(R)=$ Adjacent side/Opposite side $=Q R / P Q=$
$5 / 12$ Therefore, $\tan (P)-\cot (R)=5 / 12-5 / 12$
$=0$ Therefore, $\tan (P)-\cot (R)$
$=03$. If $\sin A=3 / 4$, calculate $\cos A$ and
$\tan \mathrm{A}$.
Solution:
Let us assume a right angled triangle $A B C$, right angled at
BGiven: $\operatorname{Sin} A=3 / 4$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry
We know that, Sin function is the equal to the ratio of length of the opposite side to the hypotenuse side. Therefore, $\operatorname{Sin} \mathrm{A}=$ Opposite side $/$ Hypotenuse= 3/4

Let $B C$ be $3 k$ and $A C$ will be $4 k$
where k is a positive real
number.
According to the Pythagoras theorem, the squares of the hypotenuse side is equal to the sum of the squaresof the other two sides of a right angle triangle and we get,
$\mathrm{AC}_{2}=\mathrm{AB}_{2}+\mathrm{BC}_{2}$
Substitute the value of AC and
$B C(4 k)^{2}=A B^{2}+(3 k)^{2}$
$16 k^{2}-9 k^{2}$
$=A B_{2}$
$A B_{2}=7 k_{2}$
Therefore, $A B=\sqrt{ } 7 k$
Now, we have to find the value of $\cos A$ and \tan
AWe know that,
Cos $(A)=$ Adjacent side/Hypotenuse
Substitute the value of $A B$ and $A C$ and cancel the constant k in both numerator and denominator, we get $A B / A C=\sqrt{ } 7 k / 4 k=\sqrt{ } 7 / 4$ Therefore, $\cos (A)=\sqrt{ } 7 / 4 \tan (A)=$ Opposite side/Adjacent side
Substitute the Value of $B C$ and $A B$ and cancel the constant k in both numerator and denominator, we get, $B C / A B=3 k / \sqrt{ } 7 k=3 / \sqrt{ } 7$
Therefore, $\tan A=3 / \sqrt{ } 7$
4. Given $15 \cot A=8$, find $\sin A$ and $\sec A$.

Solution:
Let us assume a right angled triangle ABC , right angled at
BGiven: $15 \cot A=8$
So, $\operatorname{Cot} A=8 / 15$
We know that, cot function is the equal to the ratio of length of the adjacent side to the opposite side.Therefore, $\cot A=$ Adjacent side/Opposite side $=A B / B C=8 / 15$

Let $A B$ be $8 k$ and $B C$ will be $15 k$
Where, k is a positive real number.
According to the Pythagoras theorem, the squares of the hypotenuse side is equal to the sum of the squaresof the other two sides of a right angle triangle and we get,
$A C_{2}=A B_{2}+B C_{2}$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

Substitute the value of $A B$ and
BCAC $^{2}=(8 \mathrm{k})^{2}+(15 \mathrm{k})^{2}$
$A C^{2}=64 k^{2}+$
$225 \mathrm{k}^{2} \mathrm{AC}^{2}=$
289k ${ }^{2}$
Therefore, $A C=17 \mathrm{k}$
Now, we have to find the value of $\sin A$ and $s e c$
AWe know that,
$\operatorname{Sin}(A)=$ Opposite side $/$ Hypotenuse
Substitute the value of $B C$ and $A C$ and cancel the constant k in both numerator and denominator, we getSin
$A=B C / A C=15 k / 17 k=15 / 17$
Therefore, $\sin A=15 / 17$
Since secant or sec function is the reciprocal of the cos function which is equal to the ratio of the length ofthe hypotenuse side to the adjacent side.

Sec $(A)=$ Hypotenuse/Adjacent side
Substitute the Value of $B C$ and $A B$ and cancel the constant k in both numerator and denominator, we
get, $A C / A B=17 k / 8 k=17 / 8$
Therefore $\sec (A)=17 / 8$

5. Given $\sec \theta=13 / 12$ Calculate all other trigonometric ratios

Solution:
We know that sec function is the reciprocal of the cos function which is equal to the ratio of the length of thehypotenuse side to the adjacent side

Let us assume a right angled triangle $A B C$, right angled at
Bsec $\theta=13 / 12=$ Hypotenuse/Adjacent side $=A C / A B$
Let $A C$ be $13 k$ and $A B$ will be 12k
Where, k is a positive real number.
According to the Pythagoras theorem, the squares of the hypotenuse side is equal to the sum of the squaresof the other two sides of a right angle triangle and we get,
$A C_{2}=A B_{2}+B C_{2}$
Substitute the value of $A B$ and

$$
\begin{aligned}
& A C(13 k)^{2}=(12 k)^{2}+B C^{2} \\
& 169 k^{2}=144 k^{2}+B C^{2} \\
& 169 k^{2}=144 k^{2}+
\end{aligned}
$$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

$\mathrm{BC}_{2} \mathrm{BC}_{2}=169 \mathrm{k}_{2}$
$-144 k_{2} B C^{2}=$
25k ${ }_{2}$
Therefore, $\mathrm{BC}=5 \mathrm{k}$
Now, substitute the corresponding values in all other trigonometric ratiosSo,
Sin $\theta=$ Opposite Side/Hypotenuse $=$ BC/AC $=$
5/13 $\operatorname{Cos} \theta=$ Adjacent Side/Hypotenuse = AB/AC
$=12 / 13 \tan \theta=$ Opposite Side/Adjacent Side $=$
$B C / A B=5 / 12 \operatorname{Cosec} \theta=$ Hypotenuse/Opposite
Side $=A C / B C=13 / 5 \cot \theta=$ Adjacent
Side/Opposite Side $=A B / B C=12 / 5$
6. If $\angle A$ and $\angle B$ are acute angles such that $\cos A=\cos B$, then show that $\angle A=\angle B$.

Solution:
Let us assume the triangle $A B C$ in which $C D \perp A B$
Give that the angles A and B are acute angles, such
thatCos $(A)=\cos (B)$
As per the angles taken, the cos ratio is
written asAD/AC = BD/BC Now,
interchange the terms, we
getAD/BD = AC/BC
Let take a constant
valueAD/BD $=\mathrm{AC} / \mathrm{BC}=\mathrm{k}$
Now consider the
equation asAD $=k$ BD .(1)
AC = k BC ...(2)
By applying Pythagoras theorem in $\triangle C A D$ and $\triangle C B D$ we get, $C D^{2}$
$=B C^{2}-\mathrm{BD}^{2} \ldots$... (3)
$C D^{2}=A C^{2}-A D^{2} \ldots$...(4)
From the equations (3) and (4) we
get, $\mathrm{AC}^{2}-\mathrm{AD}^{2}=\mathrm{BC}^{2}-\mathrm{BD}^{2}$
Now substitute the equations (1) and (2) in (3) and
$(4) K^{2}\left(B C^{2}-B^{2}\right)=\left(B C^{2}-B^{2}\right) k^{2}=1$
Putting this value in equation, we
obtainAC = BC
$\angle A=\angle B$ (Angles opposite to equal side are equal-isosceles triangle)
7. If $\cot \theta=7 / 8$, evaluate :
(i) $(1+\sin \theta)(1-\sin \theta) /(1+\cos \theta)(1-\cos \theta)$
(ii) $\cot ^{2} \theta$

Solution:
Let us assume a $\triangle A B C$ in which $\angle B=90^{\circ}$ and $\angle C$
$=\theta$ Given:
$\cot \theta=B C / A B=7 / 8$
Let $B C=7 k$ and $A B=8 k$, where k is a positive real numberAccording
to Pythagoras theorem in $\triangle \mathrm{ABC}$ we
get.
$\mathrm{AC}_{2}=\mathrm{AB}_{2}+\mathrm{BC}_{2}$
$\mathrm{AC}^{2}=(8 \mathrm{k})^{2+}(7 \mathrm{k})^{2}$
$\mathrm{AC}^{2}=64 \mathrm{k}^{2}+49 \mathrm{k}^{2}$
$\mathrm{AC}^{2}=113 \mathrm{k}^{2}$
$A C=\sqrt{ } 113 k$
According to the sine and \cos function ratios, it is written as $\sin \theta=$ $\mathrm{AB} / \mathrm{AC}=$ Opposite Side $/$ Hypotenuse $=8 \mathrm{k} / \sqrt{ } 113 \mathrm{k}=8 / \sqrt{ } 113$ and $\cos \theta=$ Adjacent Side/Hypotenuse $=$ BC/AC $=7 k / \sqrt{ } 113 k=7 / \sqrt{ } 113$ Now apply the values of sin function and cos function:
(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta}$
$=\frac{1-\left(\frac{8}{\sqrt{113}}\right)^{2}}{1-\left(\frac{7}{\sqrt{112}}\right)^{2}}=\frac{49}{64}$
(ii) $\cot ^{2} \theta=\left(\frac{7}{8}\right)^{2}=\frac{49}{64}$

8. If $3 \cot A=4$, check whether $\left(1-\tan ^{2} A\right) /\left(1+\tan ^{2} A\right)=\cos ^{2} A-\sin ^{2} A$ or not.

Solution:

Let $\triangle A B C$ in which $\angle B=90^{\circ}$
We know that, cot function is the reciprocal of tan function and it is written

```
ascot}(A)=AB/BC=4/
```

Let $A B=4 k$ an $B C=3 k$, where k is a positive real number.According to the Pythagorean theorem,
$A C^{2}=A B^{2}+B$
C_{2}
$\mathrm{AC}^{2}=(4 \mathrm{k})^{2+}($
$3 \mathrm{k})_{2}$
$\mathrm{AC}^{2}=16 \mathrm{k}^{2}+9$
$\mathrm{k}_{2} \mathrm{AC}_{2}=25 \mathrm{k}_{2}$
$A C=5 k$
Now, apply the values corresponding to the ratios
$\tan A=B C / A B=1 / \sqrt{ } 3$
$\tan (A)=B C / A B=3 / 4$ Let
$B C=1 k$ and $A B=\sqrt{3} k$, sin
$(A)=B C / A C=3 / 5$
Where k is the positive real number of the
$\cos (A)=A B / A C=4 / 5$ problemBy
Pythagoras theorem in $\triangle A B C$ we
Now compare the left hand side(LHS) with right hand side(RHS) get:
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$A C=(\sqrt{ } 3$
$\begin{aligned} & \mathrm{k})^{2}+(k)^{2} \\ & \mathrm{AC} \\ & \mathrm{L} \cdot \overline{\mathrm{H}} \mathrm{S}^{2}+\mathrm{k}^{2}-\tan ^{2} \mathrm{~A} \\ & 1+\tan ^{2} \mathrm{~A}\end{aligned}=\frac{1-\left(\frac{3}{4}\right)^{2}}{1+\left(\frac{3}{4}\right)^{2}}=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}=\frac{7}{25}$
R.H.S. $=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}=\frac{16}{25}-\frac{9}{25}=\frac{7}{25}$

Since, both the LHS and RHS $=7 / 25$
R.H.S. =L.H.S.

Hence, $\left(1-\tan ^{2} A\right) /\left(1+\tan ^{2} A\right)=\cos ^{2} A-\sin ^{2} A$ is proved
9. In triangle $A B C$, right-angled at B, if $\tan A=1 / \sqrt{ } 3$ find the value of:
(i) $\sin A \cos C+\cos A \sin C$
(ii) $\cos A \cos C-\sin A \sin C$
$\mathrm{A}=4$
k_{2}
AC
$=2 \mathrm{k}$
Now find the values of $\cos \mathrm{A}$,
$\operatorname{Sin} A S$ in $A=B C / A C=1 / 2$
$\operatorname{Cos} A=A B / A C=\sqrt{ } 3 / 2$
Then find the values of $\cos C$ and \sin
CSin C $=A B / A C=\sqrt{ } 3 / 2$
$\operatorname{Cos} C=B C / A C=1 / 2$
Now, substitute the values in the given problem
(i) $\sin A \cos C+\cos A \sin C=(1 / 2) \times(1 / 2)+\sqrt{ } 3 / 2 \times \sqrt{ } 3 / 2=1 / 4+3 / 4$
$=1$ (ii) $\cos A \cos C-\sin A \sin C=(\sqrt{3} / 2)(1 / 2)-(1 / 2)(\sqrt{3} / 2)=0$
10. In $\triangle P Q R$, right-angled at $Q, P R+Q R=25 \mathrm{~cm}$ and $P Q=5 \mathrm{~cm}$. Determine the values of $\sin P$, cos Pand tan P

Solution:
In a given triangle PQR, right angled at Q , the following measures
arePQ $=5 \mathrm{~cm}$
$P R+Q R=25 \mathrm{~cm}$
Now let us assume, QR
$=x P R=25-Q R$
PR $=25-x$
According to the Pythagorean
Theorem, $\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$ Substitute
the value of $P R$
as $x(25-x)^{2}=5^{2}+x^{2}$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

$25^{2}+x^{2}-50 x=25+x^{2}$
$625+x^{2}-50 x-25-x^{2}=0$
$-50 \mathrm{x}=-$
$600 x=-$
600/-50
$x=12=$
QR
Now, find the value of
$P R P R=25-Q R$
Substitute the value of
$P R=13$
Now, substitute the value to the given problem
(1) $\sin p=$ Opposite Side/Hypotenuse $=$ QR/PR $=12 / 13$
(2) $\operatorname{Cos} p=$ Adjacent Side/Hypotenuse $=P Q / P R=5 / 13$
(3) tan $p=O p p o s i t e$ Side/Adjacent side $=Q R / P Q=12 / 5$
11. State whether the following are true or false. Justify your answer.
(i) The value of $\tan \mathrm{A}$ is always less than 1.
(ii) $\sec A=12 / 5$ for some value of angle A.
(iii) $\cos \mathrm{A}$ is the abbreviation used for the cosecant of angle A .
(iv) $\cot \mathrm{A}$ is the product of cot and A .
(v) $\sin \theta=4 / 3$ for some angle θ.

Solution:
(i) The value of $\tan A$ is always less than
1.Answer: False

Proof: $\ln \triangle \mathrm{MNC}$ in which $\angle \mathrm{N}=$
$90 \circ, \mathrm{MN}=3, \mathrm{NC}=4$ and $\mathrm{MC}=$

5
Value of $\tan M=4 / 3$ which is greater than 1 .
The triangle can be formed with sides equal to 3,4 and hypotenuse $=5$ as it will follow the Pythagorastheorem.
$\mathrm{MC}^{2}=\mathrm{MN}^{2}+$
NC_{2}
$5_{2}=3_{2}+4_{2}$
$25=9+16$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

$25=25$
(ii) $\sec A=12 / 5$ for some value of angle AAnswer:

True
Justification: Let a $\triangle M N C$ in which $\angle N=90^{\circ}$,
$M C=12 k$ and $M B=5 k$, where k is a positive real
number.By Pythagoras theorem we get,
$\mathrm{MC}^{2}=\mathrm{MN}^{2}+\mathrm{N}$
C_{2}
$(12 k)=(5 k)^{2+}$
NC_{2}
$\mathrm{NC}^{2}+25 \mathrm{k}^{2}=14$
$4 \mathrm{k}_{2}$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

(iii) $\cos \mathrm{A}$ is the abbreviation used for the cosecant of angle A.Answer: False

Justification: Abbreviation used for cosecant of angle M is cosec M. cos M is the abbreviation used forcosine of angle M. (iv) cot A is the product of cot and A.Answer: False

Justification: $\cot \mathrm{M}$ is not the product of \cot and M . It is the cotangent of $\angle \mathrm{M}$.
(v) $\sin \theta=4 / 3$ for some angle θ.Answer: False

Justification: $\sin \theta=$ Opposite/Hypotenuse
We know that in a right angled triangle, Hypotenuse is the longest side.
$\therefore \sin \theta$ will always less than 1 and it can never be $4 / 3$ for any value of θ.

EXERCISE 8.2

1. Evaluate the following:
(i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60$
(iii) $\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
(iv) $\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
(v) $\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

Solution:
(i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

First, find the values of the given trigonometric
ratiossin $30^{\circ}=1 / 2 \cos 30^{\circ}=$
$\sqrt{3} / 2 \sin 60^{\circ}$
$=3 / 2 \mathrm{cos}$
$60^{\circ}=1 / 2$
Now, substitute the values in the given problem $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos$
$60^{\circ}=\sqrt{ } 3 / 2 \times \sqrt{ } 3 / 2+(1 / 2) \times(1 / 2)=3 / 4+1 / 4=4 / 4=1$
(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60$

We know that, the values of the trigonometric ratios
$\cos 30^{\circ}=\sqrt{ } 3 / 2$
$\tan 45^{\circ}=1$
Substitute the values in the given problem
$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60=2(1)^{2}+(\sqrt{3} / 2)^{2-}(\sqrt{3} / 2)^{2}$
$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60=2+0$
$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60=2$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

(iii) $\cos 45^{\circ} /\left(\sec 30^{\circ}+\operatorname{cosec}\right.$
30°)We know that, $\cos 45^{\circ}$
$=1 / \sqrt{ } 2$
$\sec 30^{\circ}=$
$2 / \sqrt{3}$ cosec
$30^{\circ}=2$
Substitute the values, we get
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}=\frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}}+2}=\frac{\frac{1}{\sqrt{2}}}{\frac{2+2 \sqrt{2}}{\sqrt{2}}}$
$=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2+2 \sqrt{3}}$
$=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2(1+\sqrt{3})}=\frac{\sqrt{3}}{2 \sqrt{2}(1+\sqrt{3})}=\frac{\sqrt{3}}{2 \sqrt{2}(\sqrt{3}+1)}$
Now, rationalize the terms we get,

$$
=\frac{\sqrt{3}}{2 \sqrt{2}(\sqrt{3}+1)} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{3-\sqrt{3}}{2 \sqrt{2}(3-1)}=\frac{3-\sqrt{3}}{2 \sqrt{2}(2)}
$$

Now, multiply both the numerator and denominator by $\sqrt{ } 2$, we get

$$
=\frac{3-\sqrt{3}}{2 \sqrt{2}(2)} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}-\sqrt{3} \sqrt{2}}{8}=\frac{3 \sqrt{2}-\sqrt{6}}{8}
$$

Therefore, $\cos 45^{\circ} /\left(\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}\right)=(3 \sqrt{ } 2-\sqrt{ } 6) / 8$

$$
\text { (iv) } \frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}
$$

We know that,
$\sin 30^{\circ}=1 / 2 \tan$
$45^{\circ}=1 \mathrm{cosec}$
$60^{\circ}=2 / \sqrt{ } 3 \mathrm{sec}$
$30^{\circ}=2 / \sqrt{ } 3 \cos$
$60^{\circ}=1 / 2 \cot 45^{\circ}$
= 1
Substitute the values in the given problem, we get
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}=\frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}+\frac{1}{2}+1}=\frac{\frac{\sqrt{3}+2 \sqrt{3}-4}{2 \sqrt{3}}}{\frac{4+\sqrt{3}+2 \sqrt{3}}{2 \sqrt{3}}}$
Now, cancel the term $2 \sqrt{3}$, in numerator and denominator, we get $=\frac{\sqrt{3}+2 \sqrt{3}-4}{4+\sqrt{3}+2 \sqrt{3}}=\frac{3 \sqrt{3}-4}{3 \sqrt{3}+4}$
Now, rationalize the terms
$=\frac{3 \sqrt{3}-4}{3 \sqrt{3}+4} \times \frac{3 \sqrt{3}-4}{3 \sqrt{3}-4}$
$=\frac{27-12 \sqrt{3}-12 \sqrt{3}+16}{27-12 \sqrt{3}+12 \sqrt{3}+16}=\frac{27-24 \sqrt{3}+16}{11}=\frac{43-24 \sqrt{3}}{11}$
Therefore,
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}=\frac{43-24 \sqrt{3}}{11}$
(v) $\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

We know
that, cos
$60^{\circ}=1 / 2$
$\sec 30^{\circ}=$
$2 / \sqrt{3} \tan$
$45^{\circ}=1 \sin$
$30^{\circ}=1 / 2$
$\cos 30^{\circ}=$
$\sqrt{ } 3 / 2$
$=(5 / 4+16 / 3-1) /(1 / 4+3 / 4)$
$=(15+64-12) / 12 /(4 / 4)$
= 67/12
2. Choose the correct option and justify your choice :(i) $2 \tan 30^{\circ} / 1+\tan 230^{\circ}=$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry
(A) $\sin 60^{\circ}$
(B) $\cos 60^{\circ}$
(C) $\tan 60^{\circ}$
(D) sin
30° (ii) 1-tan $245^{\circ} / 1+\tan ^{2} 45^{\circ}=$
(A) $\tan 90^{\circ}$
(B) 1
(C) $\sin 45^{\circ}$ (iii) $\sin 2 A=2$
(D) 0 $\sin A$ is true when $A=$
(A) 0°
(B) 30°
(C) 45°
(D) 60°
(iv) $2 \tan 30^{\circ} / 1-\tan 230^{\circ}=$
(A) $\cos 60^{\circ}$
(B) $\sin 60^{\circ}$
(C) $\tan 60^{\circ}$
(D) $\sin 30^{\circ}$

Solution:
(i) (A) is correct.

Substitute the of $\tan 30^{\circ}$ in the given equationtan
$30^{\circ}=1 / \sqrt{ } 3$
$2 \tan 30^{\circ} / 1+\tan 230^{\circ}=2(1 / \sqrt{ } 3) / 1+(1 / \sqrt{ } 3)^{2}$
$=(2 / \sqrt{ } 3) /(1+1 / 3)=(2 / \sqrt{ } 3) /(4 / 3)$
$=6 / 4 \sqrt{ } 3=\sqrt{ } 3 / 2=\sin 60^{\circ}$
The obtained solution is equivalent to the trigonometric ratio $\sin 60^{\circ}$
(ii) (D) is correct.

Substitute the of $\tan 45^{\circ}$ in the given equationtan
$45^{\circ}=1$
$1-\tan ^{2} 45^{\circ} / 1+\tan ^{2} 45^{\circ}=\left(1-1^{2}\right) /\left(1+1^{2}\right)$
$=0 / 2=0$
The solution of the above equation is 0 .
(iii) (A) is correct.

To find the value of A, substitute the degree given in the options one by onesin
$2 A=2 \sin A$ is true when $A=0^{\circ}$
As $\sin 2 A=\sin 0^{\circ}=0$
$2 \sin A=2 \sin 0^{\circ}=2 \times 0$
$=0 \mathrm{or}$,
Apply the $\sin 2 A$ formula, to find the degree
valuesin $2 A=2 \sin A \cos A \Rightarrow 2 \sin A \cos A$
$=2 \sin A$
$\Rightarrow 2 \cos A=2 \Rightarrow \cos A=1$
Now, we have to check, to get the solution as 1 , which degree value has to be applied. When
0 degree is applied to \cos value, i.e., $\cos 0=1$
Therefore, $\Rightarrow A=0^{\circ}$
(iv) (C) is correct.

Substitute the of $\tan 30^{\circ}$ in the given equationtan
$30^{\circ}=1 / \sqrt{ } 3$
$2 \tan 30^{\circ} / 1-\tan ^{2} 30^{\circ}=2(1 / \sqrt{ } 3) / 1-(1 / \sqrt{ } 3)^{2}$
$=(2 / \sqrt{ } 3) /(1-1 / 3)=(2 / \sqrt{ } 3) /(2 / 3)=\sqrt{ } 3=\tan 60^{\circ}$
The value of the given equation is equivalent to tan 60°.
3. If $\tan (A+B)=\sqrt{ } 3$ and $\tan (A-B)=1 / \sqrt{ } 3,0^{\circ}<A+B \leq 90^{\circ} ; A>B$, find A and B.

Solution: tan
$(A+B)=\sqrt{ } 3$
Since $\sqrt{3}=$
$\tan 60^{\circ}$
Now substitute the degree value
$\Rightarrow \tan (A+B)=\tan$
$60^{\circ}(A+B)=60^{\circ} \ldots$
(i)

The above equation is assumed as
equation (i)tan $(A-B)=1 / \sqrt{ } 3$ Since
$1 / \sqrt{ } 3=\tan 30^{\circ}$
Now substitute the degree value
$\Rightarrow \tan (A-B)=\tan 30^{\circ}$
$(A-B)=30^{\circ}$... equation (ii) Now add
the equation (i) and (ii), we get $A+B$
$+\mathrm{A}-\mathrm{B}=60^{\circ}+30^{\circ}$ Cancel the terms
$B 2 A=90^{\circ}$
$\mathrm{A}=45^{\circ}$
Now, substitute the value of A in equation (i) to find the value of
$B 45^{\circ}+B=60^{\circ}$
$B=60^{\circ}-45^{\circ}$
$B=15^{\circ}$
Therefore $A=45^{\circ}$ and $B=15^{\circ}$
4. State whether the following are true or false. Justify your answer.

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

(i) $\sin (A+B)=\sin A+\sin B$.
(ii) The value of $\sin \theta$ increases as θ increases.
(iii) The value of $\cos \theta$ increases as θ increases.
(iv) $\sin \theta=\cos \theta$ for all values of θ.
(v) $\cot \mathrm{A}$ is not defined for $\mathrm{A}=0^{\circ}$.

Solution: (i)
False.
Let us take $A=30^{\circ}$ and $B=60^{\circ}$, then
Substitute the values in the $\sin (A+B)$ formula, we
getsin $(A+B)=\sin \left(30^{\circ}+60^{\circ}\right)=\sin 90^{\circ}=1$ and,
$\sin A+\sin B=\sin 30^{\circ}+\sin 60^{\circ}$
$=1 / 2+\sqrt{ } 3 / 2=1+\sqrt{ } 3 / 2$
Since the values obtained are not equal, the solution is false.
(ii) True. Justificat ion:

According to the values obtained as per the unit circle, the values of sin
are: $\sin 0^{\circ}=0 \sin 30^{\circ}=1 / 2 \sin 45^{\circ}=1 / \sqrt{2} \sin 60^{\circ}=\sqrt{3} / 2 \sin$
$90^{\circ}=1$
Thus the value of $\sin \theta$ increases as θ increases. Hence, the statement is true
(iii) False.

According to the values obtained as per the unit circle, the values of cos
are: $\cos 0^{\circ}=1 \cos 30^{\circ}=\sqrt{ } 3 / 2 \cos 45^{\circ}=1 / \sqrt{ } 2 \cos 60^{\circ}=1 / 2 \cos 90^{\circ}=0$
Thus, the value of $\cos \theta$ decreases as θ increases. So, the statement given above is false.
(iv) False $\sin \theta=\cos \theta$, when a right triangle has 2 angles of (п/4). Therefore, the above statement is false.
(v) True.

Since cot function is the reciprocal of the tan function, it is also written
as: $\cot A=\cos A / \sin A$ Now substitute $A=0^{\circ} \cot 0^{\circ}=\cos 0^{\circ} / \sin 0^{\circ}=$
$1 / 0=$ undefined. Hence, it is true

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

EXERCISE 8.3

1. Express the trigonometric ratios $\sin A, \sec A$ and $\tan A$ in terms of $\cot A$.

Solution:
To convert the given trigonometric ratios in terms of cot functions, use trigonometric formulasWe know that, $\operatorname{cosec}^{2} \mathrm{~A}-\cot ^{2} \mathrm{~A}=1 \operatorname{cosec}^{2} \mathrm{~A}=1+\cot ^{2} \mathrm{~A}$ Since cosec function is the inverse of sin function, it is written as
$1 / \sin ^{2} A=1+\cot ^{2} A$ Now,
rearrange the terms, it
becomessin² $A=$
$1 /\left(1+\cot ^{2} \mathrm{~A}\right)$
Now, take square roots on both sides, we getsin
$A= \pm 1 /\left(\sqrt{ }\left(1+\cot ^{2} A\right)\right.$
The above equation defines the sin function in terms of cot function Now, to express sec function in terms of cot function, use this formulasin ${ }^{2} A=1 /\left(1+\cot ^{2} A\right)$ Now, represent the \sin function as cos function $1-\cos ^{2} A=1 /\left(1+\cot ^{2} A\right)$ Rearrange the terms, $\cos ^{2} A=$ 1 -
$1 /\left(1+\cot ^{2} A\right)$
$\Rightarrow \cos ^{2} A=\left(1-1+\cot ^{2} A\right) /\left(1+\cot ^{2} A\right)$
Since sec function is the inverse of cos function,
$\Rightarrow 1 / \sec ^{2} A=\cot ^{2} A /\left(1+\cot ^{2} A\right)$
Take the reciprocal and square roots on both sides, we get
$\Rightarrow \sec A= \pm \sqrt{ }\left(1+\cot ^{2} A\right) / \cot A$
Now, to express tan function in terms of cot functiontan
$A=\sin A / \cos A$ and $\cot A=\cos$
A/sin A
Since cot function is the inverse of tan function, it is rewritten
$\operatorname{astan} A=1 / \cot A$
2. Write all the other trigonometric ratios of $\angle A$ in terms of sec A.

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

Solution:
Cos A function in terms of $\sec A$:
$\sec A=1 / \cos A \Rightarrow \cos A=1 / s e c$
A sec A function in terms of sec
A:
$\cos ^{2} A+\sin ^{2} A=1$ Rearrange the
termssin2 $A=1-\cos ^{2} A \sin ^{2} A=1-$
$\left(1 / \sec ^{2} A\right) \sin ^{2} A=\left(\sec ^{2} A-1\right) / \sec ^{2} A$
$\sin A= \pm \sqrt{ }\left(\sec ^{2} A-1\right) / \sec A \operatorname{cosec}$
A function in terms of $\sec A$:
$\sin A=1 / \operatorname{cosec} A \Rightarrow \operatorname{cosec} A=1 / \sin A$
$\operatorname{cosec} A= \pm \sec A / V\left(\sec ^{2} A-1\right)$ Now,
$\tan A$ function in terms of $\sec A$:
$\sec ^{2} A-\tan ^{2} A=1$
Rearrange the terms
$\Rightarrow \tan ^{2} \mathrm{~A}=\sec ^{2} \mathrm{~A}$
$-1 \tan A=\sqrt{ }\left(\sec ^{2} A-1\right) \cot A$
function in terms of sec A :
$\tan A=1 / \cot A \Rightarrow \cot A$
$=1 / \tan A \cot A=$
$\pm 1 / \sqrt{ }\left(\sec ^{2} A-1\right)$
3. Evaluate:
(i) $\left(\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}\right) /\left(\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}\right)$
(ii) $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

Solution:
(i) $\left(\sin ^{2} 63^{\circ}+\sin 227^{\circ}\right) /\left(\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}\right)$

To simplify this, convert some of the sin functions into cos functions and cos function into sin function and itbecomes,
$\left.=\left[\sin ^{2}\left(90^{\circ}-27^{\circ}\right)+\sin ^{2} 27^{\circ}\right] /\left[\cos ^{2}\left(90^{\circ}-73^{\circ}\right)+\cos ^{2} 73^{\circ}\right)\right]$
$=\left(\cos ^{2} 27^{\circ}+\sin ^{2} 27^{\circ}\right) /\left(\sin ^{2} 27^{\circ}+\cos ^{2} 73^{\circ}\right)$
$=1 / 1=1 \quad\left(\right.$ since $\left.\sin ^{2} A+\cos ^{2} A=1\right)$
Therefore, $\left(\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}\right) /\left(\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}\right)$
(ii) $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

To simplify this, convert some of the sin functions into cos functions and cos function into sin function and itbecomes,
$=\sin \left(90^{\circ}-25^{\circ}\right) \cos 65^{\circ}+\cos \left(90^{\circ}-65^{\circ}\right) \sin 65^{\circ}$
$=\cos 65^{\circ} \cos 65^{\circ}+\sin 65^{\circ} \sin 65^{\circ}$
$=\cos ^{2} 65^{\circ}+\sin ^{2} 65^{\circ}=1\left(\right.$ since $\sin ^{2} A+\cos ^{2} A$
$=1)$ Therefore, $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ}$
$\sin 65^{\circ}=1$
4. Choose the correct option. Justify your choice.
(i) $9 \sec ^{2} A-9 \tan ^{2} A=$
(A) 1
(B) 9
(C) 8
(D) 0
(ii) $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$
(A) 0
(B) 1
(C) 2
(D) -1
(iii) $(\sec A+\tan A)(1-\sin A)=$
(A) $\sec A$
(B) $\sin A$
(C) cosec A
(D) $\cos A$
(iv) $1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}=$
(A) $\sec ^{2} A$
(B) -1
(C) $\cot ^{2} A$
(D) $\tan ^{2} A$

Solution: (i)
(B) is
correct.
Justification:
Take 9 outside, and it becomes 9
$\sec ^{2} A-9 \tan ^{2} A$
$=9\left(\sec ^{2} A-\tan ^{2} A\right)$
$=9 \times 1=9 \quad(\because \sec 2 A-\tan 2 A=1)$
Therefore, $9 \sec ^{2} \mathrm{~A}-9 \tan ^{2} \mathrm{~A}=9$
(ii) (C) is
correct
Justification:
$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec}$
$\theta)$ We know that, $\tan \theta=\sin \theta / \cos$
$\theta \sec \theta=1 / \cos \theta$
$\cot \theta=\cos \theta / \sin$
$\theta \operatorname{cosec} \theta=1 / \sin$

Now, substitute the above values in the given problem, we get
$=(1+\sin \theta / \cos \theta+1 / \cos \theta)(1+\cos \theta / \sin \theta-1 / \sin \theta)$
Simplify the above equation,
$=(\cos \theta+\sin \theta+1) / \cos \theta \times(\sin \theta+\cos \theta-1) / \sin \theta$
$=(\cos \theta+\sin \theta)^{2-1} 2 /(\cos \theta \sin \theta)$
$=\left(\cos ^{2} \theta+\sin ^{2} \theta+2 \cos \theta \sin \theta-1\right) /(\cos \theta \sin \theta)$
$=(1+2 \cos \theta \sin \theta-1) /(\cos \theta \sin \theta)\left(\right.$ Since $\left.\cos ^{2} \theta+\sin ^{2} \theta=1\right)$
$=(2 \cos \theta \sin \theta) /(\cos \theta \sin \theta)=2$
Therefore, $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=2$
(iii) (D) is
correct.
Justification:
We know
that, Sec
$A=1 / \cos A$
$\operatorname{Tan} A=\sin A / \cos A$
Now, substitute the above values in the given problem, we get

```
(sec}A+\operatorname{tan}A)(1-\operatorname{sin}A
=(1/\operatorname{cos}A+\operatorname{sin}A/\operatorname{cos}A)(1-\operatorname{sin}A)
= (1+\operatorname{sin}A/\operatorname{cos}A)(1-\operatorname{sin}A)
=(1- 缶2A)/cos A
= 此2}2\textrm{A}/\operatorname{cos}\textrm{A}=\operatorname{cos}\textrm{A
```

Therefore, $(\sec A+\tan A)(1-\sin A)=\cos A$
(iv) (D) is correct.

We know
that, $\tan ^{2} \mathrm{~A}$
$=1 / \cot ^{2} \mathrm{~A}$
Now, substitute this in the given problem, we get
$1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}$
$=\left(1+1 / \cot ^{2} \mathrm{~A}\right) / 1+\cot ^{2} \mathrm{~A}$
$=\left(\cot ^{2} A+1 / \cot ^{2} A\right) \times\left(1 / 1+\cot ^{2} A\right)$
$=1 / \cot ^{2} \mathrm{~A}=\tan ^{2} \mathrm{~A}$
So, $1+\tan ^{2} A / 1+\cot ^{2} A=\tan ^{2} A$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

5. Prove the following identities, where the angles involved are acute angles for which theexpressions are defined.
(i) $(\operatorname{cosec} \theta-\cot \theta)^{2}=(1-\cos \theta) /(1+\cos \theta)$
(ii) $\cos A /(1+\sin A)+(1+\sin A) / \cos A=2 \sec A$
(iii) $\tan \theta /(1-\cot \theta)+\cot \theta /(1-\tan \theta)=1+\sec \theta \operatorname{cosec} \theta$
(iv) $(1+\sec A) / \sec A=\sin ^{2} A /(1-\cos A)$
[Hint : Simplify LHS and RHS separately]
(v) $(\cos A-\sin A+1) /(\cos A+\sin A-1)=\operatorname{cosec} A+\cot A$, using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$.
(vi) $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
(vii) $\left(\sin \theta-2 \sin ^{3} \theta\right) /\left(2 \cos ^{3} \theta-\cos \theta\right)=\tan \theta$
(viii) $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
(ix) $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=1 /(\tan A+\cot A)$
[Hint : Simplify LHS and RHS separately] (x) $\left(1+\tan ^{2} A / 1+\cot ^{2} A\right)=(1-\tan A / 1-\cot A)^{2}=\tan ^{2} A$
Solution:
(i) $(\operatorname{cosec} \theta-\cot \theta)^{2}=(1-\cos \theta) /(1+\cos \theta)$

To prove this, first take the Left-Hand side (L.H.S) of the given equation, to prove the Right Hand Side(R.H.S)
L.H.S. $=(\operatorname{cosec} \theta-\cot \theta)^{2}$

The above equation is in the form of $(a-b)^{2}$, and
expand it Since $(a-b)^{2}=a^{2}+b^{2}-2 a b$ Here
$\mathrm{a}=\operatorname{cosec} \theta$ and $\mathrm{b}=\cot \theta$
$=\left(\operatorname{cosec}^{2} \theta+\cot ^{2} \theta-2 \operatorname{cosec} \theta \cot \theta\right)$
Now, apply the corresponding inverse functions and equivalent ratios to simplify
$=\left(1 / \sin ^{2} \theta+\cos ^{2} \theta / \sin ^{2} \theta-2 \cos \theta / \sin ^{2} \theta\right)$
$=\left(1+\cos ^{2} \theta-2 \cos \theta\right) /\left(1-\cos ^{2} \theta\right)$
$=(1-\cos \theta)^{2} /(1-\cos \theta)(1+\cos \theta)$
$=(1-\cos \theta) /(1+\cos \theta)=$ R.H.S.
Therefore, $(\operatorname{cosec} \theta-\cot \theta)^{2}=(1-\cos \theta) /(1+\cos$
$\theta)$ Hence proved.
(ii) $(\cos A /(1+\sin A))+((1+\sin A) / \cos A)=2$
sec ANow, take the L.H.S of the given equation.
L.H.S. $=(\cos A /(1+\sin A))+((1+\sin A) / \cos A)$
$=\left[\cos ^{2} A+(1+\sin A)^{2}\right] /(1+\sin A) \cos A$
$=\left(\cos ^{2} A+\sin ^{2} A+1+2 \sin A\right) /(1+\sin$
A) $\cos A$ Since $\cos ^{2} A+\sin ^{2} A=1$, we
can
write it as
$=(1+1+2 \sin A) /(1+\sin A) \cos A$
$=(2+2 \sin A) /(1+\sin A) \cos A$
$=2(1+\sin A) /(1+\sin A) \cos A$
$=2 / \cos A=2 \sec A=$ R.H.S. L.H.S.
$=$ R.H.S.
$(\cos A /(1+\sin A))+((1+\sin A) / \cos A)=2$
sec AHence proved.
(iii) $\tan \theta /(1-\cot \theta)+\cot \theta /(1-\tan \theta)=1+\sec \theta \operatorname{cosec} \theta$
L.H.S. $=\tan \theta /(1-\cot \theta)+\cot \theta /(1-$
$\tan \theta)$ We know that $\tan \theta=\sin \theta / \cos$
$\theta \cot \theta=\cos \theta / \sin \theta$
Now, substitute it in the given equation, to convert it in a simplified form
$=[(\sin \theta / \cos \theta) / 1-(\cos \theta / \sin \theta)]+[(\cos \theta / \sin \theta) / 1-(\sin \theta / \cos \theta)]$
$=[(\sin \theta / \cos \theta) /(\sin \theta-\cos \theta) / \sin \theta]+[(\cos \theta / \sin \theta) /(\cos \theta-\sin \theta) / \cos \theta]$
$=\sin ^{2} \theta /[\cos \theta(\sin \theta-\cos \theta)]+\cos ^{2} \theta /[\sin \theta(\cos \theta-$
$\sin \theta)]=\sin ^{2} \theta /[\cos \theta(\sin \theta-\cos \theta)]-\cos ^{2} \theta /[\sin$
$\theta(\sin \theta-\cos \theta)]$
$=1 /(\sin \theta-\cos \theta)\left[\left(\sin ^{2} \theta / \cos \theta\right)-\left(\cos ^{2} \theta / \sin \theta\right)\right]$
$=1 /(\sin \theta-\cos \theta) \times\left[\left(\sin ^{3} \theta-\cos ^{3} \theta\right) / \sin \theta \cos \theta\right]$
$=\left[(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)\right] /[(\sin \theta-\cos \theta) \sin \theta \cos \theta]$
$=(1+\sin \theta \cos \theta) / \sin \theta \cos \theta$
$=1 / \sin \theta \cos \theta+1=1$
$+\sec \theta \operatorname{cosec} \theta=$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

R.H.S.Therefore,
L.H.S.
= R.H.S.
Hence proved
(iv) $(1+\sec A) / \sec A=\sin ^{2} A /(1-$
$\cos A$) First find the simplified form
of L.H.S
L.H.S. $=(1+\sec A) / \sec A$

Since secant function is the inverse function of cos function and it is written as
$=(1+1 / \cos A) / 1 / \cos A$
$=(\cos A+1) / \cos A / 1 / \cos A$
Therefore, $(1+\sec A) / \sec A=\cos A+1$ R.H.S.
$=\sin ^{2} A /(1-\cos A)$
We know that $\sin ^{2} A=\left(1-\cos ^{2} A\right)$, we get
$=\left(1-\cos ^{2} A\right) /(1-\cos A)$
$=(1-\cos A)(1+\cos A) /(1-\cos A)$
Therefore, $\sin ^{2} A /(1-\cos A)=\cos A+1$
L.H.S. = R.H.S.

Hence proved
(v) $(\cos A-\sin A+1) /(\cos A+\sin A-1)=\operatorname{cosec} A+\cot A$, using the identity $\operatorname{cosec}^{2} A=$ $1+\cot ^{2} A$. With the help of identity function, $\operatorname{cosec}^{2} A=1+\cot ^{2} A$, let us prove the above equation.
L.H.S. $=(\cos A-\sin A+1) /(\cos A+\sin A-1)$

Divide the numerator and denominator by $\sin \mathrm{A}$, we get
$=(\cos A-\sin A+1) / \sin A /(\cos A+\sin A-1) / \sin A$
We know that $\cos A / \sin A=\cot A$ and $1 / \sin A=\operatorname{cosec} A$
$=(\cot A-1+\operatorname{cosec} A) /(\cot A+1-\operatorname{cosec} A)$
$=\left(\cot A-\operatorname{cosec}^{2} A+\cot ^{2} A+\operatorname{cosec} A\right) /(\cot A+1-\operatorname{cosec} A)\left(u \operatorname{cosing}^{\operatorname{cosec}^{2} A-\cot ^{2} A=1}\right.$
$=\left[(\cot A+\operatorname{cosec} A)-\left(\operatorname{cosec}^{2} A-\cot ^{2} A\right)\right] /(\cot A+1-\operatorname{cosec} A)$
$=[(\cot A+\operatorname{cosec} A)-(\operatorname{cosec} A+\cot A)(\operatorname{cosec} A-\cot A)] /(1-\operatorname{cosec} A+\cot A)$
$=(\cot A+\operatorname{cosec} A)(1-\operatorname{cosec} A+\cot A) /(1-\operatorname{cosec} A+\cot A)=$ $\cot A+\operatorname{cosec} A=$ R.H.S.

Therefore, $(\cos A-\sin A+1) /(\cos A+\sin A-1)=\operatorname{cosec} A+\cot A$
Hence Proved
(vi) $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
L.H.S $=\sqrt{\frac{1+\sin A}{1-\sin A}}$

First divide the numerator and denominator of L.H.S. by $\cos A$,

$$
=\sqrt{\frac{\frac{1}{\cos A}+\frac{\sin A}{\cos A}}{\cos A}-\frac{\sin A}{\cos A}}
$$

We know that $1 / \cos A=\sec A$ and $\sin A / \cos A=\tan A$ and it becomes,
$=\sqrt{ }(\sec A+\tan A) /(\sec A-\tan$
A) Now using rationalization,
we get

$$
\begin{aligned}
& =\sqrt{\frac{\sec A+\tan A}{\sec A-\tan A}} \times \sqrt{\frac{\sec A+\tan A}{\sec A+\tan A}} \\
& =\sqrt{\frac{(\sec A+\tan A)^{2}}{\sec ^{2} A-\tan ^{2} A}} \\
& =(\sec A+\tan A) / 1 \\
& =\sec A+\tan A=
\end{aligned}
$$

R.H.SHence proved
(vii) $\left(\sin \theta-2 \sin ^{3} \theta\right) /\left(2 \cos ^{3} \theta-\cos \theta\right)=\tan \theta$
L.H.S. $=\left(\sin \theta-2 \sin ^{3} \theta\right) /\left(2 \cos ^{3} \theta-\cos \theta\right)$

Take $\sin \theta$ as in numerator and $\cos \theta$ in denominator as outside, it becomes
$=\left[\sin \theta\left(1-2 \sin ^{2} \theta\right)\right] /\left[\cos \theta\left(2 \cos ^{2} \theta-\right.\right.$
1)] We know that $\sin ^{2} \theta=1-\cos ^{2} \theta$
$=\sin \theta\left[1-2\left(1-\cos ^{2} \theta\right)\right] /\left[\cos \theta\left(2 \cos ^{2} \theta-1\right)\right]$

```
= [sin 0(2\mp@subsup{\operatorname{cos}}{}{2}0-1)]/[cos 0(2\mp@subsup{\operatorname{cos}}{}{2}0-1)]
= tan 0= R.H.S.
```

Hence proved
(viii) $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
L.H.S. $=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec$
$A)^{2} I t$ is of the form $(a+b)^{2}$, expand it
$(\mathrm{a}+\mathrm{b})_{2}=\mathrm{a}_{2}+\mathrm{b}_{2}+2 \mathrm{ab}$
$=\left(\sin ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \operatorname{cosec} A\right)+\left(\cos ^{2} A+\sec ^{2} A+2 \cos A \sec A\right)$
$=\left(\sin ^{2} A+\cos ^{2} A\right)+2 \sin A(1 / \sin A)+2 \cos A(1 / \cos A)+1+\tan ^{2} A+1+\cot ^{2} A$
$=1+2+2+2+\tan ^{2} \mathrm{~A}+\cot ^{2} \mathrm{~A}$
$=7+\tan ^{2} A+\cot ^{2} A=$ R.H.S.
Therefore, $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
Hence proved.
(ix) $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=1 /(\tan$
$A+\cot A)$ First, find the simplified form of L.H.S
L.H.S. $=(\operatorname{cosec} A-\sin A)(\sec A-\cos A)$

Now, substitute the inverse and equivalent trigonometric ratio forms

```
=(1/\operatorname{sin}A-\operatorname{sin}A)(1/\operatorname{cos}A-\operatorname{cos}A)
= [(1-\mp@subsup{\operatorname{sin}}{}{2}A)/\operatorname{sin}A][(1-\mp@subsup{\operatorname{cos}}{}{2}A)/\operatorname{cos}A]
=(\mp@subsup{\operatorname{cos}}{}{2}A/\operatorname{sin}A)\times(\mp@subsup{\operatorname{sin}}{}{2}A/\operatorname{cos}A)
= cos A sin A
```

Now, simplify the R.H.S
R.H.S. $=1 /(\tan A+\cot A)$
$=1 /(\sin A / \cos A+\cos A / \sin A)$
$=1 /\left[\left(\sin ^{2} A+\cos ^{2} A\right) / \sin A \cos A\right]$
$=\cos A \sin A$
L.H.S. = R.H.S.
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=1 /(\tan A+\cot A)$
Hence proved
$(x)\left(1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}\right)=(1-\tan \mathrm{A} / 1-\cot \mathrm{A})^{2}=\tan ^{2} \mathrm{~A}$
L.H.S. $=\left(1+\tan ^{2} A / 1+\cot ^{2} A\right)$

NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry

Since cot function is the inverse of tan function,
$=\left(1+\tan ^{2} \mathrm{~A} / 1+1 / \tan ^{2} \mathrm{~A}\right)$
$=1+\tan ^{2} \mathrm{~A} /\left[\left(1+\tan ^{2} \mathrm{~A}\right) / \tan ^{2} \mathrm{~A}\right]$
Now cancel the $1+\tan ^{2} A$ terms, we get
$=\tan ^{2} \mathrm{~A}$
$\left(1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}\right)=$
$\tan ^{2}$ A Similarly, (1-
$\tan A / 1-\cot A)^{2}=$
$\tan ^{2} \mathrm{~A}$ Hence proved

