SECTION - A

1. The vernier scale used for measurement has a positive zero error of 0.2 mm . If while taking a measurement it was noted that 'o' on the vernier scale lies between 8.5 cm and 8.6 cm , vernier coincidence is 6 , then the correct value of measurement is \qquad cm. (least count $=0.01 \mathrm{~cm}$)
(1) 8.36 cm
(2) 8.56 cm
(3) 8.58 cm
(4) 8.54 cm

Sol. (4)

Reading $=$ MSR + VSD \times LC - zero error
Reading $=8.5+\frac{(0.1) \times 6}{10}-\frac{0.2}{10}=8.54 \mathrm{~cm}$
2. For what value of displacement the kinetic energy and potential energy of a simple harmonic oscillation become equal ?
(1) $x=\frac{A}{2}$
(2) $x=0$
(3) $x= \pm A$
(4) $x= \pm \frac{A}{\sqrt{2}}$

Sol. (4)
$K E=P E$
$\frac{1}{2} k\left(A^{2}-X^{2}\right)=\frac{1}{2} K X^{2}$
$A^{2}-X^{2}=X^{2}$
$2 X^{2}=A^{2}$
$X^{2}=\frac{A^{2}}{\sqrt{2}}$
$x= \pm \frac{A}{\sqrt{2}}$
3. An electron of mass m and a photon have same energy E. The ratio of wavelength of electron to that of photon is : (c being the velocity of light)
(1) $\left(\frac{E}{2 m}\right)^{1 / 2}$
(2) $\frac{1}{c}\left(\frac{E}{2 m}\right)^{1 / 2}$
(3) $c(2 m E)^{1 / 2}$
(4) $\frac{1}{C}\left(\frac{2 m}{E}\right)^{1 / 2}$

Sol. (2)

For photon $E=\frac{h c}{\lambda}$

$$
\begin{equation*}
\lambda_{\mathrm{P}}=\frac{\mathrm{hc}}{\mathrm{E}} \tag{i}
\end{equation*}
$$

For electron $\quad \lambda_{\mathrm{e}}=\frac{\mathrm{hc}}{\sqrt{2 \mathrm{mE}}} \ldots$
$\frac{\lambda_{e}}{\lambda_{p}}=\frac{\frac{h c}{\sqrt{2 m E}}}{\frac{h c}{E}}=\sqrt{\frac{E}{2 m c^{2}}}=\frac{1}{c}\left(\frac{E}{2 m}\right)^{1 / 2}$
4. A car accelerates from rest at a constant rate α for some time after which it decelerates at a constant rate β to come to rest. If the total time elapsed is t seconds, the total distance travelled is :
(1) $\frac{\alpha \beta}{2(\alpha+\beta)} t^{2}$
(2) $\frac{\alpha \beta}{4(\alpha+\beta)} t^{2}$
(3) $\frac{4 \alpha \beta}{(\alpha+\beta)} t^{2}$
(4) $\frac{2 \alpha \beta}{(\alpha+\beta)} t^{2}$

Sol. (1)

$\mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{t}, \quad \mathrm{V}^{\prime}=0+\alpha \mathrm{t}_{1}$
$\mathrm{V}=\mathrm{u}+\mathrm{at}$
$0=\alpha t_{1}-\beta t_{2}$
$t_{2}=\frac{\alpha}{\beta} t_{1}$
$\mathrm{t}_{1}+\frac{\alpha}{\beta} \mathrm{t}_{1}=\mathrm{t}$
$t_{1}=\left(\frac{\beta}{\alpha+\beta}\right) t$

Distance $=\frac{1}{2}\left(t_{1}+t_{2}\right) \times \alpha t_{1}$ area of triangle
$=\frac{1}{2} \mathrm{t} \times \alpha\left(\frac{\beta}{\mathrm{a}+\beta}\right) \mathrm{t}$
$=\frac{\alpha \beta}{2(\alpha+\beta)} t^{2}$
5. A Carnot's engine working between 400 K and 800 K has a work output of 1200 J per cycle. The amount of heat energy supplied to the engine from the source in each cycle is :
(1) 1800 J
(2) 3200 J
(3) 2400 J
(4) 1600 J

Sol. (3)
$\eta=1-\frac{1}{2}$
$\eta=\frac{1}{2}$
$\frac{W}{Q}=\eta$
$\frac{1200}{Q}=\frac{1}{2}$
$Q=2400 \mathrm{~J}$
6. A mass M hangs on a massless rod of length I which rotates at a constant angular frequency. The mass M moves with steady speed in a circular path of constant radius. Assume that the system is in steady circular motion with constant angular velocity ω. The angular momentum of M about point A is L_{A} which lies in the positive z direction and the angular momentum of M about point B is L_{B}. The correct statement for this system is :

(1) L_{A} and L_{B} are both constant in magnitude and direction
(2) L_{B} is constant, both in magnitude and direction
(3) L_{A} is contant, both in magnitude and direction
(4) L_{B} is constant in direction with varying magnitude

Sol. (3)

$\vec{L}_{A}=\vec{r} \times \vec{p}$
as $\mathrm{r} \perp \mathrm{p}$ so $\mathrm{L}_{\mathrm{A}}=$ constant
7. Two ideal polyatomic gases at temperatures T_{1} and T_{2} are mixed so that there is no loss of energy. If F_{1} and F_{2}, m_{1} and m_{2}, n_{1} and n_{2} be the degress of freedom, masses, number of molecules of the first and second gas respectively, the temperature of mixture of these two gases is :
(1) $\frac{n_{1} F_{1} T_{1}+n_{2} F_{2} T_{2}}{n_{1} F_{1}+n_{2} F_{2}}$
(2) $\frac{n_{1} F_{1} T_{1}+n_{2} F_{2} T_{2}}{F_{1}+F_{2}}$
(3) $\frac{n_{1} F_{1} T_{1}+n_{2} F_{2} T_{2}}{n_{1}+n_{2}}$
(4) $\frac{n_{1} T_{1}+n_{2} T_{2}}{n_{1}+n_{2}}$

Sol. (1)

initial internal energy = final internal energy
$\frac{F_{1}}{2} n_{1} R T_{1}+\frac{F_{2}}{2} n_{2} R T_{2}=\frac{F_{1}}{2} n_{1} R T+\frac{F_{2}}{2} n_{2} R T$
$T=\frac{F_{1} n_{1} T_{1}+F_{2} n_{2} T_{2}}{F_{1} n_{1}+F_{2} n_{2}}$
8. The output of the given combination gates represents :

(1) XOR Gate
(2)NOR Gate
(3) NAND Gate
(4) AND Gate

Sol. (3)

9. A triangular plate is shown. A force $\vec{F}=4 \hat{i}-3 \hat{j}$ is applied at point P. The torque at point P with respect to point ' O ' and ' Q ' are :

(1) $15-20 \sqrt{3}, 15+20 \sqrt{3}$
(2) $15+20 \sqrt{3}, 15-20 \sqrt{3}$
(3) $-15+20 \sqrt{3}, 15+20 \sqrt{3}$
(4) $-15-20 \sqrt{3}, 15-20 \sqrt{3}$

Sol. (4)

$\vec{r}_{0}=(5 \hat{i}+5 \sqrt{3} \hat{j}) \times(4 \hat{i}-3 \hat{j})$
$=-15 \hat{k}-20 \sqrt{3} \hat{k}$
$\vec{r}_{P Q}=\vec{r}_{0}-\vec{r}_{Q}$
$=5 \hat{i}+5 \sqrt{3} \hat{j}-10 \hat{i}$
$=-5 \hat{i}+5 \sqrt{3} \hat{j}$
$\vec{\tau}_{Q}=\vec{r}_{\mathrm{PQ}} \times \overrightarrow{\mathrm{F}}$
$=(-5 \hat{i}+5 \sqrt{3} \hat{j}) \times(4 \hat{i}-3 \hat{j})$

$=15 \hat{k}-20 \sqrt{3} \hat{k}$
$=(15-20 \sqrt{3}) \hat{k}$
10. A modem grand-prix racing car of mas m is travelling on a flat track in a circular arc of radius R with a speed v, if the coefficient of static friction between the tyres and the track is μ_{s}, then the magnitude of negative lift F_{1} acting downwards on the car is: (Assume forces on the four tyres are identical and $\mathrm{g}=$ acceleration due to gravity)

(1) $m\left(\frac{\nu^{2}}{\mu_{s} R}-g\right)$
(2) $m\left(\frac{\nu^{2}}{\mu_{s} R}+g\right)$
(3) $m\left(g-\frac{\nu^{2}}{\mu_{s} R}\right)$
(4) $-m\left(g+\frac{\nu^{2}}{\mu_{s} R}\right)$

Sol. (1)

$f=\frac{m v^{2}}{R}$
$\mu \mathrm{N}=\frac{\mathrm{mv}^{2}}{\mathrm{R}}$
$\mu\left(m g+F_{L}\right)=\frac{m v^{2}}{R}$
$m g+F_{L}=\frac{m v^{2}}{R \mu}$
$F_{L}=\frac{m v^{2}}{\mu R}-m g$
$=m\left(\frac{v^{2}}{\mu R}-\mathrm{g}\right)$
11. The thickness at the centre of a plano convex lens is 3 mm and the diameter is 6 cm . If the speed of light in the material of the lens is $2 \times 10^{8} \mathrm{~ms}^{-1}$. The focal length of the lens is \qquad .
(1) 0.30 cm
(2) 1.5 cm
(3) 15 cm
(4) 30 cm

Sol. (4)

$R^{2}=3^{2}+(R-0.3)^{2}$
$R^{2}=9+R^{2}+0.09-2 \times 0.3 R$
$2 \times 0.3 R=9.09$
$R=15.15 \mathrm{~cm}$
$\mu=\frac{C}{V}=1.5$
$\frac{1}{f}=(1.5-1)\left(\frac{1}{R}\right)$
$\mathrm{f} \simeq 30 \mathrm{~cm}$
12. If an electron is moving in the $n^{\text {th }}$ orbit of the hydrogen atom, then its velocity $\left(v_{n}\right)$ for the $n^{\text {th }}$ orbit is given as :
(1) $v_{n} \propto n$
(2) $v_{n} \propto \frac{1}{n}$
(3) $v_{n} \propto n^{2}$
(4) $v_{n} \propto \frac{1}{n^{2}}$

Sol. (2)

$\mathrm{v}=2.16 \times 10^{6} \mathrm{~m} / \mathrm{s} \times \frac{\mathrm{z}}{\mathrm{n}}$
$\therefore \mathrm{v} \propto \frac{1}{\mathrm{n}}($ as $\mathrm{z}=1)$
13. An AC current is given by $\mathrm{I}=\mathrm{I}_{1} \sin \omega \mathrm{t}+\mathrm{I}_{2} \cos \omega \mathrm{t}$. A hot wire ammeter will give a reading :
(1) $\frac{I_{1}+I_{2}}{\sqrt{2}}$
(2) $\sqrt{\frac{\mathrm{I}_{1}^{2}+\mathrm{I}_{2}^{2}}{2}}$
(3) $\sqrt{\frac{I_{1}^{2}-I_{2}^{2}}{2}}$
(4) $\frac{I_{1}+I_{2}}{2 \sqrt{2}}$

Sol. (2)

$I_{\text {RMS }}=\sqrt{\frac{\int I^{2} d t}{\int d t}}$
$I^{2}{ }_{\text {RMS }}=\int_{0}^{T} \frac{\left(I_{1} \sin \omega t+I_{2} \cos \omega t\right)^{2} d t}{T}$
$=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}\left(\mathrm{I}_{1}^{2} \sin ^{2} \omega \mathrm{t}+\mathrm{I}_{2}^{2} \cos ^{2} \omega \mathrm{t}+2 \mathrm{I}_{1} \mathrm{I}_{2} \sin \omega \mathrm{t} \cos \omega \mathrm{t}\right) \mathrm{dt}$
$=\frac{I_{1}^{2}}{2}+\frac{I_{2}^{2}}{2}+0$
$I_{\text {RMS }}=\sqrt{\frac{I_{1}^{2}+I_{2}^{2}}{2}}$
14. Two identical metal wires of thermal conductivities K_{1} and K_{2} respectively are connected in series. The effective thermal conductivity of the combination is:
(1) $\frac{2 \mathrm{~K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
(2) $\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
(3) $\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{2 \mathrm{~K}_{1} \mathrm{~K}_{2}}$
(4) $\frac{K_{1} K_{2}}{K_{1}+K_{2}}$

Sol. (1)

$\mathrm{R}_{\text {eq }}=\mathrm{R}_{1}+\mathrm{R}_{2}$
$\frac{1}{\mathrm{~K}_{\text {eq }}} \frac{2 \ell}{\mathrm{~A}}=\frac{\ell}{\mathrm{K}_{1} \mathrm{~A}}+\frac{\ell}{\mathrm{K}_{2} \mathrm{~A}}$
$\frac{2}{\mathrm{~K}_{\text {eq }}}=\frac{\ell}{\mathrm{K}_{1}}+\frac{\ell}{\mathrm{K}_{2}}$
$\frac{2}{\mathrm{~K}_{\text {eq }}}=\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
$\mathrm{K}_{\text {eq }}=\frac{2 \mathrm{~K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
15. A boy is rolling a 0.5 kg ball on the frictionless floor with the speed of $20 \mathrm{~ms}^{-1}$. The ball gets deflected by an obstacle on the way. After deflection it moves with 5% of its initial kinetic energy. What is the speed of the ball now ?
(1) $14.41 \mathrm{~ms}^{-1}$
(2) $1.00 \mathrm{~ms}^{-1}$
(3) $19.0 \mathrm{~ms}^{-1}$
(4) $4.47 \mathrm{~ms}^{-1}$

Sol. (4)

K.E.f $=5 \% \quad K E_{i}$
$\frac{1}{2} m v^{2}=\frac{5}{100} \times \frac{1}{2} \times m \times 20^{2}$
$v^{2}=\frac{1}{20} \times 20^{2}=20$
$v=\sqrt{20}=2 \sqrt{5} \mathrm{~m} / \mathrm{s}$
$=4.47 \mathrm{~m} / \mathrm{s}$
16. A polyatomic ideal gas has 24 vibrational modes. What is the value of γ ?
(1) 1.03
(2) 1.30
(3) 10.3
(4) 1.37

Sol. (1)

$f=3 T+3 R+24 V$

$$
=30
$$

$$
\gamma=1+\frac{2}{f}
$$

$$
\gamma=1+\frac{2}{30}
$$

$$
=1.066
$$

Nearest Ans. $=1.03$
17. A current of 10 A exists in a wire of crosssectional area of $5 \mathrm{~mm}^{2}$ with a drift velocity of 2×10^{-3} ms^{-1}. The number of free electrons in each cubic meter of the wire is
(1) 1×10^{23}
(2) 2×10^{6}
(3) 2×10^{25}
(4) $6 \longdiv { 2 5 \times 1 0 ^ { 2 5 } }$

Sol. (4)
$\mathrm{I}=\mathrm{neAV}_{\mathrm{d}}$
$\mathrm{n}=\frac{\mathrm{I}}{\mathrm{eAV}}$
$=\frac{10}{1.6 \times 10^{-9} \times 5 \times 10^{-6} \times 2 \times 10^{-3}}$
$=\frac{10^{25}}{16}=6.25 \times 10^{27}=625 \times 10^{25}$
18. A solenoid of 1000 turns per metre has a core with relative permeability 500. Insulated windings of the solenoid carry an electric current of 5 A . The magnetic flux density produced by the solenoid is : (Permeability of free space $=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$)
(1) $2 \times 10^{-3} \pi \mathrm{~T}$
(2) $\frac{\pi}{5} \mathrm{~T}$
(3) $10^{-4} \pi \mathrm{~T}$
(4) πT

Sol. (4)
$B=\mu \mathrm{n} \mathrm{i}$
$B=\mu_{r} \mu_{0} n i$
$B=500 \times 4 \pi \times 10^{-7} \times 10^{3} \times 5$
$B=\pi \times 10^{-3} \times 10^{3}$
$\mathrm{B}=\pi$
19. When two soap bubbles of radii a and $b(b>a)$ coalesce, the radius of curvature of common surface is -
(1) $\frac{b-a}{a b}$
(2) $\frac{a b}{b-a}$
(3) $\frac{a b}{a+b}$
(4) $\frac{a+b}{a b}$

Sol. (2)
$\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}} ; \quad \mathrm{R}=\frac{\mathrm{ab}}{\mathrm{b}-\mathrm{a}}$

$P_{1}-P_{0}=\frac{4 S}{b}$
$P_{2}-P_{0}=\frac{4 S}{a}$
$P_{2}-P_{1}=\frac{4 S}{R}$
$\mathrm{eq}(2)-\mathrm{eq}(1)=\mathrm{eq}(3)$
$\frac{1}{a}-\frac{1}{b}=\frac{1}{R}$
$\therefore R=\frac{a b}{b-a}$
20. Which level of the single ionized carbon has the same energy as the ground state energy of hydrogen atom ?
(1) 8
(2) 1
(3) 6
(4) 4

Sol. (3)
$E_{n}=-13.6 \frac{z^{2}}{n^{2}}$
$E_{n t h}$ of Carbon $=E_{1}$ st of Hydrogen
$-13.6 \times \frac{6^{2}}{n^{2}}=-13.6 \times \frac{1^{2}}{1^{2}}$
$\mathrm{n}=6$

Section - B

1. A parallel plate capacitor whose capacitance C is 14 pF is charged by a battery to a potential difference $\mathrm{V}=12 \mathrm{~V}$ between its plates. The charging battery is now disconnected and a porcelin plate with $\mathrm{k}=7$ is inserted between the plates, then the plate would oscillate back and forth between the plates, with a constant mechanical energy of \qquad pJ .
(Assume no friction)
Sol. 864
$\mathrm{U}_{\mathrm{i}}=\frac{1}{2} \mathrm{Cv}^{2}$
$=\frac{1}{2} \times 14 \times(12)^{2} \mathrm{pJ}$
$=1008 \mathrm{pJ}$
$\mathrm{U}_{\mathrm{f}}=\frac{\mathrm{Q}^{2}}{2 \mathrm{kC}}$
$=\frac{(14 \times 12)^{2}}{2 \times 7 \times 14}$
$=144 \mathrm{pJ}$
oscillating energy $=U_{i}-U_{f}$

$$
\begin{aligned}
& =1008-144 \\
& =864 \mathrm{pJ}
\end{aligned}
$$

2. If $2.5 \times 10^{-6} \mathrm{~N}$ average force is exerted by a light wave on a non-reflecting surface of $30 \mathrm{~cm}^{2}$ area during 40 minutes of time span, the energy flux of light just before it falls on the surface is $\mathrm{W} / \mathrm{cm}^{2}$. (Round off to the nearest integer)
$\overline{\text { (Assume }}$ complete absorption and normal incidence conditions are there)

Sol. 25

Pressure $=\frac{\text { Intensity }}{\mathrm{C}}$ (for absorbing surface)
$\mathrm{I}=\mathrm{P} \times \mathrm{C}$
$I=\frac{2.5 \times 10^{-6}}{30 \mathrm{~cm}^{2}} \mathrm{~N} \times 3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{I}=25 \mathrm{~W} / \mathrm{cm}^{2}$
3. The following bodies
(1) a ring
(2) a disc
(3) a solid cylinder
(4) a solid sphere
of same mass ' m ' and radius ' R ' are allowed to roll down without slipping simultaneiously from the top of the inclined plane. The body which will reach first at the bottom of the inclined plane is .
[Mark the body as per their respective numbering given in the question]

Sol. 4
$a=\frac{g \sin \theta}{\left(1+\frac{I}{m R^{2}}\right)}$
$I_{R}=m R^{2}, a_{R}=g \sin \theta / 2$
$I_{D}=\frac{m R^{2}}{2}, a_{D}=\frac{2}{3} g \sin \theta$
$I_{S C}=\frac{m R^{2}}{2}, \quad a_{S C}=\frac{2}{3} g \sin \theta$
$\mathrm{I}_{\mathrm{SC}}=\frac{2}{5} \mathrm{mR}^{2}, \quad \mathrm{a}_{\mathrm{ss}}=\frac{5}{7} \mathrm{~g} \sin \theta$
$S=u t+\frac{1}{2} a t^{2}$,
$\mathrm{t}=\sqrt{\frac{2 \mathrm{~S}}{\mathrm{a}}}$
$\therefore \mathrm{t} \propto \frac{1}{\sqrt{\mathrm{a}}}$
solid sphere will take minimum time.
4. For VHF signal broadcasting, \qquad km^{2} of maximum service area will be covered by an antenna tower of height 30 m , if the receiving antenna is placed at ground. Let radius of the earth be 6400 km . (Round off to the nearest integer) (Take π as 3.14)

Sol. 1206.00

$\mathrm{d}=\sqrt{2 \mathrm{hR}} \quad$ area $=\pi \mathrm{d}^{2}$
Area $=\pi(2 \mathrm{hR})=3.14 \times 2 \times 30 \times 6400 \times 10^{3} . \mathrm{m}^{2}$
$=1205.76 \mathrm{~km}^{2}$
$\approx 1206 \mathrm{~km}^{2}$
5. Consider two identical springs each of spring constant k and negligible mass compared to the mass M as shown. Fig. 1 shows one of them and Fig. 2 shows their series combination. The ratios of time period of oscillation of the two $S H M$ is $T_{b} / T_{a}=\sqrt{x}$, where value of x is \qquad _. (Round off to the nearest integer)

Fig. 1

Fig. 2

Sol. 2.00
$\mathrm{K}_{\text {eq }}^{\text {series }}=\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}=\frac{\mathrm{k}}{2}$
$\mathrm{T}_{\mathrm{B}}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k} / 2}}=2 \pi \sqrt{\frac{2 \mathrm{M}}{\mathrm{k}}}$
$T_{B}=\sqrt{2} T_{A}$
$\frac{\mathrm{T}_{\mathrm{B}}}{\mathrm{T}_{\mathrm{A}}}=\sqrt{2}$
$\therefore \mathrm{x}=2$
6. Two blocks ($\mathrm{m}=0.5 \mathrm{~kg}$ and $\mathrm{M}=4.5 \mathrm{~kg}$) are arranged on a horizontal frictionless table as shown in figure. The coefficient of static friction between the two blocks is $3 / 7$. Then the maximum horizontal force that can be applied on the larger block so that the blocks move together is \qquad N . (Round off to the nearest integer) [Take g as $9.8 \mathrm{~ms}^{-2}$]

Sol. 21
$a_{\max }$ of m_{1} (i.e. 0.5 kg)
$=\mathrm{Mg}$
$=\frac{3}{7} \times 9.8$
$=4.2 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore \mathrm{F}_{\text {max }} 4.2 \times 5=21 \mathrm{~N}$
7. The radius in kilometer to which the present radius of earth ($\mathrm{R}=6400 \mathrm{~km}$) to be compressed so that the escape velocity is increased 10 times is \qquad .
Sol. 64
$V_{\text {es }}=\sqrt{\frac{2 G M}{R}}$
$V_{e s} \sqrt{R}=$ count
$\mathrm{V}_{\mathrm{es} .} \sqrt{\mathrm{R}}=10 \mathrm{~V}_{\mathrm{es}} \sqrt{\mathrm{R}^{\prime}}$
$R^{\prime}=\frac{R}{100}=64 K M$
8. The equivalent ressitance of series combination of two resistors is ' s '. When they are connected in parallel, the equivalent resistance is ' p '. If $s=n p$, then the maximum value for n is \qquad . (Round off to the nearest integer)
Sol. 4
$s=n p$
$R_{1}+R_{2}=n\left[\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right]$
$R_{1}^{2}+R_{2}^{2}+2 R_{1} R_{2}=n R_{1} R_{2}$
$R_{1}^{2}+(2-n) R_{1} R_{2}=P_{2}^{2}=0$
$\left[(2-n) R_{2}\right]^{2}=4 \times 1 \times R_{2}^{2}$
$(2-4)^{2} R_{2}^{2}=4 R_{2}^{2}$
$2-n= \pm 2$
$2-n=-2$

$$
\mathrm{n}=4
$$

So $n=4$
9. The angular speed of truck wheel is increased from 900 rpm to 2460 rpm in 26 seconds. The number of revolutions by the truck engine during this time is \qquad .
(Assuming the acceleration to be uniform).

Sol. 728

$\omega_{\mathrm{f}}=2460 \times \frac{2 \pi}{60}$
$=82 \pi$
$\omega_{i}=\frac{900 \times 2 \pi}{60}=30 \pi$
$\alpha=\frac{\omega_{\mathrm{f}}-\omega_{\mathrm{i}}}{\mathrm{t}}$
$=\frac{82 \pi-30 \pi}{26}$
$=2 \pi \mathrm{rad} / \mathrm{sec}^{2}$
$\theta=\frac{\omega_{f}^{2}-\omega_{i}^{2}}{2 \alpha}$
$=\frac{(82 \pi+30 \pi)(82 \pi-30 \pi)}{2 \times 2 \pi}$
$=\frac{(112 \times 52) \pi^{2}}{4 \pi}$
No. of revolution $=\frac{(112 \times 13) \pi}{2 \pi}$
$=728$
10. Four identical rectangular plates with length, $\mathrm{I}=2 \mathrm{~cm}$ and breadth, $\mathrm{b}=3 / 2 \mathrm{~cm}$ are arranged as shown in figure. The equivalent capacitance between A and C is $\frac{X \varepsilon_{0}}{d}$. The value of x is \qquad . (Round off to the nearest integer)

Sol. 2.00

$C=\frac{\in_{0} A}{d}$
$C_{e q}=\frac{2 C \times C}{2 C+C}=\frac{2 C}{3}=\frac{2}{3} \frac{\in_{0} A}{d}=\frac{2}{3} \times \frac{\in_{0}}{d} \times\left(2 \times \frac{3}{2}\right)=\frac{2 \varepsilon_{0}}{d}$

