PREVIEW QUESTION BANK

Module Name : AGRONOMY-ENG Exam Date : 09-Jul-2023 Batch : 10:00-12:00

Sr. No.	Client Questio ID	Question Body and Alternatives	Marks		ative arks
Object	ive Question	J			
1 99	solu	term used for the growth of terrestrial plants without soil in mineral nutricitions is 1. Nutrient culture 2. Aquaculture 3. Soilless culture 4. Solution culture	ent	4.0	1.00
bject	tive Question				

	List-I	List-II					
	Instrument	Parameter					
	(A) Wind vane	(I) Photosynthetically active radiation (II) Wind speed					
	(B) Quantum sensor						
	(C) Anemometer	(III) Atmospheric pressure					
	(D) Barometer	(IV) Wind direction					
	1. (A) - (IV), (B) - 2. (A) - (I), (B) - (I 3. (A) - (III), (B) -	wer from the options given below: (I), (C) - (II), (D) - (III) (III), (C) - (IV), (D) - (II) (IV), (C) - (I), (D) - (II) (III), (C) - (II), (D) - (I)					
	A1:1						
	A2:2						
	A3:3						
	A4:4						
Objective Qu	estion						
3 903		owing from 360°, then what is its meaning?	4.0	1.00			
	1. Wind is not blowing						
	8000	rom south direction					
		from true north direction					
	4. Wind is blowing f	from magnetic south direction					
	A1:1						
	A2:2						
	A3:3						
	A4:4						

4	904	The co	omplex which is specifically inhibited by SHAM in the electron transport chain	4.0	1.00
		1.	Complex I		
		2.	Complex II		
		3.	Complex III		
		4.	Complex IV		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	Objective Question				
5	905	The cinvolv	ystic fibrosis transmembrane conductance regulator (CFTR) is a transporter ed in	4.0	1.00
		1.	Glucose transport		
		2.	Chloride ion transport		
		3.	Calcium homeostasis		
		4.	Amino acid uptake		
		A1:1			
		A2:2			
		A3:3			
1	 	l I		1	
		A4:4			
Obje	ctive Qu	estion			

	Given	below are	e two statements:	4.0	1.0
	Staten	nent I :	Minimum, optimum and maximum temperatures for germination of rice crop are 10-12°C, 30-32°C and 36-38°C, respectively.		
	Staten	nent II :	Minimum, optimum and maximum temperatures for germination of wheat crop are 3-4.5°C, 20-25°C and 30-40°C, respectively.		
	In the below	light of tl	he above statements, choose the <i>correct</i> answer from the options given		
	1.	Both Sta	atement I and Statement II are correct		
	2.	Both Sta	atement I and Statement II are not correct		
	3.	Stateme	ent I is correct but Statement II is not correct		
	4.	Stateme	ent I is not correct but Statement II is correct		
	A1:1				
	A2:2				
	A3:3				
	A4:4				
ective Qu	estion				
907	The second secon	remandification in the second blood	on factor SNAC1 (Stress-responsive NAC1) is involved in drought stress ch of the following crop plants?	4.0	1.0
	respon	se in which	en of the following crop plants:		
			a bicolor (sorghum)		
	1.	Sorghum			
	1. 2.	Sorghum Phaseoli	a bicolor (sorghum)		
	1. 2.	Sorghum Phaseoli Brassica	us vulgaris (common bean)		
	1. 2. 3.	Sorghum Phaseoli Brassica	us vulgaris (common bean) u napus (rapeseed)		
	1. 2. 3. 4.	Sorghum Phaseoli Brassica	us vulgaris (common bean) u napus (rapeseed)		
	1. 2. 3. 4.	Sorghum Phaseoli Brassica	us vulgaris (common bean) u napus (rapeseed)		

The technique used to study the spatial distribution of nutrients in plant tissues at a cellular level is ?

- 1. Immunohistochemistry
- 2. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
- 3. Metabolomics
- 4. RNA-sequencing (RNA-seq)

A1:1

A2:2

A3:3

A4:4

Objective Question

9 909	Leaf relative growth rate (LRGR) can be calculated using which of the following expressions?	4.0	1.00
	$I_{DCD} = \frac{LogLW2 - LogLW1}{LogLW1}$		

1.
$$LRGR = \frac{LogLW2 - LogLW1}{t2 - t1}$$

$$2. \qquad LRGR = \frac{LW2 - LW1}{t2 - t1}$$

3.
$$LRGR = \frac{LogLW2 + LogLW1}{t2 - t1}$$

$$4. \qquad LRGR = \frac{LW2 + LW1}{t2 - t1}$$

A1:1

A2:2

A3:3

A4:4

10 910		efficiency of PCR amplification in DNA barcoding can be enhanced by the ace of which mineral nutrient known for its stabilizing effect on DNA polymerase?	4.0	1.00	
	1.	Rhodium			
	2.	Ruthenium			
	3.	Osmium			
	4.	Iridium			
	A1:1				
	A2:2				
	A3:3				
	A4:4				
Objective Q	uestion				
11 911	The ar	mino acid considered as a branched-chain amino acid (BCAA) is	4.0	1.00	
		Serine			
	2.	Leucine			
	3.	Asparagine			
	4.	Tyrosine			
	A1:1				
	A2:2				
	A3:3				
	A4 : 4				
Objective Q	uestion				

12	912	A lack of micronutrients affects not only plant growth but also vital functions, such as photosynthetic and mitochondrial electron flow. Which of the following group of elements shall have the greatest impact on both photosynthetic and mitochondrial electron transport?	1.00			
		1. Co, Ni and Mo				
		2. Ca, K and Na				
		3. Mn, Co and Ca				
		4. Cu, Mn and Fe				
		A1:1				
	A2:2					
		A3:3				
	A4:4					
Obie	ective Qu	ion				
13	913	The deficiency symptoms of an essential element tend to appear first in young leaves indicating that the element is relatively immobile. Such symptoms would be shown by which one of the following elemental deficiencies?	1.00			
		1. Sulphur				
		2. Iron				
		3. Nitrogen				
		4. Potassium				
		A1:1				
		A2:2				
		A3:3				
		A4:4				
Obje	ctive Qu	ion				

14	914	In wh	ich of the following organelles, enzyme pyruvate dehydrogenease complex and	4.0	1.00
		glycol	ytic pathway are located		
		1.	Cytosol and Mitochondria		
		2.	Cytosol and chloroplast		
		3.	Golgi bodies and ER		
		4.	Microsomes and ribosomes		
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			
Obio	ective Qu	estion			
15	915		g translocation of photosynthates is plants from source to sink:	4.0	1.00
			The loading of photosynthates at source is by active transport and unloading at		
			the sink is by passive transport.		
		2.	The loading of photosyntates at source is by passive transport and unloading at the sink is by active transport.		
		3.	Both loading at the source and unloading at the sink are by active transport.		
		4.	Both loading at the source and unloading at the sink are by passive transport.		
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			
Obje	ective Qu	estion			
16	916			4.0	1.00

Match List-II with List-II

List-I	List-II
Specialized part of cell	Specialized combinations of cell
(A) Centriole	(I) Infoldings in mitochondria
(B) Chlorophyll	(II) Thylakoids
(C) Cristae	(III) Nucleic acids
(D) Ribozymes	(IV) Basal body cilia or flagella

Choose the *correct* answer from the options given below:

3.
$$(A) - (I), (B) - (III), (C) - (II), (D) - (IV)$$

A1:1

A2:2

A3:3

A4:4

Objective Question

Select out of the following the correct statement regarding cell membrane

4.0 1.00

- 1. Na and K ions move across cell membrane by passive transport.
- 2. Proteins make up 60 to 70% of the cell membrane.
- 3. Fluid mosaic model of cell membrane was proposed by Singer and Nicolson.
- 4. Lipids are arranged in a bilayer with polar heads towards the inner part.

A1:1

A2:2

A3:3

A4:4

Vegetable crops like tomatoes and bell pepper, allowed growing in a carbon of rich environment, showed higher yields because: 1. C pathway for carbon fixation at high carbon dioxide is the limiting factor plants. 2. These showed an increased rate of photosynthesis at higher carbon deconcentrations. 3. These can respond to high carbon dioxide conditions even in low conditions. 4. Only carbon dioxide is the limiting factor in such plants. Al:1 A2:2 A3:3 A4:4 Objective Question 19 Photorespiration does not take place in C4 plants because such plants 1. Do not contain fixation enzyme RUBISCO 2. Have cells that are impermeable to oxygen 3. Have mechanism that increases the concentration of CO2 at the enzyme site.	4.0	1.00
rich environment, showed higher yields because: 1. C pathway for carbon fixation at high carbon dioxide is the limiting far such plants. 2. These showed an increased rate of photosynthesis at higher carbon deconcentrations. 3. These can respond to high carbon dioxide conditions even in low conditions. 4. Only carbon dioxide is the limiting factor in such plants. Al:1 A2:2 A3:3 A4:4 Objective Question Photorespiration does not take place in C4 plants because such plants 1. Do not contain fixation enzyme RUBISCO 2. Have cells that are impermeable to oxygen 3. Have mechanism that increases the concentration of CO2 at the enzyme site.	xide	
such plants. 2. These showed an increased rate of photosynthesis at higher carbon of concentrations. 3. These can respond to high carbon dioxide conditions even in low conditions. 4. Only carbon dioxide is the limiting factor in such plants. A1:1 A2:2 A3:3 A4:4 Photorespiration does not take place in C ₄ plants because such plants 1. Do not contain fixation enzyme RUBISCO 2. Have cells that are impermeable to oxygen 3. Have mechanism that increases the concentration of CO ₂ at the enzyme site.	101100000000000000000000000000000000000	
concentrations. 3. These can respond to high carbon dioxide conditions even in low conditions. 4. Only carbon dioxide is the limiting factor in such plants. A1:1 A2:2 A3:3 A4:4 Objective Question Photorespiration does not take place in C ₄ plants because such plants 1. Do not contain fixation enzyme RUBISCO 2. Have cells that are impermeable to oxygen 3. Have mechanism that increases the concentration of CO ₂ at the enzyme site	r in	
conditions. 4. Only carbon dioxide is the limiting factor in such plants. A1:1 A2:2 A3:3 A4:4 Objective Question Photorespiration does not take place in C ₄ plants because such plants 1. Do not contain fixation enzyme RUBISCO 2. Have cells that are impermeable to oxygen 3. Have mechanism that increases the concentration of CO ₂ at the enzyme site.	kide	
A1:1 A2:2 A3:3 A4:4 Objective Question Photorespiration does not take place in C ₄ plants because such plants 1. Do not contain fixation enzyme RUBISCO 2. Have cells that are impermeable to oxygen 3. Have mechanism that increases the concentration of CO ₂ at the enzyme site.	ight	
A2:2 A3:3 A4:4 Objective Question Photorespiration does not take place in C ₄ plants because such plants 1. Do not contain fixation enzyme RUBISCO 2. Have cells that are impermeable to oxygen 3. Have mechanism that increases the concentration of CO ₂ at the enzyme site.		
Objective Question Objective Question Photorespiration does not take place in C ₄ plants because such plants Do not contain fixation enzyme RUBISCO Have cells that are impermeable to oxygen Have mechanism that increases the concentration of CO ₂ at the enzyme site		
Objective Question Photorespiration does not take place in C ₄ plants because such plants Do not contain fixation enzyme RUBISCO Have cells that are impermeable to oxygen Have mechanism that increases the concentration of CO ₂ at the enzyme site		
Photorespiration does not take place in C ₄ plants because such plants 1. Do not contain fixation enzyme RUBISCO 2. Have cells that are impermeable to oxygen 3. Have mechanism that increases the concentration of CO ₂ at the enzyme site		
1. Do not contain fixation enzyme RUBISCO 2. Have cells that are impermeable to oxygen 3. Have mechanism that increases the concentration of CO ₂ at the enzyme site.		
 2. Have cells that are impermeable to oxygen 3. Have mechanism that increases the concentration of CO₂ at the enzyme site 	4.0	1.00
3. Have mechanism that increases the concentration of CO ₂ at the enzyme site		
276		
276		
4. Cells do not allow oxygen to accumulate in them		

	1.	Do not contain fixation enzyme RUBISCO	
	2.	Have cells that are impermeable to oxygen	
	3.	Have mechanism that increases the concentration of CO ₂ at the enzyme site	
	4.	Cells do not allow oxygen to accumulate in them	
	A1:1		
	A2:2		
	A3:3		
	A4 : 4		
Objective	e Question		_
Sojectivi	c Question		

20	920	The pr	roduct of photorespiration process is	4.0	1.00
		1.	Phosphoglycerate		
		2.	Phosphoglycolate		
		3.	Both A and B		
		4.	Oxalo Acetic Acid		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obj	ective Qu	estion			
21	921		ountry that has given name of the tropical cyclone "Mocha" developed in the of May, 2023 in Bay of Bengal is	4.0	1.00
			Bangladesh		
			Pakistan		
		3.	India		
		4.	Yemen		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obi	ective Qu	estion			

22	922	Which	of the following clouds is a rain bearing cloud?	4.0	1.00	
		1.	Nimbostratus			
		2.	Altocumulus			
		3.	Cirrostratus			
		4.	Stratocumulus			
		A1:1				ı
		A2:2				
						ı
		A3:3				ı
		A4:4				
		A4.4				
Obj	ective Qu	estion				
23	923	Which	of the following statements is correct?	4.0	1.00	
		1.	One cm of rainfall is the equivalent of one liter of water per square meter.			ı
		2.	One millimeter of rainfall is the equivalent of 10 liter of water per square meter.			ı
		3.	One millimeter of rainfall is the equivalent of one liter of water per square meter.			
		4.	One cm of rainfall is the equivalent of 10 liter of water per square meter.			ı
						ı
		A1:1				
		A2:2				
		A3:3				
						1
		A4:4				
					1	1

24	924	Particl	es that are not used for cloud seeding in artificial rain making is	4.0	1.00
		1.	Silver iodide		
		2.	Dry ice		
		3.	Common salt		
		4.	Kaolinite		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ctive Qu	estion			
25	925	Given	below are two statements:	4.0	1.00
		Stater	nent (I): In the atmosphere, 90% of the ozone is distributed in the troposphere, while only 10% is confined to the stratosphere		
		Staten	nent (II): According to IPCC (2007) estimated value of radiative forcing from the tropospheric ozone is to be 0.35± 0.15 W m ⁻² .		
			nt of the above statements, choose the <i>most appropriate</i> answer from the options below.		
		1.	Both Statement (I) and Statement (II) are correct.		
		2.	Both Statement (I) and Statement (II) are incorrect.		
		3.	Statement (I) is correct but Statement (II) is incorrect.		
		4.	Statement (I) is incorrect but Statement (II) is correct.		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ctive Qu	estion		1	

26	926		4.0	1.00
		Full form of NISAR satellite is		
		1. National Indian Satellite for Agricultural Research		
		2. NASA ISRO Satellite for Agricultural Research		
		3. NASA ISRO Synthetic Aperture Radar		
		4. NASA ISRO Synchronised Agricultural Radar		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Qu	uestion		

4.0 1.00

List-I	List-II
(Fact /feature/event/ phenomena)	(Definition)
(A) Ecotype	(I) A uniform interbreeding population spread over time and space.
(B) Ecotone	(II) It is a group of individual organisms of the same species in a given area.
(C) Species	(III) It is a population of individuals of a species, which are genetically different.
(D) Population	(IV) A zone of transition, presenting a situation of special ecological interest between two different types of communities.

Choose the *correct* answer from the options given below:

- 1. (A) (II), (B) (IV), (C) (I), (D) (III)
- 2. (A) (III), (B) (IV), (C) (I), (D) (II)
- 3. (A) (IV), (B) (I), (C) (II), (D) (III)
- 4. (A) (II), (B) (III), (C) (IV), (D) (I)

A1:1

A2:2

A3:3

A4:4

4.0 1.00

List-I	List-II
(Types of ecology)	(Explanation)
(A) Ecosystem ecology	(I) The units of study are interactions between different communities of area.
(B) Community ecology	(II) The units of study are pure stands of individuals of a single species.
(C) Biome ecology	(III) The units of study are groups of individuals belonging to different species of plants as well as animals.
(D) Population ecology	(IV) The most complicated synecological approach to the ecology of an area.

Choose the *correct* answer from the options given below:

1.
$$(A) - (I), (B) - (II), (C) - (III), (D) - (IV)$$

3.
$$(A) - (I), (B) - (III), (C) - (IV), (D) - (II)$$

A1:1

A2:2

A3:3

A4:4

29	929	The re	gion of atmosphere having the constant temperature is	4.0	1.00
		1.	Troposphere		
		2.	Mesopause		
		3.	Stratosphere		
		4.	Ionosphere		
		A1:1			
		A2:2			
		A2:2			
		A3:3			
		A4:4			
Obje	ctive Qu	estion			
30	930			4.0	1.00
		The co	oncentration of nitrogen in atmosphere upto 50 km from the ground surafce is		
		544	About 48% nitrogen		
		2.	About 58% nitrogen		
		3.	About 68% nitrogen		
		4.	About 78% nitrogen		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
01.1.	ctive Qu	action			

Which of the following statements are correct for "Tillage"? (A) The most important objectives of tillage are seedbed preparation, increasing soil fertility, and soil moisture conservation. (B) Tillage increases the bulk density of soil in the longirerer. (C) Tillage improve soil tilth, soil aeration and root penetration. (D) Tillage removes hard pans thus increase the soil depth for water absorption. Choose the *correct* answer from the options given below: 1. (A) and (B) only. 2. (A) and (C) only. 3. (B), (C) and (D) only. 4. (B) and (C) only. A1:1 A2:2 A3:3 A4:4 Objective Question

35 935	Which of the following statements are correct for "Dryland agriculture"?	4.0	1.00
	(A) Growing season in dryland agriculture is < 300 days.		
	(B) Rainfall should be < 1800 mm.		
	(C) Main constraints are wind and water erosion.		
	(D) Growing regions are mainly humid and tropical as well as uplands.		
	Choose the <i>correct</i> answer from the options given below:		
	1. (A) and (B) only.		
	2. (A) and (C) only.		
	3. (B), (C) and (D) only.		
	4. (B) and (C) only.		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
Objective C	uestion	140	1.00
36 936		4.0	1.00

Match List-I with List-II

List-I	List-II
(Plant hormones)	(Major function)
(A) Auxins	(I) Induces leaf and fruit abscission
(B) Cytokinin	(II) Elongation of cells
(C) Abscisic acid	(III) Stimulates the swelling of stems and roots
(D) Ethylene	(IV) Stimulate cell division

Choose the *correct* answer from the options given below:

3.
$$(A) - (III), (B) - (I), (C) - (IV), (D) - (II)$$

A1:1

A2:2

A3:3

A4:4

937		two statements, one is labelled as Assertion (A) and other one labelled	4.0	1
	as Reason (R).			
	Assertion (A):	Zero-tillage practice in rice-wheat cropping system is a climate change adaptation strategy.		
	Reason (R):	It helps to avoid terminal heat stress of wheat.		
	In light of the below.	above statements, choose the correct answer from the options given		
	1. Both (A)	and (R) are true and (R) is the correct explanation of (A).		l
	2. Both (A)	and (R) are true but (R) is NOT the correct explanation of (A).		
	3. (A) is tru	e but (R) is false.		l
	4. (A) is fal	se but (R) is true.		
	A1:1			
	A2:2			
	A3:3			
	A4:4			

objective C	Question		
8 938	What is the optimum range of soil moisture for effective plot	ighing?	1.0
	1. 5 to 10 per cent depletion of available soil moisture		
	2. 15 to 20 per cent depletion of available soil moisture		
	3. 25 to 50 per cent depletion of available soil moisture		
	4. 50 to 60 per cent depletion of available soil moisture		
	A1:1		
	A2:2		
	A3:3		
	A4:4		

39	939	Given below are as Reason (R).	two statements, one is labelled as Assertion (A) and other one labelled	4.0	1.00
			Ridging increases albedo, thereby increasing the effective incoming radiation compared to a flat surface.		
		Reason (R):	Tillage causes unequal distribution of energy at the soil surface.		
		In light of the abelow.	above statements, choose the <i>correct</i> answer from the options given		
		1. Both (A)	and (R) are true and (R) is the correct explanation of (A).		
		2. Both (A)	and (R) are true but (R) is NOT the correct explanation of (A).		
		3. (A) is tru	e but (R) is false.		
		4. (A) is fall	se but (R) is true.		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
bje	ective Qu	estion			
0	940			4.0	1.00

Assertion (A): The Net Assimilation Rate (NAR) is a measure of the average photosynthetic efficiency of leaves in a crop community. Reason (R): It is highest when the plants are small and most of the leaves are exposed to sun light. In light of the above statements, choose the *correct* answer from the options given below. 1. Both (A) and (R) are true and (R) is the correct explanation of (A). 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A). 3. (A) is true but (R) is false. 4. (A) is false but (R) is true. A1:1 A2:2 A3:3 A4:4 Objective Question 41 941 The practice of controlling water erosion by cultivation of alternate erosion permitting and erosion resistant crops is called as 1. Mixed cropping 2. Intercropping 3. Strip cropping 4. Relay cropping A1:1 A2:2 A3:3 A4:4 Objective Question

Given below are two statements, one is labelled as Assertion (A) and other one labelled

as Reason (R).

42	942		4.0	1.00
		The Dapog method of raising rice nursery was introduced in India from		
		1. Myanmar		
		2. Japan		
		3. China		
		4. Philippines		
ı			ı	I
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Qu	stion		
43	943	Area of the micro-watershed is	4.0	1.00
		1. 10-100 ha		
		2. 100-1000 ha		
		3. 1000-10000 ha		
		4. 10000-50000 ha		
		A1:1		
		A2:2		
		A3:3		
		AJ. J		
		A4:4		
Obje	ective Qu	stion		

44	944	Type of soil water available for normal crop growth	4.0	1.00
		1. Hygroscopic		
		2. Gravitational		
		3. Capillary		
		4. Hygroscopic and Gravitational		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Qu	estion	<u> </u>	
45	945		4.0	1.00

47	947	An int	ercropping system can be said beneficial, if it has LER:	4.0	1.00					
		1.	Equal to 1.0							
		2.	< 1.0							
		3.	>1.0							
		4.	Zero							
		A1:1								
		A2:2			l					
		A3:3								
		A4:4								
Obje	ective Qu	estion		<u></u>						
48	948		ht avaidangs machanism is found in which of the following aways?	4.0	1.00					
			ht avoidance mechanism is found in which of the following crops?							
			Barley							
			Maize							
			Sorghum							
		4.	Sunflower							
		A1:1								
		A2:2								
		A3:3								
		A4 : 4								
		211.7								
Obje	Dejective Question									

49	949	Plantir	g geometry that ensures a uniform incidence of solar radiation	4.0	1.00	1
		1.	Square planting			
		2.	Rectangular planting			
		3.	Mixed planting			
		4.	Random planting			
		A1:1				
		A2:2				
		112.2				
		A3:3				
		A4:4				
Obje	ctive Que	estion				
50	950	The K	afri Bahar is a prominant variety of	4.0	1.00	
			Sunflower			
		2.	Cotton			
		3.	Potato			
		4.	Tobacco			
		A1:1				
		A2:2				
						i
		A3:3				
		A4:4				

51	951	Hyrbio	d rice for commercial production was first evolve	ved in	4.0	1.00
		1.	India			
		2.	China			
		3.	Japan			
		4.	USA			
		A1:1				
		A2:2				
		A3:3				
		A4 : 4				
Obje	ective Que	estion				<u> </u>
52	952	Menth	a crop is commercially raised through		4.0	1.00
			Seed			
		2.	Root cutting			
		3.	Stolons			
		4.	Leaflets			
		A1:1				
		A2:2				
		A3:3				
		A4 : 4				
				, , , , , , , , , , , , , , , , , , ,	1 '	

53	953	The oil o	content in sunflower is	4.0	1.00
		Min-constitution III Ca	0-20%		
			20-35%		
			35-45%		
		4. 4	45-60%		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ective Qu	estion			
54	954	Which ar	mong the following is the temperate grass?	4.0	1.00
			White and red clover		
		2. N	Napier grass		
			Setaria grass		
			Guinea grass		
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			
		estion			

55	955	Aerop	onic technology is commercially used in quality seed/planting material production	4.0	1.00
		1.	Tomato		
		2.	Capsicum		
		3.	Potato		
		4.	Brinjal		
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			
Obje	ctive Qu	estion			
56	Weed seed dispersal by ants is called as				1.00
			Exozoochory		
		2.	Autochory		
		3.	Myrmecochory		
		4.	Herpochory		
		A1:1			
		A2:2			
		A3:3			
		A4:4			

57	957	Comm	elina benghalensis bearing blue coloured short-lived flowers is a	4.0	1.00					
		1.	Pteridophyta							
		2.	Spermatophyta							
		3.	Dicot							
		4.	Monocot							
		A1:1								
		A2:2								
		A3:3								
		A4 : 4								
Obje	ctive Qu	estion								
58	958	Given	below are two statements:	4.0	1.00					
	Statement (I): The combined effect of competition and allelopathy where growth of weeds or crop or both is reduced is called allelomediation.									
		Staten	nent (II): Allelopathy depends on addition of chemical compounds while competition involves removal of an essential factor from the environment.							
			at of the above statements, choose the <i>most appropriate</i> answer from the options below.							
		1.	Both Statement (I) and Statement (II) are true.							
		2.	Both Statement (I) and Statement (II) are false.							
		3.	Statement (I) is true but Statement (II) is false.							
		4.	Statement (I) is false but Statement (II) is true.							
		A1:1								
		A2:2								
		A3:3								
		A4:4								
Obje	Objective Question									

Which among the following is an ephemeral weed? 1. Stellaria media 2. Phalaris minor 3. Medicago denticulata 4. Phyllanthus niruri Al: 1 A2: 2 A3: 3 A4: 4 Objective Question (a) [9/20] Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are incorrect. 2. Both Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. Al: 1 A2: 2 A3: 3 A4: 4					
1. Stellaria media 2. Phalaris minor 3. Medicago denticulata 4. Phyllanthus niruri Al:1 A2:2 A3:3 A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.	59	959		4.0	1.00
1. Stellaria media 2. Phalaris minor 3. Medicago denticulata 4. Phyllanthus niruri Al:1 A2:2 A3:3 A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.					
1. Stellaria media 2. Phalaris minor 3. Medicago denticulata 4. Phyllanthus niruri Al:1 A2:2 A3:3 A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.					
1. Stellaria media 2. Phalaris minor 3. Medicago denticulata 4. Phyllanthus niruri Al:1 A2:2 A3:3 A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.					
1. Stellaria media 2. Phalaris minor 3. Medicago denticulata 4. Phyllanthus niruri Al:1 A2:2 A3:3 A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.		II			
2. Phalaris minor 3. Medicago denticulata 4. Phyllanthus niruri A1:1 A2:2 A3:3 A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) is incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.					
3. Medicago denticulata 4. Phyllanthus niruri A1:1 A2:2 A3:3 A4:4 Objective Question 60 900 Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) is incorrect. 3. Statement (I) is incorrect but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.					
4. Phyllanthus niruri A1:1 A2:2 A3:3 A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) is incorrect. 3. Statement (I) is correct but Statement (II) is correct. 4. Statement (I) is incorrect but Statement (II) is correct.					
Al::1 A2::2 A3::3 A4::4 Objective Question Objective Question Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. Al::1 A2::2 A3::3			· · · · · · · · · · · · · · · · · · ·		
Objective Question A2:2 A3:3 A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. A1:1 A2:2 A3:3			4. Phyllanthus niruri		
Objective Question A2:2 A3:3 A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. A1:1 A2:2 A3:3					
A3:3 A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.			A1:1		
A3:3 A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.			A2:2		
A4:4 Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. A1:1 A2:2 A3:3					
Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) is incorrect. 3. Statement (I) is correct but Statement (II) is correct. 4. Statement (I) is incorrect but Statement (II) is correct.			A3:3		
Objective Question Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) is incorrect. 3. Statement (I) is correct but Statement (II) is correct. 4. Statement (I) is incorrect but Statement (II) is correct.					
Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) is incorrect. 3. Statement (I) is correct but Statement (II) is correct. 4. Statement (I) is incorrect but Statement (II) is correct.			A4:4		
Given below are two statements: Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) is incorrect. 3. Statement (I) is correct but Statement (II) is correct. 4. Statement (I) is incorrect but Statement (II) is correct.	Obje	ective Qu	estion estimate the state of th		
Statement (I): Management means to maintain weed population below a threshold level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) is incorrect. 3. Statement (I) is correct but Statement (II) is correct. 4. Statement (I) is incorrect but Statement (II) is correct.	<u> </u>			4.0	1.00
level, however, control remains implicit in management. Statement (II): Integrated weed management (IWM) necessarily embraces that a combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.			the control of the co		
combination of the methods of weed control rather than a single method be exercised for management of weeds below a threshold population. In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.			[[
method be exercised for management of weeds below a threshold population. In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct.					
population. In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. Al:1 A2:2 A3:3					
In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. Al:1 A2:2 A3:3					
given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. A1:1 A2:2 A3:3			200 0 000 CM		
2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. A1:1 A2:2 A3:3			를 받는데 그래를 가는데 아이는데 아이는데 아이를 하는데 아이를 하는데 되었다. 그런데 아이를 하는데 이번에 하는데 이번에 아이를 하는데 아이를 하는데 아이를 하는데 되었다. 그런데 아이를 하는데 아이를 하는		
3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. Al:1 A2:2 A3:3			1. Both Statement (I) and Statement (II) are correct.		
4. Statement (I) is incorrect but Statement (II) is correct. A1:1 A2:2 A3:3			2. Both Statement (I) and Statement (II) are incorrect.		
A1:1 A2:2 A3:3			3. Statement (I) is correct but Statement (II) is incorrect.		
A2:2 A3:3			4. Statement (I) is incorrect but Statement (II) is correct.		
A2:2 A3:3					
A3:3			A1:1		
A3:3					
			A2 : 2 		
			A3:3		
A4:4					
			A4:4		

L		ctive Qu				
6	1	961		of the following groups of herbicides, dicamba belongs to?	4.0	1.00
				Aryloxy alkanoic acids		
			2.	Arylearboxylic acids		
			3.	Thiocarbamates		
			4.	Dinitroanilines		
			A1:1			
1						
			A2:2			
			A3:3			
			A4 : 4			
C	bje	ctive Qu	estion			
-						

Inhibitors of photosynthesis at photosystem I.

- 1. Sulfonylureas
- 2. Benzoic acids
- 3. Diphenyl ethers
- 4. Bipyridyls

A1:1

A2:2

A3:3

A4:4

Objective Question

63 963

Match herbicides with their first use/testing or synthesis

4.0	1.00

4.0 1.00

Herbicide	First synthesis/use/testing
(A) Glyphosate	(I) 1995
(B) 2, 4-D	(II) 1971
(C) Diclosulam	(III) 1958
(D) Atrazine	(IV) 1944

Choose the *correct* answer from the options given below:

- 1. (A) (IV), (B) (III), (C) (II), (D) (I)
- 2. (A) (II), (B) (IV), (C) (I), (D) (III)
- 3. (A) (II), (B) (I), (C) (IV), (D) (III)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)

A1:1

A2:2

A3:3

64	964	Given below are two statements:	4.0	1.00
		Statement (I): Three types of adjuvants used with herbicides are activator, spray modifier and utility.		
		Statement (II): Activator adjuvants are a part of the formulation.		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.		
		1. Both Statement (I) and Statement (II) are correct.		
		2. Both Statement (I) and Statement (II) are incorrect.		
		3. Statement (I) is correct but Statement (II) is incorrect.		
		4. Statement (I) is incorrect but Statement (II) is correct.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
_	tive Que		4.0	1.00
	703	In India, herbicie resistance was first reported in	1.0	1.00
		1. Echinochloa colona		
		2. Phalaris minor		
		3. Ageratum houstonianum4. Chenopodium album		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec	tive Que	estion	1	

66	966	Which	of the following herbicides is highly volatile?	4.0	1.00
		1.	Pendimethalin		
		2.	Atrazine		
		3.	Ethalfluralin		
		4.	EPTC		
		A1:1			
		A2:2			l
		A3:3			
		A4:4			
Obje	ctive Qu	estion			
67	967		le nozzles for herbicide spraying	4.0	1.00
			Fan and impact type		
		2.			
		3.	Hollow cone nozzles		
		4.	Tripple action		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ctive Qu	estion			

68 9	068	A wee	d of both cropped and non cropped lands	4.0	1.00
		1.	Urena lobata		
		2.	Urtica dioca		
		3.	Ageratum sp		
		4.	Solanum xanthocarpum		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Object	tive Que	stion			
69 9	069	A sele	ctive post-emergence herbicide used for weed control in rice is	4.0	1.00
			Pretilachlor		
		2.	Butachlor		
		3.	Bispyribac Sodium		
		4.	Tembotrione		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
II.					

Match List-I with List-II

List-I	List-II
Dam/Reservoir	State
(A) Tawa	(I) Uttar Pradesh
(B) Lower Bhavani	(II) Madhya Pradesh
(C) Balimala	(III) Tamil Nadu
(D) Matatila	(IV) Odisha
(E) Mayurakshi	(V) West Bengal

Choose the *correct* answer from the options given below:

1.
$$(A) - (III), (B) - (IV), (C) - (II), (D) - (V), (E) - (I)$$

3.
$$(A) - (I), (B) - (V), (C) - (IV), (D) - (II), (E) - (III)$$

4.
$$(A) - (V), (B) - (IV), (C) - (I), (D) - (II), (E) - (III)$$

A1:1

A2:2

A3:3

A4:4

	Given below are two statements:	4.0	1.00
	Statement (I): According to USDA estimates, the total amount of water on earth is about 1400 billion cubic kilometers		
	Statement (II): This amount of water is enough to cover the earth with a layer of 300 meters (depth)		
	In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.		
	1. Both Statement (I) and Statement (II) are true.		
	2. Both Statement (I) and Statement (II) are false.		
	3. Statement (I) is true but Statement (II) is false.		
	4. Statement (I) is false but Statement (II) is true.		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
Objective Q	estion		
73 973	Correct order, in decreasing trend, of principal components of India's water budget	4.0	1.00
	1. Potential flow in rivers > Precipitation > Natural recharge > Evapotranspiration		
	2. Precipitation > Evapotranspiration < Potential flow in rivers > Natural recharge		
	2. Frecipitation > Evaportalispiration < Fotential flow in rivers > Natural recharge		
	3. Potential flow in rivers > Precipitation > Evapotranspiration > Natural recharge		
	3. Potential flow in rivers > Precipitation > Evapotranspiration > Natural recharge		
	 3. Potential flow in rivers > Precipitation > Evapotranspiration > Natural recharge 4. Precipitation > Potential flow in rivers > Evapotranspiration > Natural recharge 		
	 3. Potential flow in rivers > Precipitation > Evapotranspiration > Natural recharge 4. Precipitation > Potential flow in rivers > Evapotranspiration > Natural recharge 		

74	974	Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).	4.0	1.
		Assertion (A): Addition of organic matter to a mineral soil leads to improvement in water holding capacity of the soil.		
		Reason (R): Under tropical conditions, water holding properties and available water range of a mineral soil due to addition of organic matter may not change materially		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below:		
		1. Both (A) and (R) are correct and (R) is the correct explanation of (A).		l
		2. Both (A) and (R) are correct but (R) is NOT the correct explanation of (A).		
		3. (A) is correct but (R) is not correct.		
		4. (A) is not correct but (R) is correct.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Q	testion		_
75	975		4.0	

Read the following statements.

- (A) TDR stands for Time Domain Refraction.
- (B) TDR is based on the estimation of dielectric constant of water.
- (C) Dielectric constant of water is 80.
- (D) TDR is relatively unaffected by salinity or bulk density variations.
- (E) TDR measures soil moisture suction.

Choose the *correct* answer from the options given below:

- 1. (B) and (D) only
- 2. (A), (C) and (D) only
- 3. (C) and (D) only
- 4. (B), (C) and (E) only

A1:1

A2:2

A3:3

A4:4

Objective Question

76 976

When Δ (delta) is in cm, B (base period) is in days and D is in ha curve⁻¹

4.0 1.00

- 1. $\Delta = \frac{864 \text{ B}}{\text{D}} (cm)$
- $2. \qquad \Delta = \frac{864 \, \mathrm{D}}{\mathrm{B}} \, (cm)$
- 3. $\Delta = \frac{8640 \text{ B}}{D} (cm)$
- 4. $\Delta = \frac{86.4 \text{ B}}{\text{D}} (cm)$

A1:1

A2:2

A3:3

A4:4

77	977	4.0	

Given below are two statements: **Statement (I):** The sum of matric and osmotic potential is called 'hydraulic head' which is useful index for characterizing the energy status of soil-water with respect to plant-water uptake Statement (II): Hydraulic potential is useful in evaluating the direction and intensity of water moving forces in the soil profile. In light of the above statements, choose the *most appropriate* answer from the options given below. 1. Both **Statement** (I) and **Statement** (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. A1:1 A2:2 A3:3 A4:4 Objective Question 4.0 1.00 Given below are two statements, one is labelled as Assertion (A) and other one labelled Reason (R). Assertion (A): In a double ring infiltrometer, the double ring avoids requirement of deep insertion into the soil. The outer ring provides a buffer of infiltrating water, which leads to Reason (R): force of infiltration below the inner ring to remain completely vertical and unidirectional. In light of the above statements, choose the *correct* answer from the options given below. 1. Both (A) and (R) are true and (R) is the correct explanation of (A). 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A). 3. (A) is true but (R) is false. 4. (A) is false but (R) is true. A1:1 A2:2 A3:3

978

79 979

Match List-II with List-II

4.0 1.00

4.0 1.00

List-I	List-II
Instrument	Parameter measurement
(A) Gypsum blocks	(I) Water flow
(B) Flume	(II) Soil moisture suction
(C) Infra-red balance	(III) Di-electric constant
(D) Irrometer	(IV) Electric resistance
(E) TDR	(V) Gravimetric moisture content

Choose the *correct* answer from the options given below:

1.
$$(A) - (IV), (B) - (III), (C) - (II), (D) - (V), (E) - (I)$$

A1:1

A2:2

A3:3

A4:4

Objective Question

80 980

A 4% salt concentration is equal to how many ppm?

- 1. 40000
- 2. 4000
- 3. 400
- 4. 40

A1:1

A2:2

A3:3

Obje	ctive Que	estion			
81	981			4.0	1.00
		If elec electri	etrical conductivity of a saturation extract of the soil is 11 dS/m, what will be the cal conductivity (dS/m) of drainage water?		
			0.11		
			1.1		
			5.5		
		4.	22		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ctive Que	estion			

1. 15000 2. 12000 3. 6000 4. 3000 At:1 A2:2 A3:3 A4:4 Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom) 1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone 2. Saturation Zone – Transition Zone – Saturation Zone 3. Transmission Zone – Transition Zone – Saturation Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone A1:1 A2:2 A3:3 A4:4	82	982		arcane crop of 2 ha area was irrigated 5 times with 6 cm water in each irrigation; but the total quantity of water applied in cubic meter.	4.0	1.00
3. 6000 4. 3000 Al:1 A2:2 A3:3 A4:4 Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom) 1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone 2. Saturation Zone – Transition Zone – Saturation Zone 3. Transmission Zone – Transition Zone – Saturation Zone 4. Wetting Zone – Transmission Zone – Saturation Zone – Saturation Zone A1:1 A2:2 A3:3			1.	15000		
4. 3000 A1:1 A2:2 A3:3 A4:4 Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom) 1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone 2. Saturation Zone – Transition Zone – Saturation Zone 3. Transmission Zone – Transition Zone – Saturation Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone A1:1 A2:2 A3:3			2.	12000		
A1:1 A2:2 A3:3 A4:4 Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom) 1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone 2. Saturation Zone – Transition Zone – Transmission Zone – Wetting Zone 3. Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone A1:1 A2:2 A3:3			3.	6000		
A2:2 A3:3 A4:4 Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom) 1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone 2. Saturation Zone – Transition Zone – Wetting Zone 3. Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone A1:1 A2:2 A3:3			4.	3000		
A2:2 A3:3 A4:4 Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom) 1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone 2. Saturation Zone – Transition Zone – Wetting Zone 3. Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone A1:1 A2:2 A3:3			45475			
A3:3 A4:4 Objective Question 83 983 Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom) 1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone 2. Saturation Zone – Transition Zone – Transmission Zone – Wetting Zone 3. Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone A1:1 A2:2 A3:3			A1:1			
A4:4 Objective Question Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom) 1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone 2. Saturation Zone – Transition Zone – Wetting Zone 3. Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone A1:1 A2:2 A3:3			A2:2			
Objective Question Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom) 1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone 2. Saturation Zone – Transition Zone – Wetting Zone 3. Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone Al:1 A2:2 A3:3			A3:3			
Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom) 1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone 2. Saturation Zone – Transition Zone – Saturation Zone – Wetting Zone 3. Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone			A4 : 4			
Which among the followings provides the correct sequence of four zones of the infiltration profile (from top to bottom) 1. Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone 2. Saturation Zone – Transition Zone – Saturation Zone – Wetting Zone 3. Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone	Obie	ective Ou	estion			
 Transmission Zone – Wetting Zone – Transition Zone – Saturation Zone Saturation Zone – Transition Zone – Wetting Zone Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone A1:1 A2:2 A3:3	L.	1	Which		4.0	1.00
2. Saturation Zone – Transition Zone – Transmission Zone – Wetting Zone 3. Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone Al:1 A2:2 A3:3				200		
3. Transmission Zone – Transition Zone – Saturation Zone – Wetting Zone 4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone Al:1 A2:2 A3:3						
4. Wetting Zone – Transmission Zone – Transition Zone – Saturation Zone A1:1 A2:2 A3:3						
A1:1 A2:2 A3:3			1,577,000			
A2:2 A3:3						
A3:3			A1:1			
			A2:2			
A4:4			A3:3			
			A4:4			
Objective Question	OF:	native O	agtion			

84	984	According to Kung (1971) water requirement to raise nursery for 1 ha irrigated rice crop is	4.0	1.00
		1. 40 mm		
		2. 40 cm		
		3. 10 cm		
		4. 200 mm		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Qu	estion	<u> </u>	
85	985	Read the statements about irrigation management in chickpea	4.0	1.00
		(A) Flowering and pod filling are the most critical stages for irrigation.		
		(B) Water requirement of chickpea ranges from 400–600 mm.		
		(C) Irrigating chickpea with saline water that has salinity of 10 mmhos/cm can reduce yield by about 55%.		
		(D) Chickpea is usually irrigated following check basin method.		
		(E) Under conditions of low evaporative demand as in North India, irrigation can cause lodging in chickpea.		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A), (B) and (E) only		
		2. (A), (B) and (D) only		
		3. (B), (C) and (E) only		
		4. (C), (D) and (E) only		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
—— Obje	ective Qu	estion		

86	986		4.0	1.00
		The Law which states that whatever is being taken by plants from soil needs to be restored to maintain the nutrient supplying capacity of the soil is called "Law of Restitution" and it is propounded by: 1. Justus von Liebig (1840)		
		2. Hilgard (1888)		
		3. J.B. Boussingault (1802-1882)		
		4. E.W. Hilgard (1833-1916)		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Que	estion estimate the state of th	<u> </u>	
87	987	Parker et al. (1951) introduced the concept of Nutrient Index Value (NIV) to describe the fertility status of soils for the purpose of mapping. The NIV value of medium nutrient status is:	4.0	1.00
		1. 0.5-1.0		
		2. 1.0-1.5		
		3. 1.5-2.0		
		4. 1.5-2.5		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Que	estion		Щ

988	Secondary tillage is done primarily	4.0	1.0
	1. To prepare root bed		
	2. To break hard pan		
	3. To prepare a fine tilth seed bed		
	4. To preserve soil structure		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
bjective	Juestion	1	Τ
989	The dominant clay mineral present in Inceptisol is	4.0	1.0
	1. Montmorrilonite		
	2. Illite		
	3. Kaolinite		
	4. Chlorite		
	A1:1		
	A2:2		
	A3:3		
	A4:4		

90 990	The diameter of fine particle in sand fraction according to USDA is:	4.0	1.0
	1. 0.25-0.10 mm		
	2. 0.50-0.25 mm		
	3. 0.05-0.002 mm		
	4. 2.00 -1.00 mm		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
Objective Q	duestion		
91 991		4.0	1.

Given below are two statements: One is labeled as **Statement** (I) and the other is labeled as (Statement II). Statement (I): In India, Agricultural and Processed Food Products Export Authority (APEDA), Ministry Development of Commerce, Government of India, is the key accreditation agency Statement (II): During XII Plan, Government of India initiated a Scheme named "Paramparagat Krishi Vikas Yojana" or "PKVY", which envisages promotion of organic farming. In light of the above statements, choose the *most appropriate* answer from the options given below. 1. Both **Statement** (I) and **Statement** (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. A1:1 A2:2 A3:3 A4:4 Objective Question 4.0 1.00 Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). **Assertion** (A): Sulphur deficiencies first appear on the younger growth in the plants. Sulphur is mobile in the plants, thereby, fading the normal green Reason (R): colour of the young leaves. In light of the above statements, choose the *correct* answer from the options given below. 1. Both (A) and (R) are true and (R) is the correct explanation of (A). 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A). 3. (A) is true but (R) is false. 4. (A) is false but (R) is true. A1:1 A2:2 A3:3

992

	ective Qu	estion		
93	993	Phosphorus (P) is an important essential nutrient.	4.0	1.00
		(A) Plant roots absorb P in the H ₂ PO ₄ ⁻ form, but under neutral to alkaline environments, HPO ₄ ²⁻ and or PO ₄ ³⁻ ions could also be taken up.		
		(B) In normal P-sufficient plants, P-content varies from 0.1% to 0.4% by weight.		
		(C) It is an essential ingredient for <i>Rhizobium</i> bacteria to convert atmospheric N (N ₂) into the ammonium (NH ₄) form usable by plant.		
		(D) Because of being immobile in plants, first signs of its deficiency appear on the older leaves.		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A), (B) and (C) only.		
		2. (A), (B) and (D) only.		
		3. (B), (C) and (D) only.		
		4. (A), (C) and (D) only.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Qu	destion destination destinatio		
94	994	As per critical relative humidity (CRH), the most hygroscopic fertilizer is	4.0	1.00
		Ammonium sulphate		
		2. Urea ammonium sulphate		
		3. Ammonium nitrate		
		4. Ammonium chloride		
		A1:1		
		ATT		
		A2:2		
		A3:3		
		A4:4		
01.		lestion		

95	995		4.0	1.00
		Match List-I with List-II		

Theory proposed	Thinker/Name of Theory, etc.)
(A) Root interception	(I) Bray, R.H. (1954)
(B) Law of diffusion	(II) Cate and Nelson (1965)
(C) Mobility concept	(III) Jenny and Overstrect (1939)
(D) Critical limit	(IV) Fick's (1885)

Choose the *correct* answer from the options given below:

3.
$$(A) - (III), (B) - (I), (C) - (IV), (D) - (II)$$

A1:1

A2:2

A3:3

A4:4

96	996	Mono	ammonium phosphate is produced by reaction of ammonia with	4.0	1.00
		1.	Phosphoric acid		
		2.	Nitric acid		
		3.	Sulphuric acid		
		4.	Hydrochloric acid		
		A1:1			
		A2:2			
		A3:3			
		A4 : 4			
Obje	ective Qu	uestion			
97	997	Prisma	atic soil structure is a distinct feature in	4.0	1.00
		1.	Red soils		
		2.	Black soils		
		3.	Alluvial soils		
		4.	Sodic soils		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ective Qu	uestion			<u></u>

98 998	Soil extractants used for available nutrients:	4.0	1.00
	(A) 2 M KCL extract is used for determination of mineral N (NH ₄ and NO ₃) using soil: solution ratio of 1:10.		
	(B) DTPA extractant (pH 7.5) is used for determination of micronutrients using soil: solution ratio of 1:20.		
	(C) Ammonium acetate (1 N) solution is used for determination of potassium using soil: solution ratio of 1:5.		
	(D) Olsen reagent (0.5 M NaHCO ₃ , pH 8.5) is used for determination of available P in soil using soil: solution ratio of 1:20.		
	Choose the <i>correct</i> answer from the options given below:		
	1. (A), (B) and (C) only.		
	2. (A), (B) and (D) only.		
	3. (B), (C) and (D) only.		
	4. (A), (C) and (D) only.		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
Objective Q	uestion		
99 999	The targeted yield concept for soil fertility evaluation was proposed by:	4.0	1.00
	1. S.P. Raychaudhuri		
	2. T.D. Biswas		
	3. B. Ramamoorthy		
	4. N.P. Datta		
	A1:1		
	A2:2		
	A3:3		
	A4:4		

4.0 1.00

List-I	List-II
(Book/Theory proposed/ Characteristic, etc.)	(Author/Thinker/ Name of Theory, etc.)
(A) Khaira disease	(I) Molybdenum
(B) Whiptail symptom	(II) Zinc
(C) Hollow-heart in groundnut	(III) Manganese
(D) Grey speck in cereals	(IV) Boron

Choose the *correct* answer from the options given below:

- 1. (A) (I), (B) (II), (C) (III), (D) (IV)
- 2. (A) (II), (B) (I), (C) (IV), (D) (III)
- 3. (A) (III), (B) (I), (C) (IV), (D) (II)
- 4. (A) (IV), (B) (III), (C) (II), (D) (I)

which one is a minor-nimet;	ı
1. Foxtail millet	
2. Buck wheat	
3. Sorghum	
4. Barley	
A1:1	
A2:2	
A3:3	
A4:4	
	ı

Objective Question							
102	1002			4.0	1.00		
		The te	rm allelopathy was coined by				
			Holm				
		2000	Harper				
			Molisch				
		3.					
		4.	Arnon				
		., ,					
		A1:1					
		A2:2					
		A3:3					
		A4:4					
01:		··					
	ctive Qu		will be the concentration of an atragine solution if 2 by of atractaf (50 yrs i of	4.0	1.00		
		atrazir	will be the concentration of an atrazine solution if 2 kg of atrataf (50 y.a i of				
			0.2 %				
			2.0 %				
			0.1 %				
		4.	1.0 %				
		A1:1					
		A2:2					
		AZ.Z					
		A3:3					
		A4:4					
Obje	ctive Qu	estion					

104 100	4 Corre	ect sequence of herbicide resistant cases in following crops:	4.0	1.00
	1.	Rice>wheat>maize>soybean		
	2.	Wheat>rice>soybean>maize		
	3.	Wheat>maize>rice>soybean		
	4.	Rice>maize>wheat>soybean		
	A1:1			
	A2:2			
	A3:3			
	A4 : 4			
Objective	e Question		I	

05 1005	Relationship between plant population and yield in fodder crops is	4.0	1.00
	1. Asymptotic		
	2. Linear		
	3. Parabolic		
	4. Exponential		
	A1:1		
	A2:2		
	A3:3		
	A4:4		

106	1006	Protein and oil content of soybean is% and%, respectively.	4.0	1.00
		1. 43 and 20		
		2. 35 and 30		
		3. 30 and 35		
		4. 20 and 43		
		A1:1		
		A2:2		
		A2:2		
		A3:3		
		A4:4		
	ctive Qu	lestion		
107	1007	The interaction between legume and non-legume plants in the form of supplementation	4.0	1.00
		is called as:		
		1. Annidation		
		2. Allelopathic		
		3. Antagonism		
		4. Supplementary		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

08 1008	If a soil sample contains 20% moisture, calculate the specific heat of this soil (specific heat of water and soil is 1.0 and 0.2, respectively).	4.0	1.00
	1. 0.44 cal/kg		
	2. 0.44 cal/g		
	3. 0.33 cal/kg		
	4. 0.33 cal/g		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
Objective Qu	estion		
09 1009	Which one is not the correct ideotype for dryland farming?	4.0	1.0
	1. Thick leaves		
	2. Shallow root system		
	3. Leaves horizontally oriented		
	4. High water requirement		
	A1:1		
	A2:2		
	A3:3		
	A4:4		

110	1010	Which endogenous harmone increases under drought conditions?	.0 1	1.00
		1. Auxins		
		2. Gibbrelic acid		
		3. Abscisic acid		
		4. Cytokinin		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

' `	destion the state of the state		
111 1011	If the weight of soil is 1.0 g, amount of potassium dichromate (1 N) is 10 ml, volume of ferrous ammonium sulphate (0.5 N) solution required for blank titration is 20.1 ml and volume of ferrous ammonium sulphate (0.5 N) solution required for soil sample titration is 17.4 ml, then the organic carbon content (%) in soil will be: 1. 0.47% 2. 0.57% 3. 0.37% 4. 0.67% Al:1 A2:2 A3:3 A4:4	4.0	1.00

Obje	ctive Qu	estion				
	1014		below are	two statements, one is labelled as Assertion (A) and other one labelled	4.0	1.00
		Section of the Contract of the	son (R).	two statements, one is labelled as ressertion (re) and other one labelled		
		Assert	tion (A):	Organic-S is made available to plants under aerobic upland conditions by mineralization into sulphates by S-oxidizing bacteria such as <i>Thiobacillus</i> .		
		Reaso	n (R):	Mineralization of organic-S results in production of H ⁺ ions leading to the acidification of soil.		
		In light		above statements, choose the correct answer from the options given		
		1.	Both (A)	and (R) are true and (R) is the correct explanation of (A).		
		2.	Both (A)	and (R) are true but (R) is NOT the correct explanation of (A).		
		3.	(A) is tru	e but (R) is false.		
		4.	(A) is fals	se but (R) is true.		
		A1:1				
		A2:2				
		A3:3				
		A4:4				
 Obje	ctive Que	estion				

115	1015		4.0	1.00
		Given below are two statements:		
		Statement (I): Molybdenum is a component of nitrate reductase, nitrogenase, xanthine oxidase/dehydrogenase and sulphite oxidase.		
		Statement (II): The critical concentration of molybdenum-deficiency in plants is usually more than 0.1 ppm and its deficiencies resemble the N-deficiencies.		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.		
		1. Both Statement (I) and Statement (II) are correct.		
		2. Both Statement (I) and Statement (II) are incorrect.		
		3. Statement (I) is correct but Statement (II) is incorrect.		
		4. Statement (I) is incorrect but Statement (II) is correct.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Ou	lestion		

116	1016	The pl	nysical process of soil degradation:	4.0	1.00
		1.	Fertility imbalance		
		2.	Organic matter decline		
		3.	Erosion and depletion		
		4.	Acidification		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ctive Qu	estion			
117	1017			4.0	1.00

Statement (I): A key component of conservation agriculture is soil tillage connected to zero tillage, reduced tillage and ridge tillage. Statement (II): Improved crop yields are one benefit of the innovation known as zero tillage especially in rice-wheat system due to timely seeding of wheat. In light of the above statements, choose the *most appropriate* answer from the options given below. 1. Both **Statement** (I) and **Statement** (II) are true. 2. Both Statement (I) and Statement (II) are false. 3. Statement (I) is true but Statement (II) is false. 4. Statement (I) is false but Statement (II) is true. A1:1 A2:2 A3:3 A4:4 Objective Question 118 1018 4.0 1.00 Biochar produd by incomplete combustion of biological materials is rich in 1. Nitrogen 2. Sulphur 3. Phosphorus 4. Carbon A1:1 A2:2 A3:3

Given below are two statements:

A4:4

119	1019	Tree Crops: A Permanent Agriculture is written by	4.0	1.00
		1. Charles C. Harrison		
		2. Edgar F. Smith		
		3. Josiah H. Penniman		
		4. J. Russel Smith		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Qu	estion		
120	1020	Integrated Wasteland Development Programme (IWDP) had been under implementation since	1 4.0	1.00
		1. 1979-80		
		2. 1989-90		
		3. 1994-95		
		4. 1997-98		
		A1:1		
		A2:2		
		A3:3		
		A4:4		