PART: CHEMISTRY

- Which complex will show facial and meridional form-
 - (1) [Co(NH₃)₆]
- (2) [Co(NH3)5Cl]
- (3) [Co(NH₃)₄Cl₂]
- (4) [Co(NH3)Cl3]

Ans. (4)

Sol.

Facial form

Meridional form

- The depression in freezing point of 0.1 molal solution is 0.558, then complex will be-
 - (1) [Co(NH₃)₆Cl₂]
- (2) [Co(NH3)5CI]CI
- (3) [Co(NH₃)₄Cl₂]
- (4) [Co(NH3)Cl3]

Ans. (1)

Sol. $\Delta T_f = i.K_f.m$

 $0.558 = i \times 1.86 \times 0.1$

$$i = \frac{0.558}{1.86 \times 0.1} = 3$$

- Which of the following element does not lie in same period.
 - (1) Osmium
- (2) Iridium
- (3) Palladium
- (4) Platinum

Ans. (3)

Sol.

- 4. Which of the following pair of ions are same coloured?
 - (1) Ti4+, V3+, Sc3+
- (2) Cr2+, Cu2+, V4+
- (3) Cr3+, Ni2+, V4+
- (4) Mn3+, Fe2+, Zn2+

Ans. (2)

Sol. Cr2+, Cu2+, V4+ (Blue)

Find ∆G of reaction at 298 K

$$N_2O_4(g) \rightleftharpoons 2NO_2$$
;

$$\Delta H = +50 \text{ kJ/mol &} \Delta S = 5 \text{ J/mol-k}$$

Ans. (48.5)

Sol.

: ΔG =ΔH - TΔS

$$=50 \text{ kJ/mol} - 298 \times \frac{5}{1000} \text{ kJ}$$

=48.5 kJ/mol.

The pH of 0.1 M C₂H₅NH₂ solution is 9. if K_b = 10^{-x} then find x.

Ans. (9)

Sol.
$$pOH = \frac{1}{2} (pK_b - \log C)$$

$$5 = \frac{1}{2} (pK_b - \log 10^{-1})$$

$$10 - 1 = pK_b = 9$$

$$k_b = 10^{-9} \Rightarrow x = 9$$

Match the column-I and column-II

Column-i		Column-II	
(A)	Octet complete	(i)	BCl ₃ , BeCl ₂
(B)	Octet expanded	(ii)	NO ₂ , NO
(C)	Octet incomplete	(iii)	CCl4, CO2
(D)	Odd electron	(iv)	H ₂ SO ₄ , PCI ₅

$$(1) (A) \rightarrow (iii) ; (B) \rightarrow (iv) ; (C) \rightarrow (i) ; (D) \rightarrow (ii)$$

(2) (A)
$$\rightarrow$$
 (iii); (B) \rightarrow (i); (C) \rightarrow (iv); (D) \rightarrow (ii)

$$(3)$$
 $(A) \rightarrow (iv)$; $(B) \rightarrow (i)$; $(C) \rightarrow (ii)$; $(D) \rightarrow (iii)$ (4) $(A) \rightarrow (iv)$; $(B) \rightarrow (ii)$; $(C) \rightarrow (iii)$; $(D) \rightarrow (i)$

Ans. (1)

8. If 10²¹ molecules are removed from x mg of CO₂(g) then 2.8 ×10⁻³ mole are left. Calculate the value of x.

Ans. (196.53)

Sol.
$$(\text{mole})_i = \left(\frac{x \times 10^{-3}}{44}\right)$$
, $(\text{mole})_{\text{Removed}} = \left(\frac{10^{21}}{6 \times 10^{23}}\right) = \frac{1}{6} \times 10^{-2}$

(mole)_{left} = 2.8 × 10-3

Now,

(mole) - (mole)Removed = (mole)left

$$=\frac{\times \times 10^{-3}}{44} - \frac{10^{21}}{6 \times 10^{23}} = 2.8 \times 10^{-3}$$

$$\frac{\times \times 10^{-3}}{44} = 2.8 \times 10^{-3} + \frac{1}{6} \times 10^{-2} = \left(2.8 + \frac{10}{6}\right) \times 10^{-3}$$

$$\frac{\times \times 10^{-3}}{44} = \left(\frac{16.8 + 10}{6}\right) \times 10^{-3}$$

$$x = 196.53$$

9. Incorrect statement among the following is :

(1) SO₂ act as oxidising agent but not reducing agent.

(2) NO₂ exist as dimer

(3) PFs exist but NFs does not

(4) PH₃ has lower proton affinity than NH₃

Ans. (1)

10. Two radioactive decays are

$$A \xrightarrow{\lambda_1} \text{product} \qquad \lambda_1 = 3\lambda_2$$

$$B \xrightarrow{\lambda_2} product N_{A_0} = N_{B_0}$$

Find ratio of (NA)t and (NB)t after one half life of A

Ans. (4

Sol. Radioactive decays obeys 1st order kinetics

$$\begin{split} \frac{(N_B)_t}{(N_A)_t} &= \frac{N_{B_0} e^{-\lambda_2 (t_{1/2})_A}}{N_{A_0} e^{-\lambda_1 (t_{1/2})_A}} \qquad (N_{A_0} = N_{B_0}) \\ &= \frac{e^{-\lambda_2 \times \frac{\ln 2}{\lambda_1}}}{e^{-\lambda_1 \times \frac{\ln 2}{\lambda_1}}} = \frac{e^{-\ln 8}}{e^{-\ln 2}} \Rightarrow \frac{(N_A)_t}{(N_B)_t} = 4 \end{split}$$

Calculate the percentage by weight of S if 160 g of organic compound produce 466 g of BaSO₄.

Ans. (40)

Sol. S → BaSO₄

 $(atoms of S)_S = (atoms of S)_{BaSO_4}$

$$\left(\frac{\text{wt}}{32}\right) \times N_A \times 1 = \left(\frac{466}{233}\right) \times N_A \times 1$$

$$(wt)_s = \left(\frac{466 \times 32}{233}\right)$$

 $(wt)_s = 64 g$

$$\% S = \frac{\text{(wt)}_{\text{s}}}{\text{(wt)}_{\text{arg. compound}}} \times 100 = \frac{64}{160} \times 100 = 40 \%$$

12. Find the spectral line of H-atom, which have λ =900 nm, R_H = 10⁵ cm⁻¹

(1)
$$n_2 = \infty \rightarrow n_1 = 1$$
, Lyman

(2)
$$n_2 = \infty \rightarrow n_1 = 2$$
, Balmer

(3)
$$n_2 = 5 \rightarrow n_1 = 3$$
, Paschan

(4)
$$n_2 = \infty \rightarrow n_1 = 3$$
, Paschan

Ans. (4)

Sol.
$$\frac{1}{\lambda} = R_H \times 2^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\frac{1}{\lambda} = 10^5 \times 1 \times \left(\frac{1}{3^2} - \frac{1}{\infty^2} \right)$$

$$\frac{1}{\lambda} = \frac{10^5}{9}$$

$$\Rightarrow$$
 $\lambda = 9 \times 10^{-5} \text{ cm} = 900 \times 10^{-7} \text{ cm} = 900 \text{ nm}$

13. Find molecular mass of final product.

Ans. (171)

Sol.

Sn/HCI

Ans. (1)

Statement 1: Fructose gives silver mirror with Tollens reagent although - G-H group is absent in it. 15.

Statement 2: Fructose in Alkaline (Base) medium converts into Aldose Sugar Glucose which has -H group. 0

- (1) Both Statement 1 and statement 2 are true (2) Both statement 1 and statement 2 are false
- (3) Statement 1 is true but statement 2 is false (4) Statement 1 is false but statement 2 is true

(1) Ans.

Sol. Statement 1: Correct Statement 2 : Correct

Rearrangement or inter conversion between fructose and glucose.

16. Which of the following reacts with Hinsberg reagent.

(1) A, B, C, E

(2) B, C, D

(3) A, C, D, E

(4) C, D, E

Ans. (1)

Sol. Only primary and sec. amine reacts with Hinsberg reagent. Ans. (10)

1:3 mol ratio

$$\frac{2g}{94}$$
 $\frac{2}{94} \times 3 \text{ mol Br}_2$

Hence
$$\frac{2 \times 3}{94} \times 160$$
 gBr₂ used in reaction. =10.21 g

18 Which of the following the most stable carbanion is

Ans. (2)

Sol. Follows Huckel rule hence is Aromatic stabilised resonance energy.

19. Propane reacts with Cl₂ in sunlight to give chiral product x which is dichloro product.

x is further chlorinated in sunlight to give how many trichloro product.

Ans. (4)

Sol.
$$H \xrightarrow{Cl_2/hv} Cl \xrightarrow{Cl_2/hv} Cl \xrightarrow{Cl_2/hv} Cl \xrightarrow{Cl_2/hv} Cl \xrightarrow{Cl} Cl \xrightarrow{Cl} Cl \xrightarrow{Cl} Cl$$

Total 4 product are formed.

20. In estimation of sulphur by carius method, 160 g of organic compound gives 466 g of Barium sulphate.
% of sulphur in the organic compound is.

(4) S

Ans. (40)

Sol. BaSO₄(233)

Moles =
$$\frac{466}{233}$$
 = 2

$$Mass(s) = 2 \times 32 = 64$$

% of S =
$$\frac{64}{160} \times 100 = 40\%$$

