#### PREVIEW QUESTION BANK

Module Name: PLANT BIOTECHNOLOGY-ENG Exam Date: 09-Jul-2023 Batch: 10:00-12:00

| Sr.<br>No. | Client Ques   | tion ID                                                        | Question Body and Alternatives           | Marks | Negativ<br>Marks |  |  |  |
|------------|---------------|----------------------------------------------------------------|------------------------------------------|-------|------------------|--|--|--|
| ojec       | tive Question |                                                                |                                          |       |                  |  |  |  |
| 1          | Mate          | ch List I with List II                                         |                                          |       | 4.0 1.           |  |  |  |
|            |               | List I                                                         | List II                                  |       |                  |  |  |  |
|            |               | Name of the Fatty Acid                                         | Type of the fatty acid                   |       |                  |  |  |  |
|            | (A)           | Oleic acid                                                     | (I) ω-3                                  |       |                  |  |  |  |
|            | (B)           | Petroselenic acid                                              | (II) ω-6                                 |       |                  |  |  |  |
|            | (C)           | Gamma linolenic acid                                           | (III) ω-12                               |       |                  |  |  |  |
|            | (D)           | Eicosapentaenoic acid                                          | (IV) ω-9                                 |       |                  |  |  |  |
|            | Cho           | Choose the <i>correct</i> answer from the options given below: |                                          |       |                  |  |  |  |
|            | 1.            | Salar Carl Carl Carl Carl                                      |                                          |       |                  |  |  |  |
|            | 2.            | (A) - (II), (B) - (I), (C)                                     | S1 100 101 10 10 10 10 10 10 10 10 10 10 |       |                  |  |  |  |
|            | 3.            | (A) - (III), (B) - (II), (C                                    |                                          |       |                  |  |  |  |
|            | 4.            | (A) - (IV), (B) - (III), (C                                    | C) - (II), (D) - (I)                     |       |                  |  |  |  |
|            | A1:1          |                                                                |                                          |       |                  |  |  |  |
|            | A2:2          |                                                                |                                          |       |                  |  |  |  |
|            | A3:3          |                                                                |                                          |       |                  |  |  |  |
|            | A4:4          |                                                                |                                          |       |                  |  |  |  |
|            |               |                                                                |                                          |       |                  |  |  |  |



4 104

# Match List-II with List-II

| List-I |             | List-II           |
|--------|-------------|-------------------|
|        | Molecule    | Type of peptide   |
| (A)    | Aspartame   | (I) Tripeptide    |
| (B)    | Glutathione | (II) Tetrapeptide |
| (C)    | Oxytocin    | (III) Nonapeptide |
| (D)    | Endomorphin | (IV) Dipeptide    |

Choose the *correct* answer from the options given below:

4.0 1.00

1. 
$$(A) - (I), (B) - (II), (C) - (III), (D) - (IV)$$

3. 
$$(A) - (IV), (B) - (III), (C) - (I), (D) - (II)$$

A1:1

A2:2

A3:3

A4:4

4.0 1.00 105 Given below are two statements, one is labelled as **Assertion** (A) and other one labelled as Reason (R). Assertion (A): Depsipeptides have more flexible structure and lower rotational barrier for *cis-trans* isomerization than their native analogs. One or more amide linkages in depsipeptides are replaced with Reason (R): corresponding ester groups leading to their reduced hydrogen bonding capacity, which in turn results in deformed secondary structures. In light of the above statements, choose the *correct* answer from the options given below. Both (A) and (R) are true and (R) is the correct explanation of (A). 1. 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A). 3. (A) is true but (R) is false. 4. (A) is false but (R) is true. A1:1 A2:2 A3:3 A4:4 Objective Question 106 4.0 1.00 The Old Yellow Enzyme (OYE), isolated by Warburg and Christian from brewers' bottom yeast in 1932, has been shown to comprise of a colourless apoprotein and a yellow cofactor. Subsequent identification of the nature of this yellow cofactor demonstrated that OYE is a(an): 1. Ribozyme 2. Flavoenzyme 3. Metalloenzyme 4. Abzyme A1:1 A2:2 A3:3 A4:4

| Objectiv | ve Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 7 107    | W. Company of the Com | 4.0 | 1.00 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |

|     | List-I                                              |       | List-II         |
|-----|-----------------------------------------------------|-------|-----------------|
|     | Reaction catalyzed/Name of the enzyme               |       | Class of enzyme |
| (A) | Formation and removal of carbon-carbon double bonds | (I)   | Ligase          |
| (B) | Amino acyl – tRNA synthetase                        | (II)  | Hydrolase       |
| (C) | Transamination                                      | (III) | Lyase           |
| (D) | Removal of fatty acids from triglycerides           | (IV)  | Transferase     |

Choose the *correct* answer from the options given below:

- 1. (A) (I), (B) (II), (C) (III), (D) (IV)
- 2. (A) (III), (B) (I), (C) (IV), (D) (II)
- 3. (A) (II), (B) (I), (C) (IV), (D) (III)
- 4. (A) (IV), (B) (III), (C) (I), (D) (II)

A1:1

A2:2

A3:3

A4:4

Objective Question

The catalytic center of which of the following protease families consists of a catalytic triad of aspartate, histidine and serine?

4.0 1.00

- 1. Cysteine proteases
- 2. Aspartic proteases
- 3. Serine proteases
- 4. Metalloproteases

A1:1

A2:2

A3:3

A4:4

| Ohie | octive | Question             |                                                                                                                                                                         |     |      |
|------|--------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
|      | 109    | Question             |                                                                                                                                                                         | 4.0 | 1.00 |
|      |        | the o                | First three steps of the β-oxidation pathway of fatty acyl-CoA, chemically resemble citric acid cycle reactions carrying out which of the following biochemical ersion? | 4.0 | 1.00 |
|      |        | 1.                   | Oxaloacetate to α-ketoglutarate                                                                                                                                         |     |      |
|      |        | 2.                   | Citrate to Succinyl-CoA                                                                                                                                                 |     |      |
|      |        | 3.                   | Succinate to Oxaloacetate                                                                                                                                               |     |      |
|      |        | 4.                   | Isocitrate to Succinate                                                                                                                                                 |     |      |
|      |        | A1:1<br>A2:2<br>A3:3 |                                                                                                                                                                         |     |      |
| Obje | ective | Question             |                                                                                                                                                                         |     |      |
| obje | ctive  | Question             |                                                                                                                                                                         |     |      |
|      |        |                      |                                                                                                                                                                         |     |      |

| 10 | 110 |              |
|----|-----|--------------|
| 10 | 110 | N / - + - 1- |

|        |         | 7612.5617 |          |
|--------|---------|-----------|----------|
| Match  | ict_    | with      | lict_II  |
| wiaten | 1/101-1 | WILLI     | 1/131-11 |

| 4.0 | 1.00 |
|-----|------|
|-----|------|

|     | List-I                     |       | List-II                                                                                                                   |
|-----|----------------------------|-------|---------------------------------------------------------------------------------------------------------------------------|
|     | Name of the enzyme         |       | Role in the fatty acid oxidation                                                                                          |
| (A) | 2,4-dienoyl-CoA reductase  | (I)   | Involved in the $\alpha$ -oxidation of branched fatty acids formed from the degradation of side chain of the chlorophyll. |
| (B) | Phytanoyl- CoA hydroxylase | (II)  | Involved in the oxidation of unsaturated fatty acids                                                                      |
| (C) | Acyl-CoA oxidase           | (III) | Involved in the $\omega$ -oxidation of medium chain fatty acids in the endoplasmic reticulum                              |
| (D) | Cytochrome P450            | (IV)  | Involved in the peroxisomal β-oxidation                                                                                   |

Choose the *correct* answer from the options given below:

- 1. (A) (I), (B) (II), (C) (III), (D) (IV)
- 2. (A) (III), (B) (II), (C) (I), (D) (IV)
- 3. (A) (II), (B) (I), (C) (IV), (D) (III)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)

A1:1

A2:2

A3:3

A4:4

| 11 111   | Given below are two statements, one is labelled as <b>Assertion</b> (A) and other one labelled as <b>Reason</b> (R).                                                                                         | 4.0 1.00 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|          | <b>Assertion (A):</b> The addition of fluoride to fermenting yeast extracts causes the buildup of 3-phosphoglycerate and 2-phosphoglycerate.                                                                 |          |
|          | <b>Reason (R)</b> : The fluoride strongly inhibits the enolase enzyme in the presence of inorganic phosphate (Pi) by forming a tightly bound complex with the Mg <sup>2+</sup> at the enzymes's active site. |          |
|          | In light of the above statements, choose the <i>correct</i> answer from the options given below.                                                                                                             |          |
|          | 1. Both (A) and (R) are true and (R) is the correct explanation of (A).                                                                                                                                      |          |
|          | 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).                                                                                                                                  |          |
|          | 3. (A) is true but (R) is false.                                                                                                                                                                             |          |
|          | 4. (A) is false but (R) is true.                                                                                                                                                                             |          |
|          | A1:1                                                                                                                                                                                                         |          |
|          | A2:2                                                                                                                                                                                                         |          |
|          | A3:3                                                                                                                                                                                                         |          |
|          | A4:4                                                                                                                                                                                                         |          |
| Objectiv | ve Question                                                                                                                                                                                                  |          |

|          | 3-ph<br>2,3-t | ng glycolysis, the enzyme phosphoglycerate mutase catalyses the conversion of osphoglycerate (3PG) to 2-phosphoglycerate (2PG) through formation of oisphosphoglycerate (2,3-BPG) intermediate. The phosphoryl group to 3PG for the formation of 2,3-BPG is transferred from which of the followings: |     |
|----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|          | 1.            | Adenosine triphosphate                                                                                                                                                                                                                                                                                |     |
|          | 2.            | Acetyl phosphate                                                                                                                                                                                                                                                                                      |     |
|          | 3.            | Pyrophosphate                                                                                                                                                                                                                                                                                         |     |
|          | 4.            | Phospho-histidine residue present at the active site of the phosphoglycerate mutase                                                                                                                                                                                                                   |     |
|          | A1:1          |                                                                                                                                                                                                                                                                                                       |     |
|          | A2:2          |                                                                                                                                                                                                                                                                                                       |     |
|          | A3:3          |                                                                                                                                                                                                                                                                                                       |     |
|          | A4 : 4        |                                                                                                                                                                                                                                                                                                       |     |
| bjective | Question      |                                                                                                                                                                                                                                                                                                       |     |
| 3 113    |               |                                                                                                                                                                                                                                                                                                       | 4.0 |

|     | List-I                                                                  | List-II                                                                     |
|-----|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|     | enzyme/Prosthetic group of Pyruvate<br>ehydrogenase Multienzyme Complex | Location on Multienzyme Complex                                             |
| (A) | Nicotinamide adenine dinucleotide                                       | (I) Bound to Dihydrolipoyal<br>dehydrogenase (E3)                           |
| (B) | Lipoic acid                                                             | (II) Covalently linked to a Lysine or<br>Dihydrolipoyal transacetylase (E2) |
| (C) | Coenzyme A                                                              | (III) Substrate for E2                                                      |
| (D) | Flavin adenine dinucleotide (FAD)                                       | (IV) Substrate for E3                                                       |

Choose the *correct* answer from the options given below:

1. 
$$(A) - (I), (B) - (II), (C) - (III), (D) - (IV)$$

A1:1

A2:2

A3:3

A4:4

| 14 | 114 | 4.0 | 1.00 | ) |
|----|-----|-----|------|---|
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |
|    |     |     |      |   |



|     | List-I                                               |       | List-II                                              |
|-----|------------------------------------------------------|-------|------------------------------------------------------|
| Inł | nibitor/Redox carrier in Electron<br>Transport Chain |       | Action                                               |
| (A) | Amytal                                               | (I)   | Inhibits FAD-linked oxidation                        |
| (B) | Antimycin                                            | (II)  | Inhibits NAD <sup>+</sup> -linked oxidation          |
| (C) | Tetramethyl- <i>p</i> -phenylenediamine (TMPD)       | (III) | Completely inhibits oxidation of all electron donors |
| (D) | Sodium azide                                         | (IV)  | Transfers electrons directly to Cytochrome C         |

Choose the *correct* answer from the options given below:

1. 
$$(A) - (I), (B) - (II), (C) - (III), (D) - (IV)$$

3. 
$$(A) - (II), (B) - (I), (C) - (IV), (D) - (III)$$

A1:1

A2:2

A3:3

A4:4

| 15   115 | Given below are two statements, one is labelled as <b>Assertion</b> (A) and other one labelled as <b>Reason</b> (R).                                            | 4.0 1.00 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|          | <b>Assertion (A):</b> The "Randle Cycle" describes the inhibition of the glycolysis by fatty acid oxidation.                                                    |          |
|          | <b>Reason (R)</b> : Oxidation of fatty acids increases the concentration of citrate that in turn inhibits the phosphofructokinase enzyme of glycolytic pathway. |          |
|          | In light of the above statements, choose the <i>correct</i> answer from the options given below.                                                                |          |
|          | 1. Both (A) and (R) are true and (R) is the correct explanation of (A).                                                                                         |          |
|          | 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).                                                                                     |          |
|          | 3. (A) is true but (R) is false.                                                                                                                                |          |
|          | 4. (A) is false but (R) is true.                                                                                                                                |          |
|          |                                                                                                                                                                 |          |
|          | A1:1                                                                                                                                                            |          |
|          | A2:2                                                                                                                                                            |          |
|          | A3:3 A4:4                                                                                                                                                       |          |
| Objectiv | e Question                                                                                                                                                      |          |
| 16 116   | The chemical identity of Oxygen Evolving Centers (OEC) present in the Photosytem-II of plants and cyanobacteria is:                                             | 4.0 1.00 |
|          | Oxygented carotenoids                                                                                                                                           |          |
|          | 2. Oxylipins                                                                                                                                                    |          |
|          | 3. Metal-oxygen clusters                                                                                                                                        |          |
|          | 4. Fe-S clusters                                                                                                                                                |          |
|          |                                                                                                                                                                 |          |
|          | A1:1                                                                                                                                                            |          |
|          | A2:2                                                                                                                                                            |          |
|          | A22                                                                                                                                                             |          |
|          |                                                                                                                                                                 |          |
|          | A3:3                                                                                                                                                            |          |

| Objectiv | e Question                                                                                                                                                                                                               |     |      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 17 117   | The energetic efficiency (in terms of number of ATP equivalents per absorbed photon) of non-cyclic electron transport process in photosynthesis, after taking into account the ATPs yielded by NADPH produced in it, is: | 4.0 | 1.00 |
|          | 1. 0.5                                                                                                                                                                                                                   |     |      |
|          | 2. 0.667                                                                                                                                                                                                                 |     |      |
|          | 3. 1.25                                                                                                                                                                                                                  |     |      |
|          | 4. 4.0                                                                                                                                                                                                                   |     |      |
|          | A1:1                                                                                                                                                                                                                     |     |      |
|          | A2:2                                                                                                                                                                                                                     |     |      |
|          | A3:3                                                                                                                                                                                                                     |     |      |
|          | A4:4                                                                                                                                                                                                                     |     |      |
| Objectiv | e Question                                                                                                                                                                                                               |     |      |
| 18 118   |                                                                                                                                                                                                                          | 4.0 | 1.00 |

The pyruvate-phosphate dikinase (PPDK) is a key enzyme of photosynthesis and catalyses a reaction similar to the one catalyzed by the pyruvate kinase (PK)-a glycolytic enzyme. Which of the following statements about these two enzymes is true?

- 1. PPDK catalyses an irreversible reaction.
- PPDK consumes one molecule of ATP for each molecule of pyruvate converted into PEP.
- 3. PK catalyses a reversible reaction.
- 4. PK consumes one molecule of ATP for each molecule of PEP converted into pyruvate.

A1:1

A2:2

A3:3

A4:4

Objective Question

Which of the following regions of Nitrate reductase (NR) enzyme is extremely important for the 14-3-3 protein-mediated posttranslational regulation of its activity?

- 4.0 1.00
- 1. Hinge1(H1) region between Molybdenum cofactor (MoCo) and the Heme domain
- 2. Hinge2 (H2) region between Heme and FAD domain
- 3. Acidic residues-rich N-terminal region preceding MoCo domain
- 4. The C-terminal part of FAD domain

A1:1

A2:2

A3:3

A4:4

| 20 | 120   | The        | synthesis and/or activity of the nitrogenase enzyme gets stimulated by which of the wing conditions?                       | 4.0 | 1.00 |
|----|-------|------------|----------------------------------------------------------------------------------------------------------------------------|-----|------|
|    |       | 1.         | Low glutamine/α-ketoglutarate ratio                                                                                        |     |      |
|    |       | 2.         | Higher expression of Dinitrogenase reductase ADP-ribosyl transferase (DRAT) enzyme                                         |     |      |
|    |       | 3.         | High oxygen concentration                                                                                                  |     |      |
|    |       | 4.         | High expression of Nif L protein                                                                                           |     |      |
|    |       |            |                                                                                                                            |     |      |
|    |       | A1:1       |                                                                                                                            |     |      |
|    |       |            |                                                                                                                            | ı   |      |
|    |       | A2:2       |                                                                                                                            |     |      |
|    |       |            |                                                                                                                            |     |      |
|    |       | A3:3       |                                                                                                                            |     |      |
|    |       | A4 : 4     |                                                                                                                            |     |      |
|    |       |            |                                                                                                                            |     |      |
| Ob | ectiv | e Question |                                                                                                                            |     |      |
| 21 | 121   | w ni       | ch of the following amino acids in a protein or peptide does not contribute ificantly towards its UV absorption at 280 nm? | 4.0 | 1.00 |
|    |       | 1.         | Tryptophan                                                                                                                 |     |      |
|    |       | 2.         | Tyrosine                                                                                                                   |     |      |
|    |       | 3.         | Phenylalanine                                                                                                              |     |      |
|    |       | 4.         | Cysteine                                                                                                                   |     |      |
|    |       |            |                                                                                                                            |     |      |
|    |       | A1:1       |                                                                                                                            |     |      |
|    |       | A2:2       |                                                                                                                            |     |      |
|    |       | A2.2       |                                                                                                                            |     |      |
|    |       | A3:3       |                                                                                                                            |     |      |
|    |       |            |                                                                                                                            |     |      |
|    |       | A4:4       |                                                                                                                            |     |      |
| Ob | ectiv | e Question | 1                                                                                                                          |     |      |

| 122 |        | ch of the following interventions would result in enhanced chromatographic ration? | 4.0 1 |
|-----|--------|------------------------------------------------------------------------------------|-------|
|     | (A)    | Increasing the number of theoretical plates                                        |       |
|     | (B)    | Decreasing the Height Equivalent to a Theoretical Plate (HETP)                     |       |
|     | (C)    | Decreasing the column height                                                       |       |
|     | (D)    | Decreasing the size of the particles used to pack a column                         |       |
|     | Cho    | ose the <i>correct</i> answer from the options given below:                        |       |
|     | 1.     | (A), (B) and (D) only.                                                             |       |
|     | 2.     | (A), (C) and (D) only.                                                             |       |
|     | 3.     | (A), (B), (C) and (D).                                                             |       |
|     | 4.     | (B), (C) and (D) only.                                                             |       |
|     | A1:1   |                                                                                    |       |
|     | A2:2   |                                                                                    |       |
|     | A3:3   |                                                                                    |       |
|     | A4 : 4 |                                                                                    |       |
|     |        |                                                                                    |       |
|     |        |                                                                                    |       |

23 | 123

#### Match List-I with List-II

4.0 1.00

4.0 1.00

|     | List-I                     |       | List-II                                |
|-----|----------------------------|-------|----------------------------------------|
|     | Name of the lipid          |       | Nature of the lipid                    |
| (A) | Ceramide                   | (I)   | Ether glycerophospholipid              |
| (B) | Cerebroside                | (II)  | Acidic (charged) glycosphingolipid     |
| (C) | Ganglioside                | (III) | Structural parent of all sphingolipids |
| (D) | Platelet Activating Factor | (IV)  | Neutral Glycosphingolipid              |

Choose the *correct* answer from the options given below:

- 1. (A) (II), (B) (I), (C) (III), (D) (IV)
- 2. (A) (III), (B) (IV), (C) (II), (D) (I)
- 3. (A) (I), (B) (II), (C) (IV), (D) (III)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)

A1:1

A2:2

A3:3

A4:4

Objective Question

24 | 124 |

Some of the exceptional properties of regulatory/allosteric enzymes are:

- (A) Their Kinetics do not obey the Michaelis-Menten equation.
- (B) They are mostly monomeric in nature.
- (C) They have more than one substrate binding sites and the substrate binding to different sites is mutually independent, exclusive and noncooperative.
- (D) Binding of effector molecules to them may lead to their activation or inhibition.

Choose the *correct* answer from the options given below:

- 1. (A), (B) and (D) only.
- 2. (A), (C) and (D) only.
- 3. (A), (B), (C) and (D).
- 4. (A) and (D) only.

A1:1

| A4 : | 1                                                 |                   |                  |                  |   |     |  |  |
|------|---------------------------------------------------|-------------------|------------------|------------------|---|-----|--|--|
|      | e Question                                        |                   |                  |                  |   |     |  |  |
| 25 M | atch List-I with List-II                          |                   |                  |                  |   | 4.0 |  |  |
|      | List-I                                            |                   |                  | List-II          |   |     |  |  |
|      | Name of the comp                                  | onent             |                  | Vitamin/Coenzyme | _ |     |  |  |
| (A   | (A) Pantothenic acid                              |                   | (I) NAD          |                  |   |     |  |  |
| В    | ) Para-Amino Benzoic                              | Acid (PABA)       | (II)             | Coenzyme A       |   |     |  |  |
| (C   | (C) Ribose                                        |                   | (III) Folic acid |                  |   |     |  |  |
| (D   | ) Pentanoic acid                                  |                   | (IV)             | Lipoic acid      |   |     |  |  |
| Cł   | noose the <i>correct</i> answer f                 | rom the options   | s giver          | n below:         | _ |     |  |  |
| 1.   | (A) - (I), (B) - (II), (C)                        | - (III), (D) - (I | V)               |                  |   |     |  |  |
| 2.   |                                                   |                   |                  |                  |   |     |  |  |
| 3.   | (A) - (II), (B) - (III), (C                       |                   |                  |                  |   |     |  |  |
| 4.   | 4. (A) - (III), (B) - (IV), (C) - (I), (D) - (II) |                   |                  |                  |   |     |  |  |
| A1:  | 1                                                 |                   |                  |                  |   |     |  |  |
| A2:  | 2                                                 |                   |                  |                  |   |     |  |  |
| A3:  | 3                                                 |                   |                  |                  |   |     |  |  |
| A4 : | 4                                                 |                   |                  |                  |   |     |  |  |
|      |                                                   |                   |                  |                  |   |     |  |  |



| List-I |            |       | List-II                                                                                |  |  |  |  |  |
|--------|------------|-------|----------------------------------------------------------------------------------------|--|--|--|--|--|
|        | Mineral    |       | Deficiency Symptom                                                                     |  |  |  |  |  |
| (A)    | Manganese  | (I)   | Neurological abnormalities due to sulfite oxidase deficiency                           |  |  |  |  |  |
| (B)    | Selenium   | (II)  | Poor Vitamin D status due to lesser formation of biologically active form of Vitamin D |  |  |  |  |  |
| (C)    | Magnesium  | (III) | Enhanced oxidative stress                                                              |  |  |  |  |  |
| (D)    | Molybdenum | (IV)  | Poor wound healing due to the inactivation of Prolidase enzyme                         |  |  |  |  |  |

Choose the *correct* answer from the options given below:

- 1. (A) (III), (B) (IV), (C) (I), (D) (II)
- 2. (A) (IV), (B) (III), (C) (II), (D) (I)
- 3. (A) (I), (B) (III), (C) (IV), (D) (II)
- 4. (A) (I), (B) (IV), (C) (II), (D) (III)

A1:1

A2:2

A3:3

A4:4

| 127   | Given below are two statements, one is labelled as <b>Assertion</b> $(A)$ and other one labelled as <b>Reason</b> $(R)$ .                                                             | 4.0 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|       | Assertion (A): The CAM plants undergo night time acidification and day time deacidification                                                                                           |     |
|       | <b>Reason (R):</b> The CAM plants take up CO <sub>2</sub> during day time, store it in the form of malate in vacuoles and break it down to release CO <sub>2</sub> in the night time. |     |
|       | In light of the above statements, choose the <i>correct</i> answer from the options given below.                                                                                      |     |
|       | 1. Both (A) and (R) are true and (R) is the correct explanation of (A).                                                                                                               |     |
|       | 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).                                                                                                           |     |
|       | 3. (A) is true but (R) is false.                                                                                                                                                      |     |
|       | 4. (A) is false but (R) is true.                                                                                                                                                      |     |
|       | A1:1                                                                                                                                                                                  |     |
|       | A2:2                                                                                                                                                                                  |     |
|       | A3:3                                                                                                                                                                                  |     |
|       | A4:4                                                                                                                                                                                  |     |
| otivo | Question                                                                                                                                                                              | _   |



| Objective Question    Mai: 4   Which of the following metabolites is not an intermediate in the triglyceride biosynthesis by Kennedy pathway?   1. Lysophosphatidic acid   2. Phosphatidic acid   3. Diacylglycerol   4. Glyceraldehyde-3-Phosphate   A1:1   A2:2   A3:3   A4:4   A3:3   A |     |        | A3:3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| Which of the following metabolites is not an intermediate in the triglyceride biosynthesis by Kennedy pathway?  1. Lysophosphatidic acid  2. Phosphatidic acid  3. Diacylglycerol  4. Glyceraldehyde-3-Phosphate  A1:1  A2:2  A3:3  A4:4  Discovering Phosphate  A1:1  A2:2  A3:3  A4:4  A1:1  A2:2  A3:3  A4:4  A3:3  A4:4  A3:3  A4:4  A3:3  A4:4  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        | A4 : 4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| which of the following metabonics is not an intermediate in the triglycende biosynthesis by Kennedy pathway?  1. Lysophosphatidic acid 2. Phosphatidic acid 3. Diacylglycerol 4. Glyceraldehyde-3-Phosphate  A1:1  A2:2  A3:3  A4:4  Onjective Question  31   13i   In a nucleotide sequence ATGC, which of the following nucleotide has the unlinked 5' - OH?  1. deoxyadenylate 2. deoxycytidylate 3. deoxythymidylate 4. deoxyguanylate  A1:1  A2:2  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Obj | ective | e Question |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| 2. Phosphatidic acid 3. Diacylglycerol 4. Glyceraldehyde-3-Phosphate  Al:1  A2:2  A3:3  A4:4  Objective Question  In a nucleotide sequence ATGC, which of the following nucleotide has the unlinked 5' - OH? 1. deoxyadenylate 2. deoxycytidylate 3. deoxythymidylate 4. deoxyguanylate  A1:1  A2:2  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 130    | VV IIIC    | ch of the following metabolites is not an intermediate in the triglyceride on the vital vi | 4.0 | 1.00 |
| 2. Phosphatidic acid 3. Diacylglycerol 4. Glyceraldehyde-3-Phosphate  A1:1  A2:2  A3:3  A4:4  Objective Question  In a nucleotide sequence ATGC, which of the following nucleotide has the unlinked 5° - OH?  1. deoxyadenylate 2. deoxycytidylate 3. deoxythymidylate 4. deoxyguanylate  A1:1  A2:2  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        | 1.         | Lysophosphatidic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |
| 3. Diacylglycerol 4. Glyceraldehyde-3-Phosphate  Al :1  A2 : 2  A3 : 3  A4 : 4  Objective Question  31   131   In a nucleotide sequence ATGC, which of the following nucleotide has the unlinked 5° - OH?  1. deoxyadenylate 2. deoxycytidylate 3. deoxythymidylate 4. deoxyguanylate  Al : 1  A2 : 2  A3 : 3  A4 : 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 2.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| A1:1 A2:2 A3:3 A4:4  Objective Question  In a nucleotide sequence ATGC, which of the following nucleotide has the unlinked 5' - OH? 1. deoxyadenylate 2. deoxycytidylate 3. deoxythymidylate 4. deoxyguanylate  A1:1 A2:2 A3:3 A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        | 3.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| Objective Question  A1:1  A2:2  A3:3  A4:4  Objective Question  In a nucleotide sequence ATGC, which of the following nucleotide has the unlinked 5' - OH?  1. deoxyadenylate 2. deoxycytidylate 3. deoxythymidylate 4. deoxyguanylate  A1:1  A2:2  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        | 4.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| Objective Question  Objective Question  The annucleotide sequence ATGC, which of the following nucleotide has the unlinked 5' - OH?  1. deoxyadenylate 2. deoxycytidylate 3. deoxythymidylate 4. deoxyguanylate  A1:1  A2:2  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        | A1:1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| Objective Question  31   131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        | A2:2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| Objective Question  31   131   In a mucleotide sequence ATGC, which of the following nucleotide has the unlinked 5' - OH?  1. deoxyadenylate 2. deoxycytidylate 3. deoxythymidylate 4. deoxyguanylate  A1:1  A2:2  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        | A3:3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| In a nucleotide sequence ATGC, which of the following nucleotide has the unlinked 5' - OH?  1. deoxyadenylate 2. deoxycytidylate 3. deoxythymidylate 4. deoxyguanylate  A1:1  A2:2  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        | A4:4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| In a intereorde sequence ATGC, which of the following nucleorde has the trininked 3 - OH?  1. deoxyadenylate 2. deoxycytidylate 3. deoxythymidylate 4. deoxyguanylate  Al:1  A2:2  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _   |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| 2. deoxycytidylate 3. deoxythymidylate 4. deoxyguanylate  A1:1  A2:2  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31  | 131    | maı        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0 | 1.00 |
| 3. deoxythymidylate 4. deoxyguanylate  A1:1  A2:2  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        | 1.         | deoxyadenylate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |
| 4. deoxyguanylate  A1:1  A2:2  A3:3  A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        | 2.         | deoxycytidylate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| A1:1 A2:2 A3:3 A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        | 3.         | deoxythymidylate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |
| A2:2 A3:3 A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        | 4.         | deoxyguanylate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |
| A3:3 A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        | A1:1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| A4:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        | A2:2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        | A3:3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
| Objective Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        | A4:4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Obj | ective | e Question |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |

| elongation phase of bacterial transcription?                                     | 1.00 |
|----------------------------------------------------------------------------------|------|
| 1. α subunit                                                                     |      |
| 2. β subunit                                                                     |      |
| 3. β' subunit                                                                    |      |
| 4. σ subunit                                                                     |      |
|                                                                                  |      |
|                                                                                  |      |
| A1:1                                                                             |      |
|                                                                                  |      |
| A2:2                                                                             |      |
|                                                                                  |      |
| A3:3                                                                             |      |
| A4:4                                                                             |      |
|                                                                                  |      |
| Objective Question                                                               |      |
| Which of the following is not related to termination of a transcript in E. coli? | 1.00 |
| 1. Intrinsic terminators                                                         |      |
| 2. Rho protein                                                                   |      |
| 3. N protein                                                                     |      |
| 4. NusA                                                                          |      |
|                                                                                  |      |
| A1:1                                                                             |      |
|                                                                                  |      |
| A2:2                                                                             |      |
| A3:3                                                                             |      |
|                                                                                  |      |
| A4:4                                                                             |      |
|                                                                                  |      |

| 34   134  | Wha        | t are isoaccepting tRNAs?                                  | 4.0      | 1.00 |
|-----------|------------|------------------------------------------------------------|----------|------|
|           | 1.         | Different tRNAs that have same length                      |          |      |
|           | 2.         | Different amino acids that are carried by same tRNA        |          |      |
|           | 3.         | Different tRNAs that are specific for the same amino acids |          |      |
|           | 4.         | Different tRNAs that have same sequence                    |          |      |
|           |            |                                                            |          |      |
|           | A1:1       |                                                            |          |      |
|           | A2:2       |                                                            |          |      |
|           | A2.2       |                                                            |          |      |
|           | A3:3       |                                                            |          |      |
|           | A4:4       |                                                            |          |      |
|           | A4:4       |                                                            |          |      |
| Objective | e Question |                                                            |          |      |
| 35   135  |            |                                                            | 4.0      | 1.00 |
|           |            |                                                            |          |      |
|           | The        | consensus sequence 5'-ACCAUGG-3; is also known as          |          |      |
|           | 1.         | Kozak sequence                                             |          |      |
|           | 2.         | Shine-Dalgarno sequence                                    |          |      |
|           | 3.         | Transcription termination signal sequence                  |          |      |
|           | 4.         | D-loop of tRNA                                             |          |      |
|           |            |                                                            |          |      |
|           | A1:1       |                                                            |          |      |
|           | A2:2       |                                                            |          |      |
|           | A3:3       |                                                            |          |      |
|           | A4:4       |                                                            |          |      |
| Objective | e Question |                                                            | <u> </u> |      |
| Jojective | c Question |                                                            |          |      |

| 36   136  | Whi  | ch of the following is Type II restriction enzyme?            | 4.0 | 1.00 |
|-----------|------|---------------------------------------------------------------|-----|------|
|           | 1.   | HindII                                                        |     |      |
|           | 2.   | EcoK                                                          |     |      |
|           | 3.   | EcoB                                                          |     |      |
|           | 4.   | HinfIII                                                       |     |      |
|           |      |                                                               |     |      |
|           | A1:1 |                                                               |     |      |
|           | A2:2 |                                                               |     |      |
|           |      |                                                               |     |      |
|           | A3:3 |                                                               |     |      |
|           | A4:4 |                                                               |     |      |
|           |      |                                                               |     |      |
| Objective |      | n                                                             | _   |      |
| 37   137  | Whic | ch of the following is the activity of reverse transcriptase? | 4.0 | 1.00 |
|           | 1.   | Synthesis of cDNA from mRNA                                   |     |      |
|           | 2.   | Synthesis of cDNA from DNA                                    |     |      |
|           | 3.   | Removal of 5' –PO <sub>4</sub>                                |     |      |
|           | 4.   | Removal of single strand protrusion from the ends             |     |      |
|           |      |                                                               |     |      |
|           | A1:1 |                                                               |     |      |
|           | A2:2 |                                                               |     |      |
|           |      |                                                               |     |      |
|           | A3:3 |                                                               |     |      |
|           | A4:4 |                                                               |     |      |
|           |      |                                                               |     |      |
|           |      |                                                               |     |      |

| 38   | 138    | pBlu         | escriptSK is an example of                                                              | 4.0 | 1.00     |
|------|--------|--------------|-----------------------------------------------------------------------------------------|-----|----------|
|      |        | 1.           | Phagemid vector                                                                         |     |          |
|      |        | 2.           | Cosmid vector                                                                           |     |          |
|      |        | 3.           | Phasmid vector                                                                          |     |          |
|      |        | 4.           | Plasmid vector                                                                          |     |          |
|      |        | A1:1         |                                                                                         |     |          |
|      |        | A2:2         |                                                                                         |     |          |
|      |        | A3:3         |                                                                                         |     |          |
|      |        | A4:4         |                                                                                         |     |          |
| Obje | ective | Question     |                                                                                         |     | <u> </u> |
| 39   | 139    | Which<br>DNA | ch of the following chemical is used to make E. coli cells competent to take external ? | 4.0 | 1.00     |
|      |        | 1.           | Sodium acetate                                                                          |     |          |
|      |        | 2.           | SDS detergent                                                                           |     |          |
|      |        | 3.           | CaCl <sub>2</sub>                                                                       |     |          |
|      |        | 4.           | NaOH                                                                                    |     |          |
|      |        | A1:1         |                                                                                         |     |          |
|      |        | A2:2         |                                                                                         |     |          |
|      |        | A3:3         |                                                                                         |     |          |
|      |        | A4 : 4       |                                                                                         |     |          |
| Obje | ective | Question     |                                                                                         |     |          |

| 4 | 140 | In No | orthern hybridization?                           | 4.0 | 1.00 |  |
|---|-----|-------|--------------------------------------------------|-----|------|--|
|   |     | 1.    | DNA sample is immobilized on the membrane        |     |      |  |
|   |     | 2.    | RNA sample is immobilized on the membrane        |     |      |  |
|   |     | 3.    | Copy number of transgene can be known            |     |      |  |
|   |     | 4.    | Can be used only for transgenic characterization |     |      |  |
|   |     |       |                                                  |     |      |  |
|   |     | A1:1  |                                                  |     |      |  |
|   |     | A2:2  |                                                  |     |      |  |
|   |     |       |                                                  |     |      |  |
|   |     | A3:3  |                                                  |     |      |  |
|   |     | A4:4  |                                                  |     |      |  |

| Objective Question                                                                                              |                       |                               |     |
|-----------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------|-----|
| Which of the following eukaryotes?  1. Centrosome 2. Ribosomes 3. Vacuoles 4. Mesosomes  Al:1  A2:2  A3:3  A4:4 | structure is commonly | found in both prokaryotes and | 4.0 |

| 42   14 | Whi          | ch of the following is not a part of endomembrane system?                                                      | 4.0 1 | .00 |
|---------|--------------|----------------------------------------------------------------------------------------------------------------|-------|-----|
|         | 1.           | Plasmodesmata                                                                                                  |       |     |
|         | 2.           | ER                                                                                                             |       |     |
|         | 3.           | Golgi complex                                                                                                  |       |     |
|         | 4.           | Peroxisomes                                                                                                    |       |     |
|         | A1:1         |                                                                                                                |       |     |
|         | A2:2         |                                                                                                                |       |     |
|         | A3:3         |                                                                                                                |       |     |
|         | A4:4         |                                                                                                                |       |     |
| Object  | ive Question | n                                                                                                              |       |     |
| 43 14   | If ha        | alf of the progenies of a test cross are having recessive trait, what would be the stypes of a dominant parent | 4.0 1 | .00 |
|         | 1.           | Homozygous dominant                                                                                            |       |     |
|         | 2.           | Heterozygous dominant                                                                                          |       |     |
|         | 3.           | Trait is governed by multi loci                                                                                |       |     |
|         | 4.           | Trait is epistatic                                                                                             |       |     |
|         | A1:1         |                                                                                                                |       |     |
|         | A2:2         |                                                                                                                |       |     |
|         |              |                                                                                                                |       |     |
|         | A3:3         |                                                                                                                |       |     |
|         | A4 : 4       |                                                                                                                |       |     |
| Object  | ive Question | 1                                                                                                              |       |     |

| 44   | 144    |          | SS-PROT, which provides detail sequence annotation including, structure, function protein family assignment, is an example of | 4.0 | 1.00 |
|------|--------|----------|-------------------------------------------------------------------------------------------------------------------------------|-----|------|
|      |        | 1.       | Secondary database                                                                                                            |     |      |
|      |        | 2.       | Primary database                                                                                                              |     |      |
|      |        | 3.       | Specialized database                                                                                                          |     |      |
|      |        | 4.       | Curated nucleotide sequence database                                                                                          |     |      |
|      |        | A1:1     |                                                                                                                               |     |      |
|      |        | A2:2     |                                                                                                                               |     |      |
|      |        | A3:3     |                                                                                                                               |     |      |
|      |        | A4 : 4   |                                                                                                                               |     |      |
| Obje | ctive  | Question |                                                                                                                               |     |      |
| 45   | 145    | Whic     | ch of the following method can be used for sterilization of seeds to be used in tissue re?                                    | 4.0 | 1.00 |
|      |        | 1.       | Surface sterilization using sterilizing agents                                                                                |     |      |
|      |        | 2.       | Dry heat                                                                                                                      |     |      |
|      |        | 3.       | Flame sterilization                                                                                                           |     |      |
|      |        | 4.       | Air blown through laminar flow                                                                                                |     |      |
|      |        | A1:1     |                                                                                                                               |     |      |
|      |        | A2:2     |                                                                                                                               |     |      |
|      |        | A3:3     |                                                                                                                               |     |      |
|      |        | A4 : 4   |                                                                                                                               |     |      |
| Obje | ective | Question |                                                                                                                               |     |      |



4.0 1.00 48 | 148 | Which of the following statement is correct for 70S ribosome? The 16S RNA belongs to small subunit. (B) It also has 8S RNA. (C) The 5S RNA belongs to 50S subunit. It can be dissociated into 40S and 30S subunit. (D) Choose the *correct* answer from the options given below: (A) and (B) only. 1. (A) and (C) only. 2. 3. (B) and (C) only. (C) and (D) only. 4. A1:1



**Statement (B):** Genetic maps have limited accuracy as the recombination are more likely to occur at some points than at others.

In light of the above statements, choose the *most appropriate* answer from the options given below.

- 1. Both (A) and (B) are correct.
- 2. Both (A) and (B) are incorrect.
- 3. Only (A) is correct, (B) is not correct.

which have been scored.

4. Only (B) is correct, (A) is not correct.

A1:1

A2:2

A3:3

A4:4

Objective Question

50 150 Match List-I with List-II

| 4.0 1.00 |
|----------|
|----------|

| i.  | List-I                 |       | List-II                                       |
|-----|------------------------|-------|-----------------------------------------------|
| (A) | RNA sequencing         | (I)   | Global gene expression of known gene          |
| (B) | Northern hybridization | (II)  | Transcript expression                         |
| (C) | qPCR                   | (III) | Relative transcript expression                |
| (D) | Microarray             | (IV)  | Global gene expression of unknown gene        |
|     |                        | (V)   | Phosphorylation-dephosphorylation of proteome |

Choose the *correct* answer from the options given below:

1. 
$$(A) - (V), (B) - (I), (C) - (III), (D) - (II)$$

2. 
$$(A) - (IV), (B) - (II), (C) - (III), (D) - (I)$$

3. 
$$(A) - (III), (B) - (V), (C) - (II), (D) - (I)$$

4. 
$$(A) - (II), (B) - (I), (C) - (V), (D) - (III)$$

|       | A2:2     |                                                   |                                |     |
|-------|----------|---------------------------------------------------|--------------------------------|-----|
|       | A3:3     |                                                   |                                |     |
|       | A4:4     |                                                   |                                |     |
| ctive | Question |                                                   |                                |     |
| 151   | Mate     | ch List-I with List-II                            |                                | 4.0 |
|       |          | List-I                                            | List-II                        |     |
|       | (A)      | Southern hybridization                            | (I) Western blotting           |     |
|       | (B)      | Presence of protein of interest                   | (II) Y-2H                      |     |
|       | (C)      | Peptide sequence                                  | (III) Integration of transgene |     |
|       | (D)      | Interaction of two transcription factors          | (IV) Mass spectrometry         |     |
|       |          |                                                   | (V) Enzyme activity assay      |     |
|       | Cho      | ose the <i>correct</i> answer from the options gi | ven below:                     |     |
|       | 1.       | (A) - (V), (B) - (IV), (C) - (III), (D) - (I)     |                                |     |
|       | 2.       | (A) - (IV), (B) - (V), (C) - (II), (D) - (III)    |                                |     |
|       | 3.       | (A) - (I), (B) - (II), (C) - (III), (D) - (IV)    |                                |     |
|       | 4.       | (A) - (III), (B) - (I), (C) - (IV), (D) - (II)    |                                |     |
|       | A1:1     |                                                   |                                |     |
|       | A2:2     |                                                   |                                |     |
|       | A3:3     |                                                   |                                |     |
|       | A4:4     |                                                   |                                |     |
|       | Question |                                                   |                                |     |

| 52 1  | 52   | Abor     | tive transduction is an example of?          | 4.0 | 1.00 |
|-------|------|----------|----------------------------------------------|-----|------|
|       |      | 1.       | Generalized transduction                     |     |      |
|       |      | 2.       | Specialized case of complete transduction    |     |      |
|       |      | 3.       | Specialized case of sexduction               |     |      |
|       |      | 4.       | Specialized case of transformation           |     |      |
|       |      |          |                                              |     |      |
|       |      | A1:1     |                                              |     |      |
|       |      | A2:2     |                                              |     |      |
|       |      |          |                                              |     |      |
|       |      | A3:3     |                                              |     |      |
|       |      |          |                                              |     |      |
|       |      | A4 : 4   |                                              |     |      |
| Objec | tive | Question |                                              |     |      |
| 53 1  | 53   | Wha      | t is the correct extended form of IBSC?      | 4.0 | 1.00 |
|       |      | 1.       | International Biotechnology Science Congress |     |      |
|       |      | 2.       | International Biosafety Congress             |     |      |
|       |      | 3.       | Institutional Biosafety Committee            |     |      |
|       |      | 4.       | Industrial Biotechnology Science Consortium  |     |      |
|       |      |          |                                              |     |      |
|       |      | A1:1     |                                              |     |      |
|       |      | A2:2     |                                              |     |      |
|       |      | A2 - 2   |                                              |     |      |
|       |      | A3:3     |                                              |     |      |
|       |      | A4:4     |                                              |     |      |
| Objec | tive | Question |                                              |     |      |

| 54 1  | 154   | Where is the National Institute for Plant Biotechnology located in India?           | 4.0 | 1.00 | ) |
|-------|-------|-------------------------------------------------------------------------------------|-----|------|---|
|       |       | 1. Ranchi                                                                           |     |      |   |
|       |       | 2. New Delhi                                                                        |     |      |   |
|       |       | 3. Hyderabad                                                                        |     |      |   |
|       |       | 4. Bangalore                                                                        |     |      |   |
|       |       |                                                                                     |     |      |   |
|       |       | A1:1                                                                                |     |      |   |
|       |       | A2:2                                                                                |     |      |   |
|       |       | A3:3                                                                                |     |      |   |
|       |       | A4:4                                                                                |     |      |   |
|       |       |                                                                                     |     |      |   |
| Objec | ctive | e Question                                                                          |     |      |   |
| 55 1  | 155   | GEAC comes under which of the following ministry/department of Government of India? | 4.0 | 1.00 | , |
|       |       | 1. Ministry of Agriculture & Farmers Welfare                                        |     |      |   |
|       |       | 2. Ministry of Science, Technology & Earth Sciences                                 |     |      |   |
|       |       | 3. Ministry of Environment, Forest and Climate Change                               |     |      |   |
|       |       | 4. Ministry of Commerce and Industry                                                |     |      |   |
|       |       |                                                                                     |     |      |   |
|       |       | A1:1                                                                                |     |      |   |
|       |       |                                                                                     |     |      |   |
|       |       | A2:2                                                                                |     |      |   |
|       |       | A3:3                                                                                |     |      |   |
|       |       | A4:4                                                                                |     |      |   |
| Obje  | otivo | re Question                                                                         |     |      |   |

| 56 1:  | 56          |                                                                                                          | 4.0 | 1.00 |
|--------|-------------|----------------------------------------------------------------------------------------------------------|-----|------|
|        | In P        | rokaryotes, the genetic material, double-stranded single circular DNA is found in the region of the cell |     | 1100 |
|        | 1.          | Nucleus                                                                                                  |     |      |
|        | 2.          | Nucleoid                                                                                                 |     |      |
|        | 3.          | Protonucleus                                                                                             |     |      |
|        | 4.          | Nucleoplasm                                                                                              |     |      |
|        |             |                                                                                                          |     |      |
|        | A1:1        |                                                                                                          |     |      |
|        | A2:2        |                                                                                                          |     |      |
|        |             |                                                                                                          |     |      |
|        | A3:3        |                                                                                                          |     |      |
|        | A4:4        |                                                                                                          |     |      |
|        | 111.1       |                                                                                                          |     |      |
| Object | ive Questio |                                                                                                          |     |      |
| 57 1:  | The         | tissue culture technique used to produce seedless fruit is                                               | 4.0 | 1.00 |
|        | 1.          | Meristem culture                                                                                         |     |      |
|        | 2.          | Anther culture                                                                                           |     |      |
|        | 3.          | Pollen culture                                                                                           |     |      |
|        | 4.          | Endosperm culture                                                                                        |     |      |
|        |             |                                                                                                          |     |      |
|        | A1:1        |                                                                                                          |     |      |
|        | A2:2        |                                                                                                          |     |      |
|        | AL.Z        |                                                                                                          |     |      |
|        | A3:3        |                                                                                                          |     |      |
|        |             |                                                                                                          |     |      |
|        | A4 : 4      |                                                                                                          |     |      |
| Object | ive Questio | 1                                                                                                        |     |      |
| 58 1:  | 58          |                                                                                                          | 4.0 | 1.00 |
|        |             |                                                                                                          |     |      |
|        |             |                                                                                                          |     |      |
|        |             |                                                                                                          |     |      |
|        |             |                                                                                                          |     |      |
|        |             |                                                                                                          |     |      |
|        |             |                                                                                                          |     |      |

| Wh              | ich of the following is correct for the Primer Annealing Temperature in a PCR ? |  |
|-----------------|---------------------------------------------------------------------------------|--|
| (A)             | Base composition and length of the template DNA                                 |  |
| (B)             | Melting temperature of the primer                                               |  |
| (C)             | Base composition and length of the primer                                       |  |
| (D)             | Genomic DNA content of the plant tissue                                         |  |
| Cho             | pose the <i>correct</i> answer from the options given below:                    |  |
| 1.              | (A) and (B) only.                                                               |  |
| 2.              | (A) and (C) only.                                                               |  |
| 3.              | (B) and (C) only.                                                               |  |
| 4.              | (C) and (D) only.                                                               |  |
| A1:1            |                                                                                 |  |
| A2:2            |                                                                                 |  |
| A3:3            |                                                                                 |  |
| A4 : 4          |                                                                                 |  |
| bjective Questi | on                                                                              |  |
|                 |                                                                                 |  |

| Mat    | ch List-I with List-II                          |                                          |
|--------|-------------------------------------------------|------------------------------------------|
|        | List-I                                          | List-II                                  |
|        | (Book/Theory proposed/<br>Characteristic, etc.) | (Author/Thinker/Name of<br>Theory, etc.) |
| (A)    | Schiffs Reagent                                 | (I) Nucleic Acid to Protein              |
| (B)    | Central Dogma                                   | (II) DNA                                 |
| (C)    | Chromosome                                      | (III) Feulgen reaction                   |
| (D)    | Ultraviolet light of 2600 angstorms             | (IV) DNA and Histone proteins            |
| Cho    | ose the <i>correct</i> answer from the options  | given below:                             |
| 1.     | (A) - (IV), (B) - (II), (C) - (I), (D) - (II    | I)                                       |
| 2.     | (A) - (III), (B) - (IV), (C) - (I), (D) - (I    | I)                                       |
| 3.     | (A) - (I), (B) - (III), (C) - (IV), (D) - (I    | I)                                       |
| 4.     | (A) - (III), (B) - (I), (C) - (IV), (D) - (I    |                                          |
| A1 : 1 |                                                 |                                          |
| A2 : 2 |                                                 |                                          |
| A3 : 3 |                                                 |                                          |

4.0 1.00

A4:4

| 60   | 160     | ****           |                                                            | 4.0 | 1.00 |
|------|---------|----------------|------------------------------------------------------------|-----|------|
|      |         |                | at is the estimated size of Human genome?                  |     |      |
|      |         | 1.             | 3.2 billion base pairs                                     |     |      |
|      |         | 2.             | 2.2 billion base pairs                                     |     |      |
|      |         | 3.             | 4.1 billion base pairs                                     |     |      |
|      | 54      | 4.             | 5.1 billion base pairs                                     |     |      |
|      | A       | A1:1           |                                                            |     |      |
|      | A       | A2:2           |                                                            |     |      |
|      | A       | A3:3           |                                                            |     |      |
|      | A       | <b>A</b> 4 : 4 |                                                            |     |      |
| Obje | ctive ( | Question       | 1                                                          |     |      |
| 61   | 161     |                | ch of the following is a multiple sequence alignment tool? | 4.0 | 1.00 |
|      |         | 1. 1.          | SCOP                                                       |     |      |
|      |         | 2.             | PDB                                                        |     |      |
|      |         | 2.<br>3.       | GOLD                                                       |     |      |
|      |         |                |                                                            |     |      |
|      |         | 4.             | Clustal W                                                  |     |      |
|      | l A     | <b>A</b> 1 : 1 |                                                            |     |      |
|      | A       | A2 : 2         |                                                            |     |      |
|      | A       | A3:3           |                                                            |     |      |
|      | A A     | <b>A</b> 4 : 4 |                                                            |     |      |
| Obje | ctive ( | Question       | 1                                                          |     |      |

| 62   | 162    | What     | t is the first sequenced protein?         | 4.0 | 1.00 |
|------|--------|----------|-------------------------------------------|-----|------|
|      |        | 1.       | Insulin                                   |     |      |
|      |        | 2.       | Hemoglobin                                |     |      |
|      |        | 3.       | Actin                                     |     |      |
|      |        | 4.       | Myosin                                    |     |      |
|      |        |          |                                           |     |      |
|      |        | A1:1     |                                           |     |      |
|      |        | A2:2     |                                           |     |      |
|      |        |          |                                           |     |      |
|      |        | A3:3     |                                           |     |      |
|      |        | 110.0    |                                           |     |      |
|      |        | A4:4     |                                           |     |      |
| Obje | ective | Question |                                           |     |      |
| 63   |        |          | en rice, a rice variety, was developed by | 4.0 | 1.00 |
|      |        | 1.       | Landsteiner and Weiner                    |     |      |
|      |        | 2.       | Ingo Potricus and Peter Beyer             |     |      |
|      |        | 3.       | Alec Jaffreys and Kary Mullis             |     |      |
|      |        | 4.       | Jacob and Monad                           |     |      |
|      |        |          |                                           |     |      |
|      |        | A1:1     |                                           |     |      |
|      |        | A2:2     |                                           |     |      |
|      |        | A3:3     |                                           |     |      |
|      |        | AJ . J   |                                           |     |      |
|      |        | A4:4     |                                           |     |      |
| Obje | ctive  | Question |                                           |     |      |
|      |        |          |                                           | _   |      |

| In Ta | c operon which of the following statements are true                                                                                                               | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A)   | <i>lac</i> operon contains three genes: <i>lacZ</i> , <i>lacY</i> , and <i>lacA</i> . These genes are transcribed as a single mRNA, under control of one promoter |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (B)   | When lactose is available, the <i>lac</i> repressor binds tightly to the operator, preventing transcription by RNA polymerase                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (C)   | Operator overlaps with the promoter and is a negative regulatory site bound by the <i>lac</i> repressor protein                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (D)   | <i>lac</i> operon contains genes that specify proteins to help the cell utilize lactose and also contains a number of regulatory DNA sequences                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Choo  | ose the <i>correct</i> answer from the options given below:                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.    | (A), (B) and (C) only.                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.    | (A), (B) and (D) only.                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.    | (A), (C) and (D).                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.    | (B), (C) and (D) only.                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A1:1  |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A4:4  |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | (A) (B) (C) (D) Chool 1. 2. 3. 4. A1:1 A2:2 A3:3                                                                                                                  | <ul> <li>(A) lac operon contains three genes: lacZ, lacY, and lacA. These genes are transcribed as a single mRNA, under control of one promoter</li> <li>(B) When lactose is available, the lac repressor binds tightly to the operator, preventing transcription by RNA polymerase</li> <li>(C) Operator overlaps with the promoter and is a negative regulatory site bound by the lac repressor protein</li> <li>(D) lac operon contains genes that specify proteins to help the cell utilize lactose and also contains a number of regulatory DNA sequences</li> <li>Choose the correct answer from the options given below:</li> <li>1. (A), (B) and (C) only.</li> <li>2. (A), (B) and (D) only.</li> <li>3. (A), (C) and (D).</li> <li>4. (B), (C) and (D) only.</li> </ul> |

65 165

4.0 1.00



| 6 | 7 16 | 7 | 4.0 | 1.00 | 0 |
|---|------|---|-----|------|---|
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |
|   |      |   |     |      |   |

|     | List-I                                               | List-II                |
|-----|------------------------------------------------------|------------------------|
| Ge  | nome edited crops approved for commercial production | Trait                  |
| (A) | Maize                                                | (I) High level of GABA |
| (B) | Soybean                                              | (II) Non- Browning     |
| (C) | Potato                                               | (III) Waxy Starch      |
| (D) | Tomato                                               | (IV) Oleic Acid        |

Choose the *correct* answer from the options given below:

- 1. (A) (III), (B) (II), (C) (IV), (D) (I)
- 2. (A) (II), (B) (III), (C) (I), (D) (IV)
- 3. (A) (III), (B) (IV), (C) (II), (D) (I)
- 4. (A) (I), (B) (II), (C) (IV), (D) (III)

A1:1

A2:2

A3:3



| Type II Restriction Endonucleases are the most important enzymes used for gene cloning. Type-II Restriction endonucleases include  1. EcoRI  2. EcoBI  3. EcoB  4. EcoP15  Al:1  A2:2  A3:3 | Objectiv | e Question                 |                                                                   |     |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|-------------------------------------------------------------------|-----|------|
| cloning. Type-II Restriction endonucleases include  1. EcoRI  2. EcoBI  3. EcoB  4. EcoP15  A1:1  A2:2  A3:3                                                                                |          |                            |                                                                   | 4.0 | 1.00 |
|                                                                                                                                                                                             |          | cloni 1. 2. 3. 4. A1:1     | ng. Type-II Restriction endonucleases include  EcoRI  EcoBI  EcoB |     |      |
| Objective Question                                                                                                                                                                          |          |                            |                                                                   | 4.0 | 1.00 |
| 70 170 5' end of DNA is characterized by 1. Hydroxyl group 2. Peptide bond 3. Nitrous group 4. Phosphate group  A1:1  A2:2  A3:3  A4:4                                                      | 70 170   | 1. 2. 3. 4. A1:1 A2:2 A3:3 | Hydroxyl group Peptide bond Nitrous group                         | 4.0 | 1.00 |
| Objective Question                                                                                                                                                                          | Objectiv | e Question                 |                                                                   |     |      |

|    | _    | _   |      |
|----|------|-----|------|
| 71 | 171  | 4.0 | 1.00 |
| 1  | 1-1- |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |
|    |      |     |      |

|     | List-I              | List-II                                                                           |  |  |
|-----|---------------------|-----------------------------------------------------------------------------------|--|--|
|     | Technique           | Function/Application/Use                                                          |  |  |
| (A) | Southern Blotting   | (I) Substrate is converted to coloured end product                                |  |  |
| (B) | ELISA               | (II) Amplification of DNA fragments                                               |  |  |
| (C) | Gel Electrophoresis | (III) Technique used to separate DNA based on their size and electrical charge    |  |  |
| (D) | PCR                 | (IV) Transfer of DNA fragments from electrophoretic gel to a nitrocellulose sheet |  |  |

Choose the *correct* answer from the options given below:

- 1. (A) (I), (B) (III), (C) (IV), (D) (II)
- 2. (A) (IV), (B) (I), (C) (III), (D) (II)
- 3. (A) (IV), (B) (III), (C) (II), (D) (I)
- 4. (A) (II), (B) (I), (C) (III), (D) (IV)

A1:1

A2:2

A3:3



A3:3

| Objectiv | <br>ve Question                                                                                                                        |     |      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 73   173 |                                                                                                                                        | 4.0 | 1.00 |
|          | ICAR- National Bureau of Agriculturally Important Microorganisms (NBAIM) is located at  1. Chandigarh  2. New Delhi  3. Mau  4. Mumbai |     |      |
|          | A1:1<br>A2:2                                                                                                                           |     |      |
|          | A3:3<br>A4:4                                                                                                                           |     |      |
| Objectiv | ve Question                                                                                                                            | _   |      |

| 74   | 174   | Hybi     | ridoma technique is generally used for the production of              | 4.0 | 1.00 |
|------|-------|----------|-----------------------------------------------------------------------|-----|------|
|      |       | 1.       | Monoclonal antibody                                                   |     |      |
|      |       | 2.       | Bt Toxin                                                              |     |      |
|      |       | 3.       | Herbicide Glyphosate                                                  |     |      |
|      |       | 4.       | Hybrids micropropagation                                              |     |      |
|      |       |          |                                                                       |     |      |
|      |       | A1:1     |                                                                       |     |      |
|      |       | A2:2     |                                                                       |     |      |
|      |       | A2.2     |                                                                       |     |      |
|      |       | A3:3     |                                                                       |     |      |
|      |       | A4:4     |                                                                       |     |      |
|      |       | A4:4     |                                                                       |     |      |
| Obje | ctive | Question |                                                                       |     |      |
| 75   | 175   | Whi      | ch of the following vector can carry the longest piece of foreign DNA | 4.0 | 1.00 |
|      |       | 1.       | BAC                                                                   |     |      |
|      |       | 2.       | YAC                                                                   |     |      |
|      |       | 3.       | Cosmid                                                                |     |      |
|      |       | 4.       | Plasmid                                                               |     |      |
|      |       |          |                                                                       |     |      |
|      |       | A1:1     |                                                                       |     |      |
|      |       | A2:2     |                                                                       |     |      |
|      |       |          |                                                                       |     |      |
|      |       | A3:3     |                                                                       |     |      |
|      |       | A4:4     |                                                                       |     |      |
|      |       |          |                                                                       |     | 1    |
|      |       |          |                                                                       |     |      |
| Obje | ctive | Question |                                                                       |     |      |
|      |       |          |                                                                       |     |      |

| 76   | 176    | Reve     | erse transcriptase enzymes is used in                         | 4.0 | 1.00     |
|------|--------|----------|---------------------------------------------------------------|-----|----------|
|      |        | 1.       | mRNA Synthesis                                                |     |          |
|      |        | 2.       | tRNA Synthesis                                                |     |          |
|      |        | 3.       | cDNA Synthesis                                                |     |          |
|      | 10.0   | 4.       | Vector synthesis                                              |     |          |
|      |        | A1:1     |                                                               |     |          |
|      |        | A2:2     |                                                               |     |          |
|      |        | A3:3     |                                                               |     |          |
|      |        | A4 : 4   |                                                               |     |          |
| Obje | ective | Question | n                                                             |     | <u> </u> |
| 77   | 177    | Whi      | ch of the following is a vector mediated gene transfer method | 4.0 | 1.00     |
|      |        | 1.       | Biolistic                                                     |     |          |
|      |        | 2.       | Agrobacterium Mediated                                        |     |          |
|      |        | 3.       | Gene Gun                                                      |     |          |
|      | 10.0   | 4.       | Microinjection                                                |     |          |
|      |        | A1:1     |                                                               |     |          |
|      |        | A2:2     |                                                               |     |          |
|      |        | A3:3     |                                                               |     |          |
|      |        | A4:4     |                                                               |     |          |
| Obje | ective | Question | n                                                             |     |          |

| 78 178 | Some base substitutions do not result in change in amino acid sequence of the polypeptide because | 4.0 1.0 |
|--------|---------------------------------------------------------------------------------------------------|---------|
|        | 1. Universality of the codon                                                                      |         |
|        | 2. triplet nature of codon                                                                        |         |
|        | 3. Co-linearity                                                                                   |         |
|        | 4. Degeneracy of genetic codon                                                                    |         |
|        | A1:1                                                                                              |         |
|        | A2:2                                                                                              |         |
|        | A3:3                                                                                              |         |
|        |                                                                                                   |         |
|        | A4:4                                                                                              |         |

|                | List-I                                    | List-II                                            |  |
|----------------|-------------------------------------------|----------------------------------------------------|--|
| pro            | (Book/Theory oposed/Characteristic, etc.) | (Author/Thinker/Name of Theory, etc.)              |  |
| (A)            | Orthologues                               | (I) Removal of Introns                             |  |
| (B)            | Splicing                                  | (II) Protein fingerprinting                        |  |
| (C)            | Mass spectrometry                         | (III) Nucleotide database                          |  |
| (D)            | EMBL                                      | (IV) Homologous genes found in different organisms |  |
| Cho            | ose the <i>correct</i> answer from th     | he options given below:                            |  |
| 1.             | (A) - (II), (B) - (III), (C) - (Γ         | V), (D) - (I)                                      |  |
| 2.             | (A) - (IV), (B) - (III), (C) - (I         | I), (D) - (II)                                     |  |
| 3.             | (A) - (IV), (B) - (I), (C) - (II)         | (), (D) - (III)                                    |  |
| 4.             | (A) - (III), (B) - (II), (C) - (I         | V), (D) - (I)                                      |  |
| <b>A</b> 1 : 1 |                                           |                                                    |  |
| A2:2           |                                           |                                                    |  |
| <b>A</b> 3 : 3 | Y .                                       |                                                    |  |

| 80   | 180    | plant        | T1 Plants showed 3:1 segregation for the selected trait and gene. When the 3 T1 is with the target gene were selfed, which one of the following statements explain esults | 4.0 1.0 |
|------|--------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |        | 1.           | Two of three plants produced all the progeny plants with the gene                                                                                                         |         |
|      |        | 2.           | All three plants produced all the progeny plants with the gene                                                                                                            |         |
|      |        | 3.           | Only one out of 3 plants produced all the progeny plants with the gene                                                                                                    |         |
|      |        | 4.           | All the three plants produced progeny plants which showed segregation for the gene                                                                                        |         |
|      |        | A1:1         |                                                                                                                                                                           |         |
|      |        | A2:2         |                                                                                                                                                                           |         |
|      |        | A3:3         |                                                                                                                                                                           |         |
|      |        |              |                                                                                                                                                                           |         |
|      |        | A4:4         |                                                                                                                                                                           |         |
| Obje | ective | Question     |                                                                                                                                                                           |         |
| 81   | 181    | The as       | intercellular space between cell membranes and the space of the cell walls is termed                                                                                      | 4.0 1.0 |
|      |        | 1.           | Symplast                                                                                                                                                                  |         |
|      |        | 2.           | Middle lamella                                                                                                                                                            |         |
|      |        | 3.           | Pectin                                                                                                                                                                    |         |
|      |        | 4.           | Apoplast                                                                                                                                                                  |         |
|      |        | A1:1         |                                                                                                                                                                           |         |
|      |        | A2:2         |                                                                                                                                                                           |         |
|      |        |              |                                                                                                                                                                           |         |
|      |        | A3:3         |                                                                                                                                                                           |         |
|      |        | A3:3<br>A4:4 |                                                                                                                                                                           |         |

| 182 | Whi  | ch of the following statement/s is/are true?                                                                                                                           | 4.0 | ) |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | (A)  | Almost all postharvest technologies manipulate the metabolism of the harvested highly perishable produce by minimizing the respiration rate and increasing water loss. |     |   |
|     | (B)  | Respiration in postharvest tissues often increases the temperature of the perishable produce during storage.                                                           |     |   |
|     | (C)  | Physiological maturity refers to the stage in the development of fruits/vegetables when maximum growth and maturation have occurred.                                   |     |   |
|     | (D)  | High transpiration rates from the harvested produce will not lead to any economic effect as this physiological process helps maintain cooler surface temperatures.     |     |   |
|     | Choo | ose the <i>correct</i> answer from the options given below:                                                                                                            |     |   |
|     | 1.   | (B), (C) and (D) only                                                                                                                                                  |     |   |
|     | 2.   | (A), (B) and (C) only                                                                                                                                                  |     |   |
|     | 3.   | (B) and (C) only                                                                                                                                                       |     |   |
|     | 4.   | (A), (C) and (D) only                                                                                                                                                  |     |   |
|     | A1:1 |                                                                                                                                                                        |     |   |
|     | A2:2 |                                                                                                                                                                        |     |   |
|     | A3:3 |                                                                                                                                                                        |     |   |
|     | A4:4 |                                                                                                                                                                        |     |   |

| 83   | 183   | The l    | nighly perishable farm produce is                                                                                                                                                                                                                         | 4.0 | 1.00 |
|------|-------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
|      |       | 1.       | Apple                                                                                                                                                                                                                                                     |     |      |
|      |       | 2.       | Tomato                                                                                                                                                                                                                                                    |     |      |
|      |       | 3.       | Cauliflower                                                                                                                                                                                                                                               |     |      |
|      |       | 4.       | Finger millet                                                                                                                                                                                                                                             |     |      |
|      |       | A1:1     |                                                                                                                                                                                                                                                           |     |      |
|      |       | A2:2     |                                                                                                                                                                                                                                                           |     |      |
|      |       | A3:3     |                                                                                                                                                                                                                                                           |     |      |
|      |       | A4:4     |                                                                                                                                                                                                                                                           |     |      |
| Obje | ctive | Question |                                                                                                                                                                                                                                                           |     |      |
| 84   | 184   |          | component of the plant mitochondrial electron transport chain that provides an native route for electrons passing through the electron transport chain to reduce en is  Cytochrome-C Oxidase  Alternative Oxidase (AOX)  NADH-dehydrogenase  ATP-Synthase | 4.0 | 1.00 |
| 0    |       | A4:4     |                                                                                                                                                                                                                                                           |     |      |
| Obje | ctive | Question |                                                                                                                                                                                                                                                           |     |      |

| 85  | 185    | The           | nutrient element that is considered as a mobile element in plants is           | 4.0     | 1.00     |
|-----|--------|---------------|--------------------------------------------------------------------------------|---------|----------|
|     |        | 1.            | Iron                                                                           |         |          |
|     |        | 2.            | Calcium                                                                        |         |          |
|     |        | 3.            | Sulfur                                                                         |         |          |
|     |        | 4.            | Magnesium                                                                      |         |          |
|     |        |               |                                                                                |         |          |
|     |        | A1:1          |                                                                                |         |          |
|     |        | A2:2          |                                                                                |         |          |
|     |        | ILL . L       |                                                                                |         |          |
|     |        |               |                                                                                |         |          |
|     |        | A3:3          |                                                                                |         |          |
|     |        | A4:4          |                                                                                |         |          |
|     |        |               |                                                                                |         |          |
| -   |        | Question      |                                                                                |         | 1        |
| 86  | 186    |               | biochemical reactions in which carbohydrates are converted into aromatic amino | 4.0     | 1.00     |
|     |        |               | coccur in                                                                      |         |          |
|     |        | 1.<br>2.      | Calvin Cycle  Clycolysis                                                       |         |          |
|     |        | 3.            | Glycolysis Shikimic acid pathway                                               |         |          |
|     |        | <i>3</i> . 4. | EMP pathway                                                                    |         |          |
|     |        | 7.            | Livii paaiway                                                                  |         |          |
|     |        | A1:1          |                                                                                |         |          |
|     |        |               |                                                                                |         |          |
|     |        | A2:2          |                                                                                |         |          |
|     |        | A3:3          |                                                                                |         |          |
|     |        |               |                                                                                |         |          |
|     |        | A4:4          |                                                                                |         |          |
| Obi | ective | Question      |                                                                                | <u></u> | <u> </u> |
|     |        |               |                                                                                |         |          |

| 87 18  | The             | commonly translocated compound (photosynthate) in the phloem is | 4.0 | 0   | 1.0 |
|--------|-----------------|-----------------------------------------------------------------|-----|-----|-----|
|        | 1.              | Glucose                                                         |     |     |     |
|        | 2.              | Mannose                                                         |     |     |     |
|        | 3.              | Sucrose                                                         |     |     |     |
|        | 4.              | Fructose                                                        |     |     |     |
|        | A1:1            |                                                                 |     |     |     |
|        | A2:2            |                                                                 |     |     |     |
|        | A3:3            |                                                                 |     |     |     |
|        | A4:4            |                                                                 |     |     |     |
| Object | <br>ive Questio | n                                                               |     |     | _   |
| 88 18  | 8               |                                                                 | 4.0 | 0 1 | 1   |

|                    | Choo       | ose the WRONGLY-matched answer/s.                                       |     |      |
|--------------------|------------|-------------------------------------------------------------------------|-----|------|
|                    | (A)        | Sorghum: Kranz anatomy                                                  |     |      |
|                    | (B)        | Blackman: Law of limiting factors                                       |     |      |
|                    | (C)        | IBA: Natural auxins                                                     |     |      |
|                    | (D)        | PS I: P680                                                              |     |      |
|                    | Choo       | ose the <i>correct</i> answer from the options given below:             |     |      |
|                    | 1.         | (A), (B) and (D) only                                                   |     |      |
|                    | 2.         | (A), (C) and (D) only                                                   |     |      |
|                    | 3.         | (D) only                                                                |     |      |
|                    | 4.         | (A) only                                                                |     |      |
|                    | A1:1       |                                                                         |     |      |
|                    | A2:2       |                                                                         |     |      |
|                    | A3:3       |                                                                         |     |      |
|                    | A4:4       |                                                                         |     |      |
| Objectiv<br>89 189 | e Question |                                                                         | 4.0 | 1.00 |
| 09 109             | Surig      | galactones, a natural plant growth hormones, has been shown to regulate | 4.0 | 1.00 |
|                    | 1.         | Root initiation                                                         |     |      |
|                    | 2.         | Branching                                                               |     |      |
|                    | 3.         | Flowering                                                               |     |      |
|                    | 4.         | Fruit set                                                               |     |      |
|                    | A1:1       |                                                                         |     |      |
|                    | A2:2       |                                                                         |     |      |
|                    | A3:3       |                                                                         |     |      |
|                    | A4:4       |                                                                         |     |      |
| Objectiv           | e Question | 1                                                                       |     |      |
|                    |            |                                                                         |     |      |



|     | List-I             |                   | List-II                        |  |
|-----|--------------------|-------------------|--------------------------------|--|
| (   | Growth regulators) | (Use/application) |                                |  |
| (A) | TIBA               | (I)               | Regulation of leaf angle       |  |
| (B) | 1-MCP              | (II)_             | Inhibitor of ethylene response |  |
| (C) | Paclobutrazol      | (III)             | Flowering in mango             |  |
| (D) | Brassinosteroids   | (IV)              | Inhibitor of auxin transport   |  |

Choose the *correct* answer from the options given below:

- 1. (A) (I), (B) (II), (C) (III), (D) (IV)
- 2. (A) (IV), (B) (II), (C) (III), (D) (I)
- 3. (A) (II), (B) (III), (C) (I), (D) (IV)
- 4. (A) (IV), (B) (I), (C) (II), (D) (III)

A1:1

A2:2

A3:3

A4:4

| 91   | 191    | The f    | formative effects of IAA is                                                             | 4.0 | 1.00 |
|------|--------|----------|-----------------------------------------------------------------------------------------|-----|------|
|      |        | 1.       | Induction of bud dormancy                                                               |     |      |
|      |        | 2.       | Maintenance of apical dominance                                                         |     |      |
|      |        | 3.       | Induction of senescence                                                                 |     |      |
|      |        | 4.       | Prevention of cell division                                                             |     |      |
|      |        |          |                                                                                         |     |      |
|      |        | A1:1     |                                                                                         |     |      |
|      |        | A2:2     |                                                                                         |     |      |
|      |        | A3:3     |                                                                                         |     |      |
|      |        | A4:4     |                                                                                         |     |      |
| Obje | ective | Question |                                                                                         |     |      |
| 92   | 192    |          |                                                                                         | 4.0 | 1.00 |
|      |        |          |                                                                                         |     |      |
|      |        | The      | 'heart rot' of beets, 'stem crack' of celery, 'water core' of turnip are the deficiency |     |      |
|      |        | symp     | otoms of                                                                                |     |      |
|      |        | 1.       | Boron                                                                                   |     |      |
|      |        | 2.       | Calcium                                                                                 |     |      |
|      |        | 3.       | Zinc                                                                                    |     |      |
|      |        | 4.       | Copper                                                                                  |     |      |
|      |        | A1:1     |                                                                                         |     |      |
|      |        | A2:2     |                                                                                         |     |      |
|      |        | A3:3     |                                                                                         |     |      |
|      |        | A4 : 4   |                                                                                         |     |      |
| Obje | ective | Question |                                                                                         |     |      |
|      |        |          |                                                                                         |     |      |

| 93 19  | The          | typical earliest symptom of magnesium deficiency in plants is | 4.0 | 1.0 |
|--------|--------------|---------------------------------------------------------------|-----|-----|
|        | 1.           | Interveinal chlorosis of older leaves                         |     |     |
|        | 2.           | Interveinal chlorosis of younger leaves                       |     |     |
|        | 3.           | Necrotic spots on the leaves                                  |     |     |
|        | 4.           | Dark green pigmentation of older leaves                       |     |     |
|        | (545)        | 2 mar green programmen er er uter seurce                      |     |     |
|        | A1:1         |                                                               |     |     |
|        |              |                                                               |     |     |
|        | A2:2         |                                                               |     |     |
|        | 42.2         |                                                               |     |     |
|        | A3:3         |                                                               |     |     |
|        | A4:4         |                                                               |     |     |
|        |              |                                                               |     |     |
| Object | ive Question |                                                               | 4.0 | 1.0 |
| 74 13  | 7.7          |                                                               | 7.0 | 1.0 |
|        |              |                                                               |     |     |

| List-I                                          | List-II                                   |
|-------------------------------------------------|-------------------------------------------|
| (Book/Theory proposed/<br>Characteristic, etc.) | (Author/Thinker/<br>Name of Theory, etc.) |
| (A) Finger millet                               | (I) C3                                    |
| (B) Rice                                        | (II) C3-C4 intermediate                   |
| (C) Pineapple                                   | (III) C4                                  |
| (D) Alternanthera                               | (IV) CAM                                  |

Choose the *correct* answer from the options given below:

2. 
$$(A) - (I), (B) - (II), (C) - (III), (D) - (IV)$$

3. 
$$(A) - (I), (B) - (II), (C) - (IV), (D) - (III)$$

A1:1

A2:2

A3:3

A4:4

| 95   | 195   |          | ntion of full genetic potential (in a differentiated cell) for the development into a plete plant is termed as | 4.0 | 1.00 |
|------|-------|----------|----------------------------------------------------------------------------------------------------------------|-----|------|
|      |       | 1.       | Differentiation                                                                                                |     |      |
|      |       | 2.       | Regeneration                                                                                                   |     |      |
|      |       | 3.       | Totipotency                                                                                                    |     |      |
|      |       | 4.       | Morphogenesis                                                                                                  |     |      |
|      |       | A1:1     |                                                                                                                |     |      |
|      |       | A2:2     |                                                                                                                |     |      |
|      |       | A3:3     |                                                                                                                |     |      |
|      |       | A4:4     |                                                                                                                |     |      |
| Obje | ctive | Question |                                                                                                                |     |      |
| 96   | 196   |          |                                                                                                                | 4.0 | 1.00 |
|      |       | The s    | scientist who proposed that chemical messengers are responsible for the growth and lopment of plants is        |     |      |
|      |       | 1.       | Boysen-Jensen                                                                                                  |     |      |
|      |       | 2.       | Julies von Sachs                                                                                               |     |      |
|      |       | 3.       | Folke Skoog                                                                                                    |     |      |
|      |       | 4.       | Darwin                                                                                                         |     |      |
|      |       | A1:1     |                                                                                                                |     |      |
|      |       | A2:2     |                                                                                                                |     |      |
|      |       | A3:3     |                                                                                                                |     |      |
|      |       | A4:4     |                                                                                                                |     |      |
| Obje | ctive | Question |                                                                                                                |     |      |
|      |       |          |                                                                                                                |     |      |

| 97  | Pn                 | tochromes are photoreceptors required for light-sensing in plants. The red-light-<br>orbing state (Pr) absorbs light of a wavelength of | 4.0 | 1.00 |
|-----|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|------|
|     | 1.                 | ~667 nm                                                                                                                                 |     |      |
|     | 2.                 | ~380 nm                                                                                                                                 |     |      |
|     | 3.                 | ~887 nm                                                                                                                                 |     |      |
|     | 4.                 | ~480 nm                                                                                                                                 |     |      |
|     | A1:                |                                                                                                                                         |     |      |
|     | A2 : 2             |                                                                                                                                         |     |      |
|     | A3 : 3             |                                                                                                                                         |     |      |
|     | A4 : 4             |                                                                                                                                         |     |      |
| Obj | ective Quest       | on                                                                                                                                      |     |      |
| 98  | <sup>198</sup> The | e formula for estimating Leaf Area Index (LAI) is                                                                                       | 4.0 | 1.00 |
|     | 1.                 | LAI = (Total leaf area of a plant)/(Ground area occupied by the plant)                                                                  |     |      |
|     | 2.                 | LAI = (Leaf area per plant)/(Plant dry weight)                                                                                          |     |      |
|     | 3.                 | LAI = (Leaf dry weight)/(Plant dry weight)                                                                                              |     |      |
|     | 4.                 | LAI = (Leaf area)/(Leaf weight)                                                                                                         |     |      |
|     |                    |                                                                                                                                         |     |      |
|     | A1:                |                                                                                                                                         |     |      |
|     | A2 : 2             |                                                                                                                                         |     |      |
|     | A3 : 3             |                                                                                                                                         |     |      |
|     | A4 : 4             |                                                                                                                                         |     |      |
|     |                    |                                                                                                                                         |     |      |
| Obj | ective Quest       | on                                                                                                                                      |     |      |

| 99   | 199   | Crop     | Water use efficiency (WUE) is defined as                                             | 4.0 1.00 |
|------|-------|----------|--------------------------------------------------------------------------------------|----------|
|      |       | 1.       | The amount of carbon assimilated as biomass or grain produced per unit of water used |          |
|      |       | 2.       | The amount of water lost though transpiration per unit amount of carbon assimilated  |          |
|      |       | 3.       | The amount of carbon assimilated per unit amount of light intercepted                |          |
|      |       | 4.       | The ratio between the economic yield and total biological yield.                     |          |
|      |       | A1:1     |                                                                                      |          |
|      |       | A2:2     |                                                                                      |          |
|      |       | A3:3     |                                                                                      |          |
|      |       | A4:4     |                                                                                      |          |
| Obje | ctive | Question |                                                                                      |          |
| 100  | 200   | The J    | phenomenon of the cold requirement for flowering is termed as                        | 4.0 1.00 |
|      |       | 1.       | Stratification                                                                       |          |
|      |       | 2.       | Vernalization                                                                        |          |
|      |       | 3.       | Phototropism                                                                         |          |
|      |       | 4.       | Thigmotropism                                                                        |          |
|      |       | A1:1     |                                                                                      |          |
|      |       | A2:2     |                                                                                      |          |

A3:3

| 101 201                                                                                                  | 4.0          |
|----------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
| In actively growing plant cells (rice, wheat, groundnut etc.), this compone potential becomes negligible | ent of water |
| (A) Solute potential                                                                                     |              |
| (B) Pressure potential                                                                                   |              |
| (C) Matric potential                                                                                     |              |
| (D) Gravitational potential                                                                              |              |
| Choose the <i>correct</i> answer from the options given below:                                           |              |
| 1. (A) and (B) only.                                                                                     |              |
| 2. (B) and (C) only.                                                                                     |              |
| 3. (C) and (D) only.                                                                                     |              |
| 4. (B) and (D) only.                                                                                     |              |
| A1:1                                                                                                     |              |
| A2:2                                                                                                     |              |
| A3:3                                                                                                     |              |
| A4:4                                                                                                     |              |
| ective Question                                                                                          |              |
|                                                                                                          |              |

| 102 202   | Nucl             | eolus is the site for the synthesis of this component in a cell | 4.0 | 1.00  |
|-----------|------------------|-----------------------------------------------------------------|-----|-------|
|           | 1.               | Nucleosome                                                      |     |       |
|           | 2.               | Ribosomes                                                       |     |       |
|           | 3.               | DNA                                                             |     |       |
|           | 4.               | Chromation                                                      |     |       |
|           | A1:1             |                                                                 |     |       |
|           | A2:2             |                                                                 |     |       |
|           | A3:3             |                                                                 |     |       |
|           | A4:4             |                                                                 |     |       |
| Objective | Question         |                                                                 |     |       |
| 103 203   | An e 1. 2. 3. 4. | Cotton Sugarbeet Chrysanthemun Tobacco                          | 4.0 | 1.000 |
|           | A1:1             |                                                                 |     |       |
|           | A2:2             |                                                                 |     |       |
|           | A3:3             |                                                                 |     |       |
|           | A4:4             |                                                                 |     |       |
|           |                  |                                                                 |     |       |

104 204 4.0 1.00 Given below are two statements: Dichlorophenyl dimethylurea (DCMU), also known as Diuron - used Statement I: as herbicide, is an inhibitor of light reactions of photosynthesis. Statement II: DCMU acts by accepting electrons from early receptors of PS I. In the light of above statements, choose the *most appropriate* answer from the given options. 1. Both statement I and Statement II are correct 2. Both statement I and Statement II are incorrect 3. Statement I is correct and Statement II is incorrect 4. Statement I is incorrect and Statement II is correct A1:1 A2:2 A3:3 A4:4 Objective Question 4.0 1.00 105 205 Chlorophyll biosynthesis begins with this amino acid Glycine 1. 2. Glutamic acid Aspartic acid 3. Alanine 4. A1:1 A2:2 A3:3 A4:4 Objective Question 4.0 1.00 106 206

|                   | Phot       | corespiration is found to be zero (or) negligible in these crop plants      |     |      |
|-------------------|------------|-----------------------------------------------------------------------------|-----|------|
|                   | (A)        | Sunflower                                                                   |     |      |
|                   | (B)        | Pineapple                                                                   |     |      |
|                   | (C)        | Amaranthus                                                                  |     |      |
|                   | (D)        | Fingermillet                                                                |     |      |
|                   | Cho        | ose the <i>correct</i> answer from the options given below:                 |     |      |
|                   | 1.         | (A) and (C) only                                                            |     |      |
|                   | 2.         | (B) and (D) only                                                            |     |      |
|                   | 3.         | (A) and (D) only                                                            |     |      |
|                   | 4.         | (B), (C) and (D) only                                                       |     |      |
|                   |            |                                                                             |     |      |
|                   | A1:1       |                                                                             |     |      |
|                   | A2:2       |                                                                             |     |      |
|                   |            |                                                                             |     |      |
|                   | A3:3       |                                                                             |     |      |
|                   | A4:4       |                                                                             |     |      |
|                   |            |                                                                             |     |      |
| Objective 107 207 |            |                                                                             | 4.0 | 1.00 |
| 107 207           | Quai       | ntum yield of oxygen production in the light reactions of photosynthesis is |     | 1.00 |
|                   | 1.         | 10                                                                          |     |      |
|                   | 2.         |                                                                             |     |      |
|                   | 3.         | 0.1                                                                         |     |      |
|                   | 4.         | 0.01                                                                        |     |      |
|                   | A1:1       |                                                                             |     |      |
|                   |            |                                                                             |     |      |
|                   | A2:2       |                                                                             |     |      |
|                   | A3:3       |                                                                             |     |      |
|                   | A3.3       |                                                                             |     |      |
|                   | A4:4       |                                                                             |     |      |
| Objective         | e Question | n                                                                           |     |      |
| Sojective         | . ~acanon  | ·                                                                           |     |      |
|                   |            |                                                                             |     |      |

| 108 208   |                                                                                                  | 4.0 | 0 1.0 |
|-----------|--------------------------------------------------------------------------------------------------|-----|-------|
|           | Identify the scientist(s) who gave the term "Hydroponics" for growing of plants in water culture |     |       |
|           | 1. Yabuta and Sumuka                                                                             |     |       |
|           | 2. Gericke                                                                                       |     |       |
|           | 3. Lang and Melchers                                                                             |     |       |
|           | 4. Borthwick and Hendris                                                                         |     |       |
|           |                                                                                                  |     |       |
|           | A1:1                                                                                             |     |       |
|           |                                                                                                  |     |       |
|           | A2:2                                                                                             |     |       |
|           | A3:3                                                                                             |     |       |
|           |                                                                                                  |     |       |
|           | A4:4                                                                                             |     |       |
| Objective | • Question                                                                                       |     |       |
|           |                                                                                                  |     |       |
|           |                                                                                                  |     |       |

| 109 209   | With         | reference to the vase-life of cut-flowers, identify the <i>correct</i> statement(s)                                                  | 4.0 | 1.00 |
|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|------|
|           | (A)          | For prolonging life and quality, cut-flowers are often held in holding (or) vase solutions                                           |     |      |
|           | (B)          | The vase solutions contain a combination of carbohydrates, growth regulators, inhibitors and minerals.                               |     |      |
|           | (C)          | Any vase solution must contain essential two components i.e., mineral salts and ethylene inhibitors.                                 |     |      |
|           | (D)          | Mineral salts help in preventing plugging of conducting tissues while ethylene inhibitors make available the respiratory substrates. |     |      |
|           | Choo         | ose the <i>correct</i> answer from the options given below:                                                                          |     |      |
|           | 1.           | (A), (B), (C) and (D)                                                                                                                |     |      |
|           | 2.           | (A), (C) and (D) only                                                                                                                |     |      |
|           | 3.           | (A) and (B) only                                                                                                                     |     |      |
| 5         | 4.           | (A) and (D) only                                                                                                                     |     |      |
|           | A1:1         |                                                                                                                                      |     |      |
|           | A2:2<br>A3:3 |                                                                                                                                      |     |      |
|           | A4 : 4       |                                                                                                                                      |     |      |
| Objective | Question     |                                                                                                                                      |     |      |
| 110 210   | Seed         | dormancy is broken by mechanical scarification in this crop                                                                          | 4.0 | 1.00 |
|           | 1.           | Cotton                                                                                                                               |     |      |
|           | 2.           | Castor                                                                                                                               |     |      |
|           | 3.           | Coriander                                                                                                                            |     |      |
| B         | 4.           | Chickpea                                                                                                                             |     |      |
|           | A1:1         |                                                                                                                                      |     |      |
|           | A2:2         |                                                                                                                                      |     |      |
|           | A3:3         |                                                                                                                                      |     |      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A4:4                                                          |    |      |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----|------|-----|
| ojective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e Question                                                    |    |      | _   |
| 1 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Identify the "Orthodox" seeds                                 | 4. | .0 1 | 1.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (A) Sorghum                                                   |    |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B) Mango                                                     |    |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (C) Sapota                                                    |    |      |     |
| Dispective G 11   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211   211 | (D) Cotton                                                    |    |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Choose the <i>correct</i> answer from the options given below |    |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1. (A) only                                                   |    |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. (B), (C) and (D) only                                      |    |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3. (B) and (C) only                                           |    |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4. (A) and (D) only                                           |    |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1:1                                                          |    |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A2:2                                                          |    |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A3:3                                                          |    |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A4:4                                                          |    |      |     |
| jective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Question                                                    |    |      | =   |

| 2 212   | Given below are                                     | two statements:                                                                                                                                                                                                    | 4.0 |
|---------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|         | Statement (I):                                      | The Photosythetic Photon Flux Density (PPFD) at which the CO <sub>2</sub> uptake by photosynthesis exactly equal to CO <sub>2</sub> released through respiratory process is called Light Compensation Point (LCP). |     |
|         | Statement (II):                                     | LCP of sun plants range from 1 - 5 $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> , whereas the corresponding values for shade plants are 10 - 20 $\mu$ mol m <sup>-2</sup> s <sup>-1</sup>                             |     |
|         | In light of the ab given below.                     | ove statements, choose the <i>most appropriate</i> answer from the options                                                                                                                                         |     |
|         | 1. Both States                                      | ment (I) and Statement (II) are correct.                                                                                                                                                                           |     |
|         | 2. Both States                                      | ment (I) and Statement (II) are incorrect.                                                                                                                                                                         |     |
|         | 3. Statement                                        | (I) is correct but Statement (II) is incorrect.                                                                                                                                                                    |     |
| 9       | 4. Statement                                        | (I) is incorrect but Statement (II) is correct.                                                                                                                                                                    |     |
|         |                                                     |                                                                                                                                                                                                                    |     |
|         | A1:1                                                |                                                                                                                                                                                                                    |     |
|         | A2:2                                                |                                                                                                                                                                                                                    |     |
|         |                                                     |                                                                                                                                                                                                                    |     |
|         | A3:3                                                |                                                                                                                                                                                                                    |     |
|         |                                                     |                                                                                                                                                                                                                    |     |
|         | A4 : 4                                              |                                                                                                                                                                                                                    |     |
| jective | Question                                            |                                                                                                                                                                                                                    |     |
| 213     | The enzyme requ                                     | iring nickel in higher plants is                                                                                                                                                                                   | 4.0 |
|         | 1. Catalase                                         |                                                                                                                                                                                                                    |     |
|         | 2 Alkalina nh                                       | nosphatase                                                                                                                                                                                                         |     |
|         | 2. Alkaline ph                                      |                                                                                                                                                                                                                    |     |
|         | <ol> <li>Arkanne ph</li> <li>Carbonic ar</li> </ol> | nhydrase                                                                                                                                                                                                           |     |
| p       | 100 m                                               | nhydrase                                                                                                                                                                                                           |     |
| Đ       | 3. Carbonic ar                                      | nhydrase                                                                                                                                                                                                           |     |
| 10      | 3. Carbonic ar                                      | nhydrase                                                                                                                                                                                                           |     |
|         | <ol> <li>Carbonic at</li> <li>Urease</li> </ol>     | nhydrase                                                                                                                                                                                                           |     |
|         | <ul><li>3. Carbonic at</li><li>4. Urease</li></ul>  | nhydrase                                                                                                                                                                                                           |     |
|         | <ul><li>3. Carbonic at</li><li>4. Urease</li></ul>  | nhydrase                                                                                                                                                                                                           |     |
|         | 3. Carbonic at 4. Urease  A1:1                      | nhydrase                                                                                                                                                                                                           |     |

| 114 214     | The texpe | test which is used to determine the difference between the observed frequencies and cted frequencies in one or more than one categories is | 4.0 1.00 |
|-------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
|             | 1.        | Z - test                                                                                                                                   |          |
|             | 2.        | t - test                                                                                                                                   |          |
|             | 3.        | Chi - square test                                                                                                                          |          |
|             | 4.        | ANOVA                                                                                                                                      |          |
|             | A1:1      |                                                                                                                                            |          |
|             | A2:2      |                                                                                                                                            |          |
|             | A3:3      |                                                                                                                                            |          |
|             | A4 : 4    |                                                                                                                                            |          |
| Objective ( | Question  |                                                                                                                                            |          |
| 15 215      |           |                                                                                                                                            | 4.0 1.0  |

Match List-I with List-II pertaining to the Crop Production in India

| List - I (Name of the Crop) |         |                              | List - II     |
|-----------------------------|---------|------------------------------|---------------|
|                             |         | (Major State of Production ) |               |
| (A)                         | Cotton  | (I)                          | Uttar Pradesh |
| (B)                         | Mustard | (II)                         | Karnataka     |
| (C)                         | Potato  | (III)                        | Rajasthan     |
| (D)                         | Redgram | (IV)                         | Maharashtra   |

Choose the *correct* answer from the options given below:

- 1. (A) (I), (B) (IV), (C) (III), (D) (II)
- 2. (A) (III), (B) (I), (C) (IV), (D) (II)
- 3. (A) (IV), (B) (III), (C) (I), (D) (II)
- 4. (A) (II), (B) (IV), (C) (III), (D) (I)

A1:1

A2:2

A3:3

A4:4

Match  ${\bf List}$ - ${\bf II}$  with  ${\bf List}$ - ${\bf II}$  pertaining to the nucleotides associated with cell metabolism in plants

| List - I |                                                 | List - II               |  |
|----------|-------------------------------------------------|-------------------------|--|
|          | (Biochemical reaction)                          | (Associated Nucleotide) |  |
| (A)      | Sucrose biosynthesis                            | (I) GTP                 |  |
| (B)      | Nitrite reduction                               | (II) NADPH              |  |
| (C)      | Fatty acid biosynthesis                         | (III) FADH <sub>2</sub> |  |
| (D)      | Substrate-level of phosphorylation in TCA cycle | (IV) UTP                |  |

Choose the *correct* answer from the options given below:

- 1. (A) (I), (B) (IV), (C) (III), (D) (II)
- 2. (A) (IV), (B) (III), (C) (II), (D) (I)
- 3. (A) (III), (B) (IV), (C) (I), (D) (II)
- 4. (A) (II), (B) (I), (C) (IV), (D) (III)

A1:1

A2:2

A3:3

A4:4

Objective Question

4.0 1.00



| 119 219   | Ident    | tify the synthetic inhibitors used in crop plants           | 4.0 | 1.00 | С |
|-----------|----------|-------------------------------------------------------------|-----|------|---|
|           | (A)      | Maleic Hydrazide                                            |     |      |   |
|           | (B)      | Chloromequat Chloride                                       |     |      |   |
|           | (C)      | Paclobutrazol                                               |     |      |   |
|           | (D)      | Triidobenzoic acid                                          |     |      |   |
|           | Choo     | ose the <i>correct answer</i> from the options given below: |     |      |   |
|           | 1.       | (A) and (C) only                                            |     |      |   |
|           | 2.       | (A) and (D) only                                            |     |      |   |
|           | 3.       | (B), (C) and (D) only                                       |     |      |   |
|           | 4.       | (A), (B) and (C) only                                       |     |      |   |
|           | A1:1     |                                                             |     |      |   |
|           | A2:2     |                                                             |     |      |   |
|           | A3:3     |                                                             |     |      |   |
|           | A4:4     |                                                             |     |      |   |
| Objective | Question |                                                             |     |      |   |
|           |          |                                                             |     |      |   |

| 0 220 | Most commonly used chemicals to break dormancy requiring light in seeds (of oats, lettuce, gladioulus etc.) are | 4.0 | ) 1 |
|-------|-----------------------------------------------------------------------------------------------------------------|-----|-----|
|       | (A) Potassium nitrate                                                                                           |     |     |
|       | (B) Kinetine                                                                                                    |     |     |
|       | (C) Thiourea                                                                                                    |     |     |
|       | (D) NAA                                                                                                         |     |     |
|       | Choose the <i>correct</i> answer from the options given below                                                   |     |     |
|       | 1. (A), (B), (C) and (D)                                                                                        |     |     |
|       | 2. (B), (C) and (D) only                                                                                        |     |     |
|       | 3. (B) and (D) only                                                                                             |     |     |
|       | 4. (A) and (C) only                                                                                             |     |     |
|       | A1:1                                                                                                            |     |     |
|       | A2:2                                                                                                            |     |     |
|       | A3:3                                                                                                            |     |     |
|       | A4:4                                                                                                            |     |     |