(1) $\left(\begin{array}{ll}54 & 110 \\ -3 & -11\end{array}\right)$
(2) $\frac{1}{66}\left(\begin{array}{rr}-54 & -110 \\ 3 & 11\end{array}\right)$
(3) $\frac{1}{66}\left(\begin{array}{rr}54 & 110 \\ 3 & 11\end{array}\right)$
(4) none of these
5. The value of the determinant
$\left|\begin{array}{cc}\cos \alpha \alpha \sin \alpha \alpha 0 \\ -\sin \alpha \cos \alpha 0 \\ 0 & 0\end{array} \quad 1\right|$ is :
(1) -1
(2) 0
(3) 1
(4) $\cos 2 \alpha$
6. If ω as the cube root of unity then the value of $\left|\begin{array}{ccc}1 & \omega \omega \omega \omega^{2} \\ \omega \omega \omega(2) & 1 \\ \omega \omega^{2} & 1 & \omega\end{array}\right| \omega \begin{aligned} & \\ & \end{aligned}$ will be :
(1) ω
(2) $\omega^{2}+1$
(3) 0
(4) 1
7. If $(1+x)^{n}=C_{0}+c_{1} x+C_{2} x^{2}+\ldots . .+C_{n x}$, then $C_{0}+\underline{C_{1}}+\underline{C_{2}}+\ldots .+$ C_{n} is equal to : n+1
$\frac{\text { (1) } 2^{n}-1}{n+1}$
(2) $2^{n}-1$
(3) $2^{n-1}-1$
$\frac{\text { (4) } 2^{n+1}-1}{n+1}$
8. If $(1+x)^{n}=C_{0}+C_{1 x}+C_{2} x^{2}+\ldots . . C_{n x}$, then $C_{0} C_{2}+C_{1} C_{3}+C_{2} C_{4}+\ldots=C_{n-2} C n$ is equal to :
(1) $\underline{2 n}$ $\underline{n-2 n-2}$
(2) $\quad 2 n$ n n
(3) $\quad 2 \mathrm{n}$
(4) none of these
9. If the ratio of the second and third term in the expansion of $(a+b)^{2}$ is equal to the ratio of third and fourth term in the expansion of $(a+b)^{n+3}$ then the value of \mathbf{n} is equal to :
(1) 6
(2) 4
(3) 5
(4) 3
10. The number of different words that can be formed by using the letters of the word 'MISSISIPI' is :
(1) 5067
(2) 6705
(3) 1520
(4) 2520
11. If $\mathbf{a}^{\mathbf{2}}, \mathbf{b}^{\mathbf{2}}, \mathbf{c}^{\mathbf{2}}$ are in A.P. then
 will be :
(1) in H.P.
(2) in G.P.
(3) in A.P.
(4) in arithmetic geometrico progression
12. A bag coutains 5 white and 3 black balls. Two balls are drawn at random then the probability that out of the two one ball is red and other is black will be :
(1) $\frac{15}{56}$
(2) $\frac{11}{28}$
(3) $\frac{15}{28}$
(4) $\frac{2}{7}$
13. Two dice are thrown together then the probability that the sum of numbers appearing on the dice is 7 :
(1) $\frac{1}{6}$
(2) $1 \frac{1}{2}$
(3) $\frac{5}{36}$
(4) none of these
14. The position vectors of the two points A and B are a and b respectively then the position vector of the point C which divides $A B$ in the ration $2: 1$ will be :
(1) $\frac{1+b}{3}$
(2) $\frac{2 a+b}{3}$
(3) $\frac{a+2 b}{3}$
(4) none of these
15. If $\mathbf{a}+\mathbf{b}=\mathbf{a}-\mathbf{b}$, then the angle between \mathbf{a} and \mathbf{b} will be :
(1) 180^{0}
(2) 90°
(3) 60^{0}
(4) 0^{0}
16. The area of the region bounded by the curve $y=\sin ^{2} x, x$-axis and the lines $x=$ $0, x=\pi / \pi 2$ is
(1) π
(2) $\pi / 8$
(3) π
(4) $\frac{\pi}{2}$
4
2
17. $\pi / \pi 2$
$0 \frac{\sin x}{\sqrt{\sqrt{1+\sin 2 x}}} d x$ is equal to :
(1) π
(2) 2π
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{2}$
18. $x^{x} d x$ is equal to :
(1) $(x-1) e^{x}+C$
(2) $(1-x) e^{x}+C$
(3) $(1-x) e^{x}+C$
(4) none of these
19. $x^{2} \sin x^{3} d x$ is equal to :
(1) $\frac{1}{3} \sin \mathrm{x}^{3}+\mathrm{C}$
(2) $-\frac{1}{3} \sin \mathrm{x}^{3}+\mathrm{C}$
(3) $\frac{1}{3} \cos \mathrm{x}^{3}+\mathrm{C}$
(4) $-\frac{1}{3} \cos \mathrm{x}^{3}+\mathrm{C}$
20. The max. value of $\sin x+\cos x$:
(1) 1
(2) $\frac{1}{\sqrt{2}}$
(3) $\sqrt{2}$
(4) none of these
21. The angle between the curves $y=x$ and $y^{2}=4 x$ at origin will be :
(1) 0
(2) $\frac{\pi}{3}$
(3) $\frac{\pi}{4}$
(4) none of these
22. If the volume of a balloon is increasing at the rate of $25 \mathrm{~cm}^{3} / \mathrm{sec}$., then if the radius of the balloon is 5 cm . then the rate of change of the surface are a is :
(1) $20 \mathrm{~cm}^{2} / \mathrm{sec}$.
(2) $10 \mathrm{mt}^{2} / \mathrm{sec}$.
(3) $5 \mathrm{~cm} \cdot{ }^{2} / \mathrm{sec}$.
(4) $10 \mathrm{~cm} . / \mathrm{sec}$.
23. The differential of coefficient of x^{x} is :
(1) $x^{x} \log _{e} x$
(2) $x^{x}\left(1+\log _{e} x\right)$
(3) $x^{x}\left(1-\log _{e} x\right)$
(4) none of these
24. $d_{d}(\sin x)^{\tan x}$ is equal to :
dx
(1) $(\sin \mathrm{x})^{\tan \mathrm{x}}\left[1-\sec ^{2} \mathrm{x} \log \sin \mathrm{x}\right]$
(2) $\left.(\tan x)^{\sin x} p \log \sec ^{2} x \log \sin x\right]$
(3) $(\sin x)^{\tan x}\left[1+\sec ^{2} x \log \sin x\right]$
(4) none of these
25. If $y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)$ thendy is equal to :

$$
\mathbf{d x}
$$

(1) ∞
(2) 0
(3) 1
(4) -1
26. If $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, then $\frac{d y}{d x}$ is equal to :
(1) $-\frac{1}{1+x^{2}}$
(2) $-\frac{2}{1+\mathrm{x}^{2}}$
(3) $\frac{2}{1+x^{2}}$
(4)

27. If $x \sqrt{1+y}+y \sqrt{1+x}=0$ then $\frac{d y}{d x}$ is equal to :
(1) $\frac{1}{1+x^{2}}$
(2) $-\frac{1}{1+x^{2}}$
(3) $\frac{2}{(1+x)^{2}}$
(4) none of these
28. The continuous product of the roots of $(-1)^{2 / 3}$ is :
(1) ω^{2}
(2) ω
(3) 0
(4) 1
29. The value of $\sin ^{h-1} x$:
(1) $\log \left(x-\sqrt{x^{2}-1}\right)$
(2) $\log \left(x+\sqrt{x^{2}-1}\right)$
(3) $\log \left(x+\sqrt{x^{2}+1}\right)$
(4) $\frac{1}{2} \log \frac{1+\mathrm{x}}{1-\mathrm{x}}$
30. The equation of a st-line passing through the point $(1,2)$ and making equal angles to with axes, will be :
(1) $x-y-2=0$
(2) $x+y+1=0$
(3) $x-y=1$
(4) $x+y=1$
31. If the vertices of a parallelogram are $(\mathbf{0 , 0}),(2,1),(1,3)$ and $(1,2)$ then the angle between their diagonals will be:
(1) $\frac{\pi}{4}$
(2) $\frac{3 \pi}{2}$
(3) $\frac{\pi}{2}$
(4) $\frac{\pi}{3}$
32. The equation of line which is parallel to the straight line $3 x+4 y-7=0$ and passing through (1,2) is :
(1) $3 x+4 y=11$
(2) $3 x+4 y+11=0$
(3) $4 x-3 y+2=0$
(4) $3 x+4 y+7=0$
33. The pole of the straight line $9 x+y-28=0$ w.r.t. the circle $x^{2}+y^{2}=16$ will be:
(1) $\overline{\beta 3,} 39$.
(2) $\left.\frac{33}{7}, \frac{4}{7}\right)$

(3)

(4) $\left(\frac{36}{7}, \frac{4}{7}\right)$
34. The equation of the tangent from origin to the circle $x^{2}+y^{2}-2 r x-2 h y+h^{2}=0$ is:
(1) $\left(h^{2}-r^{2}\right) x+2 r h y=0$
(2) $y=0$
(3) $x-y=0$
(4) $\left(h^{2}-r^{2}\right) x-2 r h y=0$
35. If a tangent at a point p to the parabola meets to the directrix at Q. If S is the focus of the parabola then $\angle \mathrm{ESQ}$ is equal to :
(1) π
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{4}$
36. If $f(y)=\log y$, then $f(y)+f(1 / y)$ is equal to :
(1) 2
(2) 0
(3) -1
(4) 1
37. $\lim _{x \rightarrow \theta \rightarrow} \frac{\operatorname{se}^{x}-\log (1+x)}{x^{2}}$ is equal to :
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{3}{2}$
(4) $\frac{2}{3}$
38. If $\alpha \alpha$ and $\beta \beta$ are the roots of the equation $1\left(1+n^{2}+n^{4}\right)=0$ then $\alpha^{2} \alpha+\beta \beta$ is equal to :
(1) $2 n^{2}$
(2) n^{2}
(3) $-\mathrm{n}^{2}$
(4) $\mathrm{n}^{2}+2$
39. The H.M. between 1 and $\frac{1}{16}$ will be :
(1) $\frac{17}{2}$
(2) $\frac{2}{17}$
(3) $\frac{17}{32}$
(4) $\frac{32}{17}$
40. If for two numbers G.M. is 4 and A.M. is 5 , then H.M. will be :
(1) $\frac{25}{15}$
(2) $\frac{17}{8}$
(3) $\frac{16}{5}$
(4) $\frac{5}{16}$
41. If ${ }^{10} \mathrm{C}_{\mathrm{r}}={ }^{10} \mathrm{C}_{\mathrm{r}+2}$ then ${ }^{5} \mathrm{C}_{\mathrm{r}}$ is equal to :
(1) 360
(2) 120
(3) 10
(4) 5
42. The value of $1+\frac{1}{4}+\frac{1.3}{4.8}+\frac{1.3 .5}{4.8 .12}+\ldots .$. is :
(1) $\sqrt{(3 / 2)}$
(2) $\sqrt{2}$
(3) 2
(4) $3 / 2$
 $\mathrm{C}_{\mathrm{n}-1}$
(1) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$\frac{(2) \mathrm{n}\left(\mathrm{n}^{2}+1\right)}{2}$
(3) $\frac{n(n+1)}{n!}$
(4) $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
44. In the expansion of $\left(2^{4}-\frac{1}{x^{7}}\right)$ the term independent of x is :
(1) -32190
(2) 114050
(3) 42240
(4) 330
45. The value of the determent $\left|\begin{array}{rrr}4 & -6 & 1 \\ -1 & -1 & 1 \\ -4 & 11 & -1\end{array}\right| \quad$ is :
(1) θ
(2) -25
(3) 25
(4) none of these
46. If $\left.\begin{array}{ccc}1 & 2 & 4 \\ 3 & 6+x & 7\end{array} \right\rvert\,=0$, then the value of x will be :
(1) 3
(2) 0
(3) 1
(4) none of these
47. If $A=\left(\begin{array}{lcc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right)$ then $\operatorname{adj} A=$
(1) $\left(\begin{array}{lcc}\mathrm{d}_{1}{ }^{-1} & 0 & 0 \\ 0 & \mathrm{~d}_{2}{ }^{-1} & 0 \\ 0 & 0 & \mathrm{~d}_{3}{ }^{-1}\end{array}\right)$
(2) $\left(\begin{array}{cccc}\mathrm{d}_{2} \mathrm{~d}_{3} & 0 & 0 \\ 0 & \mathrm{~d}_{1} \mathrm{~d}_{3} & 0 \\ 0 & 0 & \mathrm{~d}_{1} \mathrm{~d}_{2}\end{array}\right)$
(3) $\left(\begin{array}{cccc}\mathrm{d}_{2} \mathrm{~d}_{2} & 0 & 0 \\ 0 & \mathrm{~d}_{1} \mathrm{~d}_{3} & 0 \\ 0 & 0 & \mathrm{~d}_{1} \mathrm{~d}_{3}\end{array}\right)$
(4) $\left(\begin{array}{lll}\mathrm{d}_{1} \mathrm{~d}_{3} & 0 & 0 \\ 0 & \mathrm{~d}_{2} \mathrm{~d}_{3} & 0 \\ 0 & 0 & \mathrm{~d}_{1} \mathrm{~d}_{2}\end{array}\right)$
48. If $A=\left(\begin{array}{ll}2 & 4 \\ 0 & 3\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 2 \\ 0 & 5\end{array}\right)$, then $4 A-3 B$ is equal to :
(1) $\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right)$
(2) $\left(\begin{array}{rr}-5 & -10 \\ 0 & 3\end{array}\right)$
(3) $\mathrm{B}=\left(\begin{array}{ll}5 & 10 \\ 0 & -3\end{array}\right)$
(4) $\mathrm{A}=\left(\begin{array}{rr}7 & 14 \\ 0 & 7\end{array}\right)$
49. If $A=\binom{\cos x \sin x}{-\sin x \cos x}$, then A^{-1} is equal to :
(1) $\left(\begin{array}{cccc}\cos & x & \sin & x \\ \sin & x & \cos & x\end{array}\right)$
(2) $\left(\begin{array}{ccc}\cos & x & -\sin x \\ \sin & x & \cos x\end{array}\right)$
(3) $\binom{\cos x \sin x}{-\sin x \cos x}$ (4) none of these
50. A card is drawn at random from a pack of playing cards. The probability that it is red or an ace, is :
(1) $\frac{1}{3}$
13
(2) $5 \frac{1}{5}$
(3) $\frac{17}{52}$
(4) $\frac{4}{13}$
51. If the sum of two unit vector is also a unit vector then the magnitude of their difference will be :
(1) 1
(2) $\sqrt{3}$
(3) $\frac{1}{\sqrt{3}}$
(4) $\sqrt{2}$
52. The unit vector perpendicular to the vectors $\mathbf{6 i}+\mathbf{2 j}+\mathbf{3 k}$ and $\mathbf{3 i}-\mathbf{6 j}-\mathbf{2 k}$ will be:
(1) $\frac{2 \mathrm{i}-3 \mathrm{j}-6 \mathrm{k}}{7}$
(2) $\frac{2 i-3 j+6 k}{7}$
(3) $\frac{2 i+3 j=6 k}{7}$
(4) $\frac{2 i+3 j+6 k}{7}$
53. The area of the region bounded by the curves $y^{2}=4 a x, x=0$ and $x=a$ is
(1) $4 \pi a^{2}$
(2) $3 \pi \mathrm{a}^{2}$
(3) $2 \pi a^{2}$
(4) $\pi \mathrm{a}^{2}$
54. The area of the region bounded by the curves $y^{2}=4 a x, x=0$ and $x=a$ is :
(1) $\frac{5}{3} a^{2}$
(2) $\frac{2}{3} a^{2}$
(3) $\frac{8}{3} a^{2}$
(4) $\frac{4}{3} a^{2}$
55. $\cos ^{3} x d x$ is equal to
(1) $\frac{\sin 3 x}{4}+3 \sin x+C$
(2) $\frac{\sin 3 x}{3}+\frac{\sin x}{2}+C$
(3) $\sin 3 x+C$
(4) $\frac{\sin 3 x}{12}+\frac{3}{4} \sin x+C$
56. If $x=a(t+\sin t)$ and $y=a(1-\cos t)$ then $\frac{d y}{d x}$ is equal to :
(1) $\tan t$
(2) $\tan 2 t$
(3) $\cot (t / 2)$
(4) $\tan (t / 2)$
57. If $x=t^{2}$ and $y=2 t$, then the normal at $t=1$ is :
(1) $x+y-3=0$
(2) $x+y-1=0$
(3) $x+y+1=0$
(4) $x+y+3=0$
58. $f(x)=2 x^{3}-9 x^{2}+12 x+29$ is a monotonic decreasing function when :
(1) $1<x<2$
(2) $x>1$
(3) $x>2$
(4) $x<2$
59. The height of the cylinder of maximum volume that can be inscribed in a sphere of radius r is :
(1) $2 \sqrt{3 r}$
(2) $\frac{2 r}{\sqrt{3}}$
(3) $r \sqrt{3}$
(4) $\frac{\mathrm{r}}{\sqrt{ } 3}$
60. $\sec x d x$ is equal to :
(1) $\log \sin x+C$
(2) $\log \tan (x / 2)+C$
(3) $-\log (\sec x-\tan x)+C$
(4) $\log \tan \left(\frac{\pi}{2}+\frac{\pi}{4}\right)+C$
61. The differential coefficient of $\sin -1\left(\frac{1-x^{2}}{1+x^{2}}\right)$ w.r.t. x is :
(1) $-\frac{2}{1+\mathrm{x}^{2}}$
(2) $\frac{2}{1+x^{2}}$
(3)
$\frac{1}{1+x^{2}}$
(4) none of these
62. d $\left(\sec ^{-1} x\right)$ is equal to :
(1) $\frac{1}{x \sqrt{x-1}}$
(2) $\frac{1}{\mathrm{x} \sqrt{ } \mathrm{x}^{2}-1}$
(3) $\frac{1}{x \sqrt{1+x^{2}}}$
(4) \qquad
63. The differential coefficient of $\tan -1 \sqrt{\frac{1-x^{2}}{1+x^{2}}} \quad$ w.r.t. is :
(1) $1 / 2$
(2) 1
(3) $-1 / 2$
(4) none of these
64. $\lim \underline{\tan 2 x-x}$ is equal to : $x \rightarrow 3^{x}-\sin x$
(1) 0
(2) 1
(3) $\frac{1}{3}$
(4) $\frac{1}{4}$
65. The differential coefficient of $\sin ^{-1} x$ w.r.t. $\cos ^{-1} \sqrt{\sqrt{1-x^{2}}}$ is :
(1) $-\frac{1}{\sqrt{1+\mathrm{x}^{2}}}$
(2) $\frac{1}{\sqrt{1-x^{2}}}$
(3) $\frac{2}{\sqrt{1-x^{3}}}$
(4) none of these
66. The sum of 20 terms of the series $1+4+7+10+\ldots$. is :
(1) 290
(2) 490
(3) 590
(4) none of these
67. Which terms of the series $\frac{1}{2}, \frac{-1}{2}, 1-2, \ldots$. Is - 128 :
(1) $10^{\text {th }}$
(2) $8^{\text {th }}$
(3) $9^{\text {th }}$
(4) $12^{\text {th }}$
68. If ${ }^{n} P_{4}:{ }^{n} P_{5}=1: 2$, then n is equal to :
(1) 2
(2) 4
(3) 5
(4) 6
69. $(\cos 3 \theta \theta-i \sin 3 \theta) \theta^{-5}(\cos 2 \theta \theta+i \sin 2 \theta) \theta^{4}$ is equal to : $(\cos \theta \theta+i \sin \theta) \theta^{-4}(\cos \theta \theta-\mathbf{i} \sin \theta) \theta \boldsymbol{t}$
(1) $\cos 27 \theta-i \sin 27 \theta$
(2) $\cos 33 \theta-i \sin 33 \theta$
(3) $\cos 33 \theta+i \sin 33 \theta$
(4) $\cos 27 \theta+i \sin 27 \theta$
70. The value of $\cos ^{-1} x$ is :
(1) $\log \left(x-\sqrt{x^{2}-1}\right)$
(2) $\log \left(x+\sqrt{x^{2}-1}\right)$
(3) $\log \left(x+\sqrt{x^{2}+1}\right)$
(4) $\log \left(x-\sqrt{x^{2}+1}\right)$
71. Find the equation of the straight line which is perpendicular to the line $\underline{x}-\underline{y}=$ 1 and passes through the point where the given st-line cuts the x-axis : $\quad \mathbf{a}$
(1) $a x+b y=a^{2}$
(2) $a x-b y=a^{2}$
(3) $a x+b y=b^{2}$
(4) $b x-a y=a b$
72. If the lines $x+y=1,2 x-y=0$ and $x+2 y+\lambda \lambda=0$ are concurrent then $\lambda \lambda$ is equal to :
(1) $\frac{-2}{3}$
(2) $\frac{2}{3}$
(3) $\frac{-5}{3}$
(4) $\frac{5}{3}$
73. If two vertices of a triangle are $(6,4),(2,6)$ and its centroid is $(4,6)$ then its theird vertex will be :
(1) $(6,4)$
(2) $(8,4)$
(3) $(4,8)$
(4) none of these
74. The radical axis of the circles $2 x^{2}+2 y^{2}-7 x=0$ and $x^{2}+y^{2}-4 y-7=0$ is :
(1) $8 x-7 y+14=0$
(2) $7 x-8 y+14=0$
(3) $7 x-8 y-14=0$
(4) $7 x+8 y+14=0$
75. The equation of the polar line w.r.t. the pole $(1,-2)$ to the arile $x^{2}+y^{2}-2 x-6 y+$ $5=0$ is :
(1) $x+y-1=0$
(2) $x+y+1=0$
(3) $y=2$
(4) $x=2$
76. The vertex of the parabola $x 2-y+6 x+10=0$ is :
(1) $(3,1)$
(2) $(3,-1)$
(3) $(3,-2)$
(4) $(-3,1)$
77. If $\mathbf{f}(\theta) \theta=\tan \theta \theta$, then the value of $\frac{\mathbf{f}(\theta) \theta-\mathbf{f}(\phi) \phi}{1+\mathbf{f}(\theta) \theta \mathbf{f}(\phi) \phi}$ is :
(1) $\theta-\phi$
(2) $f(\theta / \phi)$
(3) $f(\theta-\phi)$
(4) $f(\theta+\phi)$
78. $\lim _{x \rightarrow \infty} \frac{x^{2}-3 x+2}{2 x^{2}+x-3}$ is equal to :
(1) 0
(2) 2
(3) $1 / 2$
(4) ∞
79. $\lim _{x \rightarrow \infty} \quad\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{x}\right)$ is equal to :
(1) -1
(2) 1
(3) 2
(4) $1 / 2$
80. The equation of the normal at a point of intersection of line $2 x+y=3$ and curve $y^{2}+y^{2}=5$ is :
(1) $2 x+2 y+3=0$
(2) $x-y+4=0$
(3) $x-4 y+3=0$
(4) $x+y+2=0$
81. If $f(x)=\frac{x-3}{x+1}$, then $f[f\{f(x)\}]$ is equal to :
(1) $\frac{-1}{\mathrm{x}}$
(2) $-x$
(3) $\frac{1}{\mathrm{x}}$
(4) x
82. The modules of $\frac{1+i}{1-i}$ is :
(1) $\sqrt{2}$
(2) 2
(3) $1 / 2$
(4) 1
83. The value of $\frac{4 \sqrt{\sqrt{-3}}}{7}-\frac{\sqrt{ }-3}{7} \quad$ is
(1) $\frac{3 \sqrt{ } 3}{7}$
(2)- $\frac{3 \sqrt{3}}{7}$
(3) $\frac{3 \sqrt{ } 3}{7}$ i
(4) none of these
84. $\frac{1-2 i}{2+i}+\frac{4-i}{+2 i}$ is equal to : 3
(1) $\frac{10}{13}+\frac{24}{13}$ i
(2) $\frac{10}{13}-\frac{24}{13} \mathrm{i}$
(3) $\frac{24}{13}-\frac{10}{13}$ i
(4) $\frac{24}{13}+\frac{10}{13}$ i
85. If $z=5+3 i$ then the value of $|z-2|$ will be :
(1) $\sqrt{13}$
(2) $2 \sqrt{3}$
(3) $3 \sqrt{2}$
(4) 13
86. The imaginary part of $\frac{1-\mathbf{i}}{1+i}$ is :
(1) -i
(2) -1
(3) 1
(4) i
87. If $z_{1}=1+2 i$ and $z_{2}=i-1$, then z_{1} / z_{2} is equal to :
(1) $\frac{1}{2}-\frac{3}{2}$ i
(2) $-\frac{1}{2}+\frac{3}{2}$
(3) $\frac{1}{2}-\frac{3}{2} i$
(4) none of these
88. The amplitude of $1-\overline{\sqrt{ } \sqrt{3}}$ is :
(1) $\frac{-2 \pi}{3}$
(2) $\frac{-\pi}{3}$
(3) $\frac{2 \pi}{3}$
(4) $\frac{\pi}{3}$
89. If α cand β are the roots of the equation $x^{2}+\mathbf{p x}+\mathbf{q}=0$ then the value of $\alpha^{3} \alpha+\beta \beta=$ 0 will be :
(1) $\mathrm{p}^{3}-3 \mathrm{pq}$
(2) $-\left(p^{3}+3 p q\right)$
(3) $\mathrm{p}^{3}+3 \mathrm{pq}$
(4) $-p^{3}+3 p q$
90. If α and β are the roots of the equation whose roots are $\frac{\mathbf{1}}{\alpha \alpha}, \frac{1}{\beta \beta}$ is :
(1) $x^{2}+x+1=0$
(2) $x^{2}-x+1=0$
(3) $x^{2}-x=1$
(4) $x^{2}-x=1$
91. If $z=\frac{(1+i)(2+i)}{3+i}$ then $|z|$ is equal to :
(1) $-1 / 2$
(2) $1 / 2$
(3) 1
(4) -1
92. The slope of the tangent to the parabola $y^{2}=4$ ax point (at ${ }^{2}$, 2at) will be :
(1) - t
(2) $-1 / \mathrm{t}$
(3) $1 / \mathrm{t}$
(4) t
93. If $a=i 2 j$ and $b=2 i+\lambda j \lambda$ are the parallel vectors then $\lambda \lambda i s$ equal to :
(1) -2
(2) 2
(3) -4
(4) 4
94. A stone is thrown in silent water, the ripples are moving at the rate of $\mathbf{6 c m 0} / \mathrm{sec}$. then the rate of change of the are when the radius of the unite is 10 cm . at the time when radius of the circle is 10 cm , then the rate at which its area increases is :
(1) $120 \mathrm{~m}^{2} / \mathrm{sec}$.
(2) $\pi \mathrm{cm}^{2} / \mathrm{sec}$.
(3) $120 \mathrm{~cm}^{2} / \mathrm{sec}$.
(4) $120 \pi \mathrm{~cm}^{2} / \mathrm{sec}$.
95. A dice is thrown then the probability that the sum of the number is $\mathbf{1}$ or $\mathbf{6}$ is :
(1) $1 / 6$
(2) $1 / 3$
(3) $2 / 3$
(4) $3 / 4$
96. The value of $\cos h(\pi i \pi)$ is :
(1) 0
(2) 1
(3) -1
(4) none of these
97. For $\mathbf{Z}_{1}, \mathbf{Z}_{2} \in €$ the value of $\left|\mathbf{Z}_{1}+\mathbf{Z}_{2}\right|^{2}+\left|\mathbf{Z}_{1}-\mathbf{Z}_{2}\right|^{2}$ will be :
(1) $2\left(\left.Z_{1}\right|^{2}+\left|Z_{2}\right|^{2}\right)$
(2) $\left|Z_{1}\right|^{2}+\left|Z_{2}\right|^{2}$
(3) $\left|Z_{1}\right|^{2}+\left|Z_{2}{ }^{2}-\left|Z_{1}\right|-\left|Z_{2}\right|\right.$
(4) $2\left(\left|Z_{1}{ }^{\mid 2}-\left|Z_{2}\right|^{2}\right)\right.$
98. The real part of $\cos h(\alpha \alpha i \beta \beta$ is :
(1) $\sin \mathrm{h} \alpha \cos \beta$
(2) $\cos h \alpha \cos \beta$
(3) $-\cos h \alpha \cos \beta$
(4) $\sin \alpha \cos \beta$
99. If three vertices of a square are $3 i, 1+i$ and $3+2 i$ then $i t s$ fourth vertex will be :
(1) $(3,3)$
(2) $(2,4)$
(3) aigin
(4) $\left(\frac{1}{2}, \frac{1}{2}\right)$
100. $\lim \underline{|x-b|}$ is equal to :
$\underset{x \rightarrow b}{x-b}$
(1) 1
(2) b
(3) 0
(4) does not exist

ANSWER SHEET

$1 .(1)$	$2 .(2)$	$3 .(2)$	$4 .(2)$	$5 .(3)$	$6 .(3)$	$7 .(4)$	$8 .(3)$	$9 .(4)$	$10 .(4)$	$11 .(3)$
$12 .(3)$	$13 .(1)$	$14 .(3)$	$15 .(2)$	$16 .(3)$	$17 .(3)$	$18 .(1)$	$19 .(4)$	$20 .(3)$	$21 .(3)$	$22 .(4)$
$23 .(2)$	$24 .(3)$	$25 .(2)$	$26 .(3)$	$27 .(2)$	$28 .(4)$	$29 .(3)$	$30 .(2)$	$31 .(3)$	$32 .(3)$	$33 .(4)$
$34 .(4)$	$35 .(2)$	$36 .(2)$	$37 .(3)$	$38 .(2)$	$39 .(2)$	$40 .(3)$	$41 .(4)$	$42 .(2)$	$43 .(1)$	$44 .(3)$
$45 .(2)$	$46 .(2)$	$47 .(2)$	$48 .(3)$	$49 .(2)$	$50 .(4)$	$51 .(2)$	$52 .(3)$	$53 .(4)$	$54 .(3)$	$55 .(4)$
$56 .(4)$	$57 .(1)$	$58 .(1)$	$59 .(2)$	$60 .(3)$	$61 .(1)$	$62 .(3)$	$63 .(1)$	$64 .(4)$	$65 .(3)$	$66 .(3)$
$67 .(1)$	$68 .(4)$	$69 .(3)$	$70 .(2)$	$71 .(1)$	$72 .(3)$	$73 .(3)$	$74 .(3)$	$75 .(3)$	$76 .(4)$	$77 .(3)$
$78 .(3)$	$79 .(2)$	$80 .(3)$	$81 .(4)$	$82 .(4)$	$83 .(3)$	$84 .(2)$	$85 .(3)$	$86 .(2)$	$87 .(3)$	$88 .(2)$
$89 .(4)$	$90 .(1)$	$91 .(3)$	$92 .(3)$	$93 .(3)$	$94 .(4)$	$95 .(2)$	$96 .(3)$	$97 .(1)$	$98 .(2)$	$99 .(2)$
$100(4)$										

