$$\begin{array}{ccc} (1) \left(\begin{array}{ccc} 54 & 110 \\ -3 & -11 \end{array}\right) & (2) & \frac{1}{66} \left(\begin{array}{ccc} -54 & -110 \\ 3 & 11 \end{array}\right)$$

(3)
$$\frac{1}{66} \begin{pmatrix} 64 & 110 \\ 3 & 11 \end{pmatrix}$$
 (4) none of these

5. The value of the determinant $\begin{vmatrix} \cos \alpha \alpha \sin \alpha \alpha 0 \\ -\sin \alpha \cos \alpha \alpha 0 \\ 0 & 0 \end{vmatrix}$ is: (1)-1 (2) 0 (3) 1 (4) $\cos 2\alpha$

6. If was the cube root of unity then the value of
$$\begin{vmatrix} 1 & \omega & \omega & \delta \\ \omega & \omega & \delta & 1 \\ \omega & \delta & 1 & \omega & \delta \end{vmatrix}$$
 will be:

(1) ω (2) $\omega^2 + 1$ (3) 0 (4) 1

7. If
$$(1+x)^n = C_0 + c_1x + C_2x^2 + \dots + C_nx^n$$
, then $C_0 + C_1 + C_2 + \dots + C_n$ is equal to :

8. If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$, then $C_0C_2 + C_1C_3 + C_2C_4 + \dots = C_{n-2}$ Cn is equal to :

(1) $\underline{2n}$ (2) $\underline{2n}$ (3) $\underline{2n}$ (4) none of these $\underline{n-2 \ n-2}$ $\underline{n \ n}$ $\underline{n-2 \ n-2}$

9. If the ratio of the second and third term in the expansion of $(a+b)^2$ is equal to the ratio of third and fourth term in the expansion of $(a+b)^{n+3}$ then the value of n is equal to :

(1) 6 (2) 4 (3) 5 (4) 3

10. The number of different words that can be formed by using the letters of the word 'MISSISIPI' is :

(1) 5067 (2) 6705 (3) 1520 (4) 2520

11. If a^2 , b^2 , c^2 are in A.P. then $\frac{1}{b+c^2}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ will be:

(1) in H.P. (2) in G.P. (3) in A.P. (4) in arithmetic geometrico progression

the probability that out of the two one ball is red and other is black will be:								
56	$\overline{28}$	(3) $\frac{15}{28}$	7					
13 Two dice	are thrown to	gether then the	e probability that the sum of numbers					
13. Two dice are thrown together then the probability that the sum of numbers appearing on the dice is 7:								
(1) 1	(2) 1	(3) 5	(1) none of these					
(1) <u>1</u>	$\binom{2}{1} = \frac{1}{12}$	(3) <u>3</u>	(4) none of these					
Ü	12	30						
_		_	A and B are a and b respectively then the					
position vector	or of the point	C which divid	les AB in the ration 2:1 will be:					
(1) $1 + b$	(2) $2a + b$	(3) $a + 2b$	(4) none of these					
3	3	3	(4) none of these					
15 If a ⊥ h :	- a - h than	the angle hetw	een a and b will be :					
(1) 190^0	$= a - b$, then $(2) 00^0$	(3) 60^0	$(4) 0^0$					
(1) 100	(2) 90	(3) 00	(4) 0					
4.6 700	0.7							
	of the region b	oounded by the	e curve $y = \sin^2 x$, x-axis and the lines $x =$					
0, $x = \pi/\pi 2$ is								
$(1) \pi$	(2) $\pi/8$	$(3) \pi$	(4) π					
、 /	` '	$(3) \frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$					
17 -/-2								
17. π/π^2								
sin	$\frac{x}{\sin 2x}$ dx i	is equal to:						
$0 \sqrt{1+}$	sin 2x							
$(1) \pi$	(2) 2π	$(3) \pi$	(4) π					
\	· /	$(3) \frac{\pi}{4}$	$(4) \ \frac{\pi}{2}$					
10 .v 1 .	14							
18. $xe^x dx i$	is equal to :							
(4) V	~	(a) (d)) V						
$(1)(x-1)e^x +$		(2) $(1-x)e^x$						
$(3)(1-x)e^{x}+C$		(4) none of these						
19. $x^2 \sin x^3 dx$ is equal to:								
(1) $1 \sin x^3 +$	- C	$(2) - 1 \sin x$	$c^3 + C$					
$\frac{1}{3}\sin x =$		(2) - $\frac{1}{3} \sin x$						
(2) 1 3		(4) 1	3 . C					
(3) $\frac{1}{2}\cos x^3$	+ C	(4) - $\frac{1}{2}\cos x$	x + C					
.5		i						

12. A bag coutains 5 white and 3 black balls. Two balls are drawn at random then

- 20. The max. value of $\sin x + \cos x$:
 (1) 1
 (2) 1
 (3) $\sqrt{2}$ (4) none of these
- 21. The angle between the curves y = x and $y^2 = 4x$ at origin will be :

(2)
$$\frac{\pi}{3}$$

$$(2) \underline{\pi}_{3} \qquad (3) \underline{\pi}_{4}$$

(4) none of these

22. If the volume of a balloon is increasing at the rate of 25 cm³/sec., then if the radius of the balloon is 5 cm. then the rate of change of the surface are a is :

(1)
$$20 \text{ cm}^2/\text{sec}$$
.

$$(3) 5 \text{ cm.}^2/\text{sec.}$$

(4) 10 cm./sec.

23. The differential of coefficient of x^x is:

$$(1) x^x \log_e x$$

(2)
$$x^x (1 + \log_e x)$$
 (3) $x^x (1 - \log_e x)$ (4) none of these

(3)
$$x^x (1 - \log_e x)$$

24. \underline{d} (sin x) ^{tan x} is equal to :

(1)
$$(\sin x)^{\tan x} [1 - \sec^2 x \log \sin x]$$

(2) $(\tan x)^{\sin x} p\log \sec^2 x \log \sin x$

(2)
$$(\tan x)^{\sin x} \operatorname{plog} \sec^2 x \log \sin x$$

(3)
$$(\sin x)^{\tan x} [1 + \sec^2 x \log \sin x]$$

25. If
$$y = \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right)$$

then dy is equal to :

$$\mathbf{dx}$$
 $(1) \infty$

$$(4) -1$$

26. If $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$, then $\frac{dy}{dx}$ is equal to:

(1)
$$-\frac{1}{1+x^2}$$

(1)
$$-\frac{1}{1+x^2}$$
 (2) $-\frac{2}{1+x^2}$

(3)
$$\frac{2}{1+x^2}$$

(3)
$$\frac{2}{1+x^2}$$
 (4) $\frac{2x}{1+x^2}$

27. If $x \sqrt{1+y} + y\sqrt{1+x} = 0$ then $\frac{dy}{dx}$ is equal to:

(1)
$$\frac{1}{1+x^2}$$

(1)
$$\frac{1}{1+x^2}$$
 (2) - $\frac{1}{1+x^2}$

(3)
$$\frac{2}{(1+x)^2}$$

(3) $\frac{2}{(1+x)^2}$ (4) none of these

28. The continuous product of the roots of $(-1)^{2/3}$ is:

- (1) ω^2
- $(2) \omega$
- (3) 0
- (4) 1

29. The value of $\sin^{h-1} x$:

$$(1)\log\left(x-\sqrt{x^2-1}\right)$$

(1)
$$\log (x - \sqrt{x^2 - 1})$$
 (2) $\log (x + \sqrt{x^2 - 1})$

$$(3) \log (x + \sqrt{x^2 + 1})$$

(4)
$$\frac{1}{2} \log \frac{1+x}{1-x}$$

30. The equation of a st-line passing through the point (1,2) and making equal angles to with axes, will be:

$$(1) x-y-2 = 0$$

(2)
$$x+y+1=0$$

$$(3) x-y=1$$

(3)
$$x-y=1$$
 (4) $x+y=1$

31. If the vertices of a parallelogram are (0,0), (2,1), (1,3) and (1,2) then the angle between their diagonals will be:

(1)
$$\frac{\pi}{4}$$

$$(2) \frac{3\pi}{2}$$

(3)
$$\frac{\pi}{2}$$
 (4) $\frac{\pi}{3}$

$$(4) \frac{\pi}{3}$$

32. The equation of line which is parallel to the straight line 3x + 4y - 7 = 0 and passing through (1,2) is:

$$(1) 3x + 4y = 11$$

$$(2) 3x+4y+11=0$$

$$(3) 4x-3y+2=0$$

$$(4) 3x+4y+7=0$$

33. The pole of the straight line 9x + y - 28 = 0 w.r.t. the circle $x^2 + y^2 = 16$ will be:

$$\begin{array}{c|cccc}
(1) & \overline{33}, 3 \\
\hline
 & 7 & 7
\end{array}$$

(2)
$$\frac{33}{7}$$
, $\frac{4}{7}$

$$\begin{array}{c|cccc} (3) & 4 & , & 36 \\ \hline & 7 & 7 \end{array}$$

$$(4) \quad \frac{36}{7}, \quad \frac{4}{7}$$

34. The equation of the tangent from origin to the circle $x^2 + y^2 - 2rx - 2hy + h^2 = 0$

(1)
$$(h^2 - r^2) x + 2rhy = 0$$

$$(2) y = 0$$

$$(3) x - y = 0$$

(3)
$$x - y = 0$$

(4) $(h^2 - r^2) x - 2rhy = 0$

35. If a tangent at a point p to the parabola meets to the directrix at Q. If S is the focus of the parabola then \(\sumeq \text{PSQ} \) is equal to:

$$(1) \pi$$

$$(2) \ \underline{\pi}$$

$$(3)$$
 $\underline{\pi}$

$$(4) \ \underline{\pi}$$

36. If $f(y) = \log y$, then f(y) + f(1/y) is equal to :

$$(3)-1$$

37. $\lim_{x\to 0\to} \frac{\sec^x - \log(1+x)}{x^2}$ is equal to :

(1)
$$\frac{1}{2}$$

(2)
$$\frac{1}{3}$$

38. If $\alpha\alpha$ and $\beta\beta$ are the roots of the equation 1 $(1+n^2+n^4)=0$ then $\alpha\alpha + \beta\beta$ is equal to :							
(1) $2n^2$ (2) n^2 (3) $-n^2$ (4) $n^2 + 2$							
39. The H.M. between 1 and $\underline{1}$ will be:							
(1) $\frac{17}{2}$ (2) $\frac{2}{17}$ (3) $\frac{17}{32}$ (4) $\frac{32}{17}$							
40. If for two numbers G.M. is 4 and A.M. is 5, then H.M. will be: (1) $\frac{25}{15}$ (2) $\frac{17}{8}$ (3) $\frac{16}{5}$ (4) $\frac{5}{16}$							
41. If $^{10}\mathrm{C_r} = ^{10}\mathrm{C_{r+2}}$ then $^5\mathrm{C_r}$ is equal to :							
(1) 360 (2) 120 (3) 10 (4) 5							
42. The value of $1 + \frac{1}{4} + \frac{1}{4 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12} + \dots$ is :							
(1) $\sqrt{(3/2)}$ (2) $\sqrt{2}$ (3) 2 (4) 3/2							
43. If $(1+x)^n = C_0 + C_2x + C_2x^2 + + C_nx^n$ then $C_1 + C_2 + C_2 + C_3 + + C_nx^n$ is equal to : $C_0 + C_1 + C_2 + C_2 + C_3 + + C_nx^n$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
44. In the expansion of $\left(2^4 - \frac{1}{x^7}\right)$ the term independent of x is:							
(1) – 32190 (2) 114050 (3) 42240 (4) 330							
45. The value of the determent 4 -6 1 -1 -1 1 is: -4 11 -1							
(1) θ (2) - 25 (3) 25 (4) none of these							
46. If $\begin{vmatrix} 1 & 2 & 4 \\ 3 & 6+x & 7 \end{vmatrix} = 0$, then the value of x will be:							

- $(1) \ 3$
- (2) 0
- (3) 1 (4) none of these

47. If
$$A = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}$$
 then adj $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

- $\begin{pmatrix} d_2 d_3 & 0 & 0 \\ 0 & d_1 d_3 & 0 \\ 0 & 0 & d_1 d_2 \end{pmatrix}$
- $\begin{pmatrix}
 d_2 d_2 & 0 & 0 \\
 0 & d_1 d_3 & 0 \\
 0 & 0 & d_1 d_3
 \end{pmatrix}$
- $\begin{pmatrix}
 d_1 d_3 & 0 & 0 \\
 0 & d_2 d_3 0 \\
 0 & 0 & d_1 d_2
 \end{pmatrix}$
- 48. If $A = \begin{pmatrix} 2 & 4 \\ 0 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \\ 0 & 5 \end{pmatrix}$, then 4A 3B is equal to :

- (1) $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ (2) $\begin{pmatrix} -5 & -10 \\ 0 & 3 \end{pmatrix}$ (3) $B = \begin{pmatrix} 5 & 10 \\ 0 & -3 \end{pmatrix}$ (4) $A = \begin{pmatrix} 7 & 14 \\ 0 & 7 \end{pmatrix}$
- 49. If $A = \begin{pmatrix} \cos x \sin x \\ -\sin x \cos x \end{pmatrix}$, then A^{-1} is equal to:

	_		_		_	_	_	
(1)	cos x	sin	X	(2)	$\int \cos x - \sin x$	(3)	cos x sin x	(4) none of these
	sin x	cos	X]	sin x cos x	. J	-sin x cos x	

50. A card is drawn at random from a pack of playing cards. The probability that it is red or an ace, is:

- (1) <u>1</u> 13
- (2) $\frac{1}{52}$ (3) $\frac{17}{52}$

51. If the sum of two unit vector is also a unit vector then the magnitude of their difference will be:

- (1) 1
- (2) $\sqrt{3}$
- (3) $\frac{1}{\sqrt{3}}$ (4) $\sqrt{2}$

52. The unit vector perpendicular to the vectors $6\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $3\mathbf{i} - 6\mathbf{j} - 2\mathbf{k}$ will be:

- (1) 2i 3j 6k
- (2) 2i 3j + 6k (3) 2i + 3j = 6k (4) 2i + 3j + 6k 7

53. The area of the region bounded by the curves $y^2 = 4ax$, x = 0 and x = a is

- (1) $4\pi a^2$
- (2) $3\pi a^2$
- (3) $2\pi a^2$ (4) πa^2

54. The area of the region bounded by the curves $y^2 = 4ax$, x = 0 and x = a is:

- (1) $\frac{5}{3}$ a^2

- (2) $\frac{2}{3}$ a^2 (3) $\frac{8}{3}$ a^2 (4) $\frac{4}{3}$ a^2

55. $\cos^3 x \, dx$ is equal to

- $(1) \quad \underline{\sin 3x} + 3\sin x + C$
- $(2) \quad \frac{\sin 3 x}{3} + \frac{\sin x}{2} + C$
- (3) $\sin 3 x + C$
- (4) $\frac{\sin 3x}{12} + \frac{3}{4} \sin x + C$

56. If x = a (t+sin t) and $y = a(1 - \cos t)$ then dy is equal to:

- (1) tan t
- (2) tan 2t
- (3) $\cot(t/2)$
- (4) $\tan(t/2)$

57. If $x = t^2$ and y = 2t, then the normal at t = 1 is:

(1)
$$x + y - 3 = 0$$

(1)
$$x + y - 3 = 0$$
 (2) $x + y - 1 = 0$ (3) $x + y + 1 = 0$ (4) $x + y + 3 = 0$

(3)
$$x + v + 1 = 0$$

(4)
$$x + y + 3 = 0$$

58. $f(x) = 2x^3 - 9x^2 + 12x + 29$ is a monotonic decreasing function when:

(1)
$$1 < x < 2$$
 (2) $x > 1$

(3)
$$x > 2$$
 (4) $x < 2$

59. The height of the cylinder of maximum volume that can be inscribed in a sphere of radius r is:

$$(1) \ 2\sqrt{3r}$$

$$(2) \frac{2r}{\sqrt{3}}$$

$$(2) \underline{2r} \qquad (3) \quad r\sqrt{3} \qquad (4) \underline{r} \qquad \sqrt{3}$$

$$(4)$$
 r

60. sec x dx is equal to:

- (1) $\log \sin x + C$
- (2) $\log \tan (x/2) + C$
- $(3) \log(\sec x \tan x) + C$

(4)
$$\log \tan \left(\frac{\pi}{2} + \frac{\pi}{4} + C\right)$$

61. The differential coefficient of $\sin -1$ $\left(\frac{1-x^2}{1+x^2}\right)$ w.r.t. x is :

(1) -
$$\frac{2}{1+x^2}$$
 (2) $\frac{2}{1+x^2}$

(1) -
$$\frac{2}{1+x^2}$$
 (2) $\frac{2}{1+x^2}$ (3) $\frac{1}{1+x^2}$ (4) none of these

$$(1) \quad \frac{1}{x\sqrt{x-1}}$$

$$(2) \quad \frac{1}{x \sqrt{x^2 - 1}}$$

62. d (sec⁻¹ x) is equal to:
(1)
$$\frac{1}{x\sqrt{x-1}}$$
 (2) $\frac{1}{x\sqrt{x^2-1}}$ (3) $\frac{1}{x\sqrt{1+x^2}}$ (4) $\frac{1}{x\sqrt{1-x^2}}$

$$(4) \frac{1}{x\sqrt{1-x^2}}$$

63. The differential coefficient of tan-1 $\underbrace{1-x^2}_{1+x^2}$ w.r.t. is :

- $(1)\frac{1}{2}$
- (2) 1
- $(3) \frac{1}{2}$ (4) none of these

64. $\lim \tan 2x - x$ is equal to : $x \rightarrow 0$ 3 $x - \sin x$

- (1) 0
- (2) 1
- (3) $\underline{1}$ (4) $\underline{1}$

65. The differential coefficient of $\sin^{-1} x$ w.r.t. $\cos^{-1} \sqrt{\sqrt{1-x^2}}$ is :

- (1) $\frac{1}{\sqrt{1+x^2}}$ (2) $\frac{1}{\sqrt{1-x^2}}$ (3) $\frac{2}{\sqrt{1-x^3}}$
- (4) none of these

66. The sum of 20 terms of the series 1 + 4 + 7 + 10 + ... is:

(1) 10 th	(2) 8 th	2 (3) 9 th	(4) 12 th		
68. If ⁿ P ₄ : ^r	$^{1}P_{5} = 1:2$, then	n is equal to	:		
(1) 2	(2) 4	(3) 5	(4) 6		
·	$\frac{1}{1} \frac{\sin 3\theta}{\sin \theta} \frac{\sin 3\theta}{\cos \theta}$		$\frac{)\theta^4}{6}$ is equal to:		
(1) cos 270 - (2) cos 330 - (3) cos 330 + (4) cos 270 +	i sin 33θ i sin 33θ				
70. The value	e of cos h ⁻¹ x is				
$(1) \log (x - \sqrt{x})$	$\widehat{x^2-1}$	$(2) \log (x + 1)$	$\sqrt{x^2-1}$)		
$(3) \log (x + \sqrt{x})$	(x^2+1)	$(4) \log (x - v)$	(x^2+1)		
1 and passes	through the p	oint where th	e given st-line cuts	cular to the line \underline{x} - \underline{y} the x-axis: a (4) bx - ay = ab	_= b
72. If the line to:	es x + y = 1, 2x	-y = 0 and $x = 0$	$+2y + \lambda\lambda = 0$ are con	ncurrent then $\lambda\lambda$ is equ	ıal
	(2) $\frac{2}{3}$	(3) <u>-5</u> <u>3</u>	$(4) \frac{5}{3}$		
vertex will b	e :			oid is (4, 6) then its the	eird
(1) (6,4)			(4) none o		
74. The radio	cai axis of the C	arcies 2x ² + 2	$y^2 - 7x = 0$ and $x^2 +$	$y^{-} - 4y - 7 = 0 1s$:	

(3) 590 (4) none of these

76. The vertex of the parabola $x^2 - y + 6x + 10 = 0$ is :

(1) x + y - 1 = 0 (2) x + y + 1 = 0 (3) y = 2 (4) x = 2

(2) 7x - 8y + 14 = 0 (4) 7x + 8y + 14 = 0

75. The equation of the polar line w.r.t. the pole (1, -2) to the arile $x^2 + y^2 - 2x - 6y +$

(1) 8x - 7y + 14 = 0

(3) 7x - 8y - 14 = 0

5 = 0 is:

(1)290

(2)490

67. Which terms of the series 1, -1, 1- 2, Is -128:

77. If $f(\theta)\theta = \tan \theta\theta$, then the value of $f(\theta)\theta - f(\phi)\phi$ is: $1 + f(\theta)\theta f(\phi)\phi$

 $(1) \theta - \phi$ $(2) f(\theta/\phi)$ $(3) f(\theta-\phi)$ $(4) f(\theta+\phi)$

78. $\lim_{x \to 0} \frac{x^2 - 3x + 2}{2x^2 + x - 3}$ is equal to:

(1) 0

(2) 2

 $(3) \frac{1}{2}$

 $(4) \infty$

79. $\lim_{x\to 0}$ $\sqrt{1-x}$ is equal to :

(1) - 1

(2) 1

(3) 2

 $(4) \frac{1}{2}$

80. The equation of the normal at a point of intersection of line 2x + y = 3 and curve $yx^2 + y^2 = 5$ is:

(1) 2x + 2y + 3 = 0 (2) x - y + 4 = 0 (3) x - 4y + 3 = 0 (4) x + y + 2 = 0

81. If $f(x) = \frac{x-3}{x+1}$, then $f[f\{f(x)\}]$ is equal to:

(1) $\frac{-1}{x}$ (2) - x (3) $\frac{1}{x}$

(4) x

82. The modules of 1+i is: 1-i

(1) $\sqrt{2}$ (2) 2 (3) $\frac{1}{2}$

(4) 1

83. The value of $4\sqrt{-3}$ - $\sqrt{-3}$ is

(1) $\frac{3\sqrt{3}}{7}$ (2) $\frac{3\sqrt{3}}{7}$ (3) $\frac{3\sqrt{3}}{7}$ i

(4) none of these

84. $\frac{1-2i}{2+i}$ + $\frac{4-i}{2+i}$ is equal to :3

(1) $\frac{10}{13} + \frac{24}{13}$ i (2) $\frac{10}{13} - \frac{24}{13}$ i (3) $\frac{24}{13} - \frac{10}{13}$ i (4) $\frac{24}{13} + \frac{10}{13}$ i $\frac{10}{13} + \frac{10}{13} + \frac{10}{13} + \frac{10}{13}$ i $\frac{10}{13} + \frac{10}{13} +$

85. If z = 5 + 3i then the value of |z - 2| will be :

(1) $\sqrt{13}$ (2) $2\sqrt{3}$

(3) $3\sqrt{2}$

86. The imaginary part of $\frac{1-i}{1+i}$ is:								
(1) - i	(2) - 1	(3) 1	(4) i					
		-1 , then z_1/z_2 $\frac{1}{2} + \frac{3}{2}$	is equal to: (3) $\frac{1}{2} - \frac{3}{2}i$ (4)	4) none of these				
88. The ampl	litude of $1 - \sqrt{\frac{1}{2}}$	$\sqrt{3}$ i is:						
$(1) \frac{-2\pi}{3}$	(2) $\frac{-\pi}{3}$	$(3) \underline{2\pi}$	$(4) \underline{\pi} 3$					
89. If α and β 0 will be:	Bare the roots	of the equation	$\mathbf{n} \ \mathbf{x}^2 + \mathbf{p} \mathbf{x} + \mathbf{q} = 0$	then the value of $\alpha + \beta =$				
	(2) - ($(p^3 + 3pq)$	$(3) p^3 + 3pq$	$(4) - p^3 + 3pq$				
			n whose roots are	αα ββ				
$(1) x^2 + x + 1$	$= 0$ (2) x^2	-x+1=0	$(3) x^2 - x = 1$	$(4) x^2 - x = 1$				
	3 ± i	then z is e						
$(1) - \frac{1}{2}$	$(2)\frac{1}{2}$	(3) 1	(4) – 1					
		t to the parabo (3) 1/t		t (at ² , 2at) will be :				
		jλ are the para (3) – 4	dlel vectors then 2 (4) 4	λλis equal to :				
94. A stone is thrown in silent water, the ripples are moving at the rate of 6 cm0/sec. then the rate of change of the are when the radius of the unite is 10 cm. at the time when radius of the circle is 10 cm, then the rate at which its area increases is : (1) $120 \text{ m}^2/\text{sec}$. (2) $\pi \text{ cm}^2/\text{sec}$. (3) $120 \text{ cm}^2/\text{sec}$. (4) $120 \pi \text{ cm}^2/\text{sec}$.								
95. A dice is (1) 1/6	thrown then the (2) 1/3	ne probability (3) 2/3		he number is 1 or 6 is :				
96. The value (1) 0	of cos h (πiπ) (2) 1		(4) none of these	2				
97. For Z₁, Z (1) $2(Z_1 ^2 + Z_1 ^2)$	$\mathbf{z} \in \mathbb{C}$ the value $ \mathbf{Z}_2 ^2$ (2) $ \mathbf{Z}_2 ^2$	e of $ \mathbf{Z}_1 + \mathbf{Z}_2 ^2$ $ z ^2 + \mathbf{Z}_2 ^2$ (3) $ z ^2$	+ $ \mathbf{Z_1} - \mathbf{Z_2} ^2$ will $ \mathbf{Z_1} ^2 + \mathbf{Z_2} ^2 - \mathbf{Z_1} - \mathbf{Z_1} ^2$	be: $Z_2 (4) 2(Z_1 ^2 - Z_2 ^2)$				

98. The real part of $\cos h$ ($\alpha \alpha$ ibbis:

- (1) $\sin h\alpha \cos \beta$
- (2) $\cos h\alpha \cos \beta$
- (3) $-\cos h\alpha \cos \beta$
- (4) $\sin \alpha \cos \beta$

99. If three vertices of a square are 3i, 1 + i and 3 + 2i then its fourth vertex will be:

- (1)(3,3)
- (2)(2,4)
- (3) aigin
- $(4)\left(\frac{1}{2}, \frac{1}{2}\right)$

100. $\lim_{x \to \mathbf{b}} \frac{|x-\mathbf{b}|}{x-\mathbf{b}}$ is equal to :

- (1) 1
- (2) b
- (3) 0
- (4) does not exist

ANSWER SHEET

1.(1)	2.(2)	3.(2)	4.(2)	5.(3)	6.(3)	7.(4)	8.(3)	9.(4)	10.(4)	11.(3)
12.(3)	13.(1)	14.(3)	15.(2)	16.(3)	17.(3)	18.(1)	19.(4)	20.(3)	21.(3)	22.(4)
23.(2)	24.(3)	25.(2)	26.(3)	27.(2)	28.(4)	29.(3)	30.(2)	31.(3)	32.(3)	33.(4)
34.(4)	35.(2)	36.(2)	37.(3)	38.(2)	39.(2)	40.(3)	41.(4)	42.(2)	43.(1)	44.(3)
45.(2)	46.(2)	47.(2)	48.(3)	49.(2)	50.(4)	51.(2)	52.(3)	53.(4)	54.(3)	55.(4)
56.(4)	57.(1)	58.(1)	59.(2)	60.(3)	61.(1)	62.(3)	63.(1)	64.(4)	65.(3)	66.(3)
67.(1)	68.(4)	69.(3)	70.(2)	71.(1)	72.(3)	73.(3)	74.(3)	75.(3)	76.(4)	77.(3)
78.(3)	79.(2)	80.(3)	81.(4)	82.(4)	83.(3)	84.(2)	85.(3)	86.(2)	87.(3)	88.(2)
89.(4)	90.(1)	91.(3)	92.(3)	93.(3)	94.(4)	95.(2)	96.(3)	97.(1)	98.(2)	99.(2)
100(4)										