Memory-Based GATE 2024 XE Question Paper and

Answer Key

1. Velocity profile of a fluid flow is given as $u=a /(b-x)^{\wedge} 2$. If $a=8 m^{\wedge} 3 / s, b=4, x=2 m$, what is the magnitude of acceleration?

Ans: $\mathrm{a}=4$
2. What is the correct relation between Darcy's friction factor and fanning friction factor?

Ans: $f=4 \mathbf{f f}^{\prime}$

3. The velocity potential function of a flow field is given by $\Phi=\left(a x y+b x^{\wedge} 2-b y^{\wedge} 2\right)$ where constants $a=2 / s$ and $b=0.5 / \mathrm{s}$. What will be the magnitude of velocity at the point $x=2$, $y=1 m$?

Ans: v=5
4. What is the hydrodynamic diameter of a circular pipe of radius R ?

Ans: 4A/P
5. What is the vorticity component in the $y-z$ plane?

Ans: 2Wx
6. What is the dimension of pressure?

Ans: (ML^-1T^-2)
7. In a simple Couette Flow, the lower plate is stationary and the upper plate is moving with a speed $1 \mathrm{~m} / \mathrm{s}$. The distance between the plates is 1 cm . The viscosity is $10^{\wedge}-3 \mathrm{~Pa}-\mathrm{s}$.

Find the shear stress required?
Ans: 0.1 Pa
8. In a drag force test of a $1 / 8$ model prototype, the actual velocity of the car is $16 \mathrm{~m} / \mathrm{s}$. The velocity of the model car is?

Ans: 128m/s
9. At certain places atmospheric pressure is 700 mm of Hg and the absolute pressure is 400 mm of Hg . What is the vacuum pressure \qquad mm of Hg ?

Ans: 300
10. Incompressible fluid flowing over a flat plate in x-direction. What is the pressure gradient along the flow direction?
(a) Positive
(b) Constant
(c) Negative
(d) None

Ans: Negative

11. An article is sold at 10% profit after that it is sold at 10% loss. Find the overall profit and loss
(a) Positive
(b) Constant
(c) Negative
(d) None

Ans: 1\% LOSS
12. P and Q are two matrices of the same order. $(P+2 Q)^{\wedge} 2=$
 ?
(a) $(P+2 Q)(2 Q+P)$
(b) $P^{\wedge} 2+4 Q^{\wedge} 2+4 P Q$
(c) $P^{\wedge} 2+4 Q^{\wedge} 2+2 P Q+2 P Q$
(d) $P(P+2 Q)$ $+Q(P+2 Q)$
Ans: (c) $P^{\wedge} 2+4 Q^{\wedge} 2+2 P Q+2 P Q$

