PAPER-8

COST ACCOUNTING

The figures in the margin on the right side indicate full marks. Where considered necessary, suitable assumptions may be made and clearly indicated in the answer.
Answer Question No. 1 and any five from Question No. 2, 3, 4, 5, 6, 7 and 8.

SECTION - A

(Compulsory)

1. (a)

(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)	(x)	(xi)	(xii)
c	d	d	c	a	c	d	a	c	a	c	c

(b)

(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)
True	False	False	True	False	True	False

(c)

(i)	(ii)	(iii)	(iv)	(v)	(vi)
pre-determined	document	excess (or additional or more or higher)	capacity	reconcile sales budget	

SECTION - B

(Answer any five questions)
2. (a)

High Low method	Units	Cost in ₹
Highest month	900	2,000
Lowest month	(400)	$(1,000)$
Net total	500	1000

The additional cost between the highest and lowest month

$$
\frac{₹ 1,000}{500}=₹ 2 \text { per unit }
$$

So, taking either higher or lower number
Higher $\rightarrow 900 \times ₹ 2=₹ 1,800$ So fixed cost $=₹ 200$
Lower $\rightarrow 400 \times ₹ 2=₹ 800$ So fixed cost $=₹ 200$
(b) (i) The Accounting standard 6 (CAS -6) deals with principles and methods of determining the Material Cost. Material for the purpose of this standard includes raw materials, process materials, and additives, manufactured / bought out components, sub-assemblies, accessories, semi-finished goods, consumable stores, spares and other indirect materials. This standard does not deal with Packing Materials as a separate standard is being issued on the subject. This standard deals with the principles and methods of classification, measurement and assignment of Material Cost, for determination of the cost of product or service, and the presentation and disclosure in cost statements.

- Objective - The objective of this standard is to bring uniformity and consistency in the principles and methods of determining the Material Cost with reasonable accuracy.
- Scope- This standard should be applied to cost statements which require classification, measurement, assignment, presentation and disclosure of Material Costs including those requiring attestation.
(ii) The Institute of Cost Accountants of India issued 24 CAS till to date (31/03/2023). Classification of cost is the arrangement of items of costs in logical groups having regard to their nature (subjective classification) or purpose (objective classification).
The Scheme of classification should be such, so that every item of cost can be classified. As per CAS-1 the following basis are normally followed:
a) Nature of expense;
b) Relation to object - traceability;
c) Functions / activities;
d) Behaviour - Fixed, Semi-variable or Variable;
e) Management decision making;
f) Production Process and
g) Time period
(iii) The cost statements shall disclose the following: -

1. The basis of assignment of overheads to the cost objects.
2. Overheads incurred in foreign exchange.
3. Overheads relating to resources received from or supplied to related parties.
4. Any Subsidy / Grant / Incentive or any amount of similar nature received / receivable reduced from overheads.
5. Credits / recoveries relating to overheads.
6. Any abnormal cost not forming part of the overheads.
7. Any unabsorbed overheads.

PAPER-8

COST ACCOUNTING
3. (a)
i. $\quad \mathrm{EOQ}=\sqrt{\frac{2 A O}{C}} \quad \mathrm{~A}=$ Annual requirement $=36,000$ units
$\mathrm{O}=$ Ordering Cost per order $=₹ 25$
C $=$ Carrying cost per unit per annum $=1 \times 20 \%=₹ 0.20$
$\mathrm{EOQ}=\sqrt{\frac{2 \times 36,000 \times 25}{0.20}}=3,000$ units

Comparative Cost Statement of Existing Purchase Policy with proposed EOQ Purchase Policy

	Existing Purchase Policy Ordering Quantity $=\frac{36,000}{6}=$ 6,000 units		$\begin{gathered} \text { Proposed EOQ Purchase Policy } \\ \text { Ordering Quantity = 3,000 } \\ \text { units } \end{gathered}$	
		₹		₹
Purchase Cost	$36,000 \times 1$	36,000	$36,000 \times 1$	36,000
Ordering Cost	6×25	150	12×25	300
Carrying Cost	$\frac{1}{2} \times 6,000 \times 1 \times 20 \%$	600	$\frac{1}{2} \times 3,000 \times 1 \times 20 \%$	300
Total Cost		36,750		36,600

Net Savings = ₹ 36,750-₹ 36,600 = ₹ 150
(ii) This is also in the form of incidental material residue coming out of certain types of manufacturing processes but it is usually in small amounts and has low measurable utility or market value, recoverable without further processing. Numerous examples of scrap may be given; scrap may arise in the form of turnings, borings, trimmings, fillings, shavings etc., from metals on which machine operations are carried out; saw dust and trimmings in the timber industry; dead heads and bottom ends in foundries; and cuttings, pieces, and split in leather industries. Scrap should always be physically available unlike waste which may or may not be present in the form of a residue.
Accounting treatment of scrap is as follows:

- \quad Sales credited to revenue

In this method, the scrap is not cost and its value does not, therefore, appear separately in the cost accounts. Only a quantitative record of the scrap returned to storeroom from the shops is maintained and the sale value realized
from time to time is credited to the profit and loss account as miscellaneous revenue.

- Credit to overhead

In this method and in the following method the scrap is assigned a cost. The cost is usually the sale value of the scrap less selling and distribution costs. If the scrap has no ready market but has only utility or use value, and is taken as a credit to manufacturing overhead. The effect of this credit is to reduce the overhead recovery rate. When predetermined overhead rates are in use, it is more expedient to credit an estimated allowance for the scrap instead of the amount of actual scrap.

- Credit to jobs

The scrap is assigned a cost and is traced to the job which yielded the scrap. This affords a reasonable amount of credit to the jobs and widely different.

- Transfer to other jobs

Scrap arising in one job may be issued for utilization in another job. Such transfers of scrap from one job to another should be affected through Material Transfer Notes. Alternatively, scrap may be returned to store room and subsequently issued to another job for utilisation. The latter method is more appropriate when some further processing is required on the scrap before it can be utilized for other jobs.
(b) (i) Labour turnover is the rate of change in the labour force of a concern during a specific period. In every organisation some employees leave every year while new employees are recruited in their place. This is a natural phenomenon in industrial sector and it gives rise to the problem of labour turnover. The rate at which the employees depart from the organisation is normally measured as the ratio of number of persons leaving in a period to the average number of employees on the pay roll. A controlled level of labour turnover is considered as desirable because it helps the firm to adjust the size of its labour force in response to needs such as for seasonal changes or changes in technology.

The rate of labour turnover is high if the number of employees leaving the organisation occurs frequently. This leads to-
(i) decrease in the productivity and efficiency in the concern,
(ii) destabilize normal flow of work,
(iii) increases the labour cost.

PAPER - 8

COST ACCOUNTING

Causes of Labour Turnover

The causes giving rise to high labour turnover may be broadly classified under the following heads:

- Personnel Causes: Workers may leave employment purely on personal grounds, e.g.,
a) Dislike for the job, locality or environments.
b) Domestic troubles and family responsibilities.
c) Change of line for betterment.
d) Retirement due to old age and ill health.
e) Death.

In all such cases, personal factors count the most and employer can practically do nothing to help the situation.

- Unavoidable Causes: In certain circumstances it becomes obligatory on the part of the management to ask some of the workers to leave. These circumstances are:
a) Retrenchment due to seasonal trade, shortage of any material and other resources, slack market for the product, etc.
b) Discharge on disciplinary grounds.
c) Discharge due to continued or long absence.
- Avoidable Causes: Under this head, may be grouped the causes which need the attention of the management most so that the turnover may be kept low by taking remedial measures. The main reasons for which workers leave are:
a) Unsuitability of job
b) Low pay and allowance
c) Unsatisfactory working conditions
d) Unhappy relations with co-workers and unsatisfactory behaviour of superior
e) Dispute between rival trade unions.
f) Lack of transport, accommodation, medical and other facto₹
g) Lack of amenities like recreational centres, schools, etc.

The above causes may also be classified in a different manner under three heads, viz., Financial Causes, Social and Economic Causes and Psychological Causes relating to human relationship.

Measurement of Labour Turnover

It is essential for any organisation to measure the Labour Turnover. This is necessary for having an idea about the turnover in the organisation and also to

PAPER-8

COST ACCOUNTING

compare the labour turnover of the previous period with the current one. The following methods are available for measurement of the labour turnover:

- Additions Method: Under this method, number of employees added during a particular period is taken into consideration for computing the Labour Turnover. The method of computing is as follows:

$$
\text { Labour Turnover }=\frac{\text { Number of Additions }}{\text { Average Number of Workers during the period }} \times 100
$$

- Separation Method: In this method, instead of taking the number of employees added, number of employees left during the period is taken into consideration. The method of computation is as follows:
Labour Turnover $=\frac{\text { Number of Separation }}{\text { Average Number of Workers during the period }} \times 100$
- Replacement Method: In this method neither the additions nor the separations are taken into consideration. The number of employees replaced is taken into consideration for computing the labour turnover.
Labour Turnover $=\frac{\text { Number of Replacements }}{\text { Average Number of Workers during the period }} \mathrm{X} 100$
- Flux Method: Under this method Labour Turnover is computed by taking into consideration the additions as well as separations. The turnover can also be computed by taking replacements and separations also. Computation is done as per the following methods:
Labour Turnover $=\frac{\frac{1}{2} \mathrm{x}(\text { Number of Additions }+ \text { Number of Separations) }}{\text { Average Number of workers during the period }} \mathrm{x} 100$
(ii) Let ' T ' be the time taken by the worker

Earnings under Rowan Plan $=\mathrm{T} \times \mathrm{R}+\frac{T S}{T A} \times T \times R$
$\mathrm{T}=$ Time Taken,
TA = Time Allotted or Allowed,
TS $=$ Time Saved $=$ TA - T,
$\mathrm{R}=$ Rate per hour
or, Earnings $\quad=T \times 1.25+\frac{40-T}{40} \times T \times 1.25$

$$
\begin{aligned}
& \text { or, } \quad=\frac{50 T+50 T-1.25 T^{2}}{40} \\
& \text { or, } \quad=\frac{100-1.25 T^{2}}{40} \\
& \text { Factory Cost }=\text { Material Cost }+ \text { Wages + Factory Overhead }
\end{aligned}
$$

$$
\text { or, } 161.875=100+\frac{100 T-1.25 T^{2}}{40}+0.5 \mathrm{~T}
$$

or, $6,475=4,000+100 \mathrm{~T}-1.25 \mathrm{~T}^{2}+20 \mathrm{~T}$

PAPER-8

COST ACCOUNTING

or, $1.25 T^{2}-120 \mathrm{~T}+2,475=0$
Dividing the equation by 1.25
or, $T^{2}-96 \mathrm{~T}+1,980=0$
or, $T^{2}-66 \mathrm{~T}-30 \mathrm{~T}+1,980=0$
or, $\mathrm{T}(\mathrm{T}-66)-30(\mathrm{~T}-66)=0$
or, $(\mathrm{T}-66)(\mathrm{T}-30)=0$
or, $\mathrm{T} \neq 66$ [Since, Time taken should not be more than Time Allotted]
So, $\mathrm{T}=30$. Hence, Time taken by the worker $=30$ hours
4. (a) Since, different materials are used for producing products, it is advisable, preferable and appropriate to use the method of absorbing overheads based on percentage of material cost instead of percentage on prime cost which is shown as follows:

Particulars	$\begin{gathered} \text { Product } \mathrm{A} \\ ₹ \end{gathered}$	$\begin{gathered} \text { Product B } \\ ₹ \end{gathered}$	$\begin{gathered} \text { Product C } \\ ₹ \end{gathered}$
Materials	1,600	2,000	800
Labour	1,200	1,000	400
Prime Cost	2,800	3,000	1,200
Actual Overhead Incurred	800	650	350
	$\begin{gathered} =\frac{R s .800}{R s .1,600} \times 100 \\ =\mathbf{5 0 \%} \end{gathered}$	$=\frac{\text { Rs. } 650}{\text { Rs. } 2,000} \times 100$	$\begin{gathered} =\frac{R s .350}{R s .800} \times 100 \\ =\mathbf{4 3 . 7 5 \%} \end{gathered}$

Overhead Recovery Rate is calculated based on historical data. So, actual overhead is used to calculate the future recovery rate.
(b)

Journal

Particulars	Dr.	Cr.	
	Amount (₹)	Amount (₹)	
Material Control A/c To Cash A/c	Dr	40,000	40,000
Work in Progress Control A/c To Material Control A/c	Dr	30,000	30,000
Wages Control A/c To Cash A/c	Dr	24,000	24,000
Factory Overhead Control A/c (24,000 x 30\%) Dr To Wages Control A/c	7,200	7,200	
Work in Progress Control A/c (24,000 x 70\%) To Wages Control A/c	Dr	16,800	16,800

MODEL ANSWERS
TERM - JUNE 2023
PAPER-8
COST ACCOUNTING

Factory Overhead Control A/c To Cash	19,000	19,000
Work in Progress Control A/c Dr To Factory Overhead Control A/c	18,000	18,000
Selling and Distribution Overhead Control A/c Dr To Cash A/c	4,000	4,000
Cost of Sales A/c Dr To Selling and Distribution Overhead A/c	4,000	4,000
Finished Goods Control A/c Dr To Work in Progress Control A/c	40,000	40,000
Debtors A/c Dr To Profit and Loss A/c	58,000	58,000
Cash A/c Dr To Debtors A/c	13,800	13,800
Creditors A/c Dr To Cash A/c	12,000	12,000

5. (a)

Cost Sheet Component 'The Blank'

Particulars	Batch Size					
	$\mathbf{1 0}$ Components		100 Components		$\mathbf{1 , 0 0 0}$ Components	
	p.u.	Total	p.u.	Total	p.u.	Total
	$₹$.	$₹$.	$₹$.	$₹$.	$₹$.	$₹$.
A. Production Cost						
Material Cost	0.06	0.60	0.06	6.00	0.06	60.00
Machine Operators Wages (WN 1)	0.12	1.20	0.12	12.00	0.12	120.00
Overheads (WN 2)	0.25	2.50	0.25	25.00	0.25	250.00
Total Production Cost	$\mathbf{0 . 4 3}$	$\mathbf{4 . 3 0}$	$\mathbf{0 . 4 3}$	$\mathbf{4 3 . 0 0}$	$\mathbf{0 . 4 3}$	$\mathbf{4 3 0 . 0 0}$
B. Setting up Cost						
Machine Operator Wages (WN 3)	0.168	1.68	0.0168	1.68	0.00168	1.68
Overheads (WN 4)	0.350	3.50	0.035	3.50	0.0035	3.50
Total Setting up Cost	$\mathbf{0 . 5 1 8}$	$\mathbf{5 . 1 8}$	$\mathbf{0 . 0 5 1 8}$	$\mathbf{5 . 1 8}$	$\mathbf{0 . 0 0 5 1 8}$	$\mathbf{5 . 1 8}$
Total Cost	$\mathbf{0 . 9 4 8}$	$\mathbf{9 . 4 8}$	$\mathbf{0 . 4 8 1 8}$	$\mathbf{4 8 . 1 8}$	$\mathbf{0 . 4 3 5 1 8}$	$\mathbf{4 3 5 . 1 8}$

MODEL ANSWERS
TERM - JUNE 2023
PAPER-8
COST ACCOUNTING
Working Notes:

	10 Components	$\mathbf{1 0 0}$ Components	$\mathbf{1 , 0 0 0}$ Components
Time taken to produce the Components @ 10 minutes per component	100 Minutes or, $\frac{100}{60}$ hours	1,000 Minutes or, $\frac{1,000}{60}$ hours	10,000 Minutes or, $\frac{10,000}{60}$ hours
1. Machine Operators Wage @ ₹ 0.72 per hour	$\frac{100}{60} \times 0.72$ $=$ Rs. 1.20	$\frac{1,000}{60} \times 0.72$ $=$ Rs. 12	$\frac{10,000}{60} \times 0.72$ $=$ Rs. 120
2. Overheads @ ₹ 1.50 per hour	$\frac{100}{60} \times 1.50$ $=R s .2 .50$	$\frac{1,000}{60} \times 1.50$ $=$ Rs. 25	$\frac{10,000}{60} \times 1.50$ $=R s .250$

Setting up Cost

3. \quad Machine Operators Wages $=2$ hours 20 minutes $\times ₹ 0.72=2 \frac{1}{3} \times 0.72=R s .1 .68$
4. Overhead $\quad=2$ hours 20 minutes $\times ₹ 1.50=2 \frac{1}{3} \times 1.50=$ Rs. 3.50
(b)

Dr Contract Account			
Particulars	₹	Particulars	₹
To Materials A/c (Purchased) To Wages A/c To Outstanding Wages A/c To General Expenses A/c To Depreciation on Plant A/c	$\begin{array}{r} 1,00,000 \\ 45,000 \\ 5,000 \\ 10,000 \\ 5,000 \end{array}$	By Materials at Site c/d By Cost of Construction c/d	$\begin{array}{\|r\|} \hline 25,000 \\ 1,40,000 \end{array}$
	1,65,000		1,65,000
To Cost of Construction b/d To Notional Profit c/d	$\begin{array}{r} 1,40,000 \\ 80,000 \end{array}$	By Work in Progress A/c - Value of Work Certified - Escalation - Cost of Uncertified Work	
	2,20,000		2,20,000
To Profit \& Loss A/c To Work in Progress A/c - Provision for Contingencies	$\begin{aligned} & 19,512 \\ & 60,488 \end{aligned}$	By Notional Profit b/d	80,000
	80,000		80,000

PAPER-8

COST ACCOUNTING

Working Notes:

- Increase in Contract Price due to Escalation in the Prices of Materials and Labour Cost of Materials and Labour incurred $=1,00,000+45,000+5,000-25,000$

$$
=₹ 1,25,000
$$

Increase in prices of Materials and Labour by 25%
So, Cost of Materials and Labour before increase in Prices
$=1,25,000 \times \frac{100}{125}=₹ 1,00,000$
Increase in Contract Price (beyond 5\% increase)

$$
=\frac{25}{100} x\left(1,25,000-1,00,000 \times \frac{105}{100}\right)=\frac{25}{100} \times(1,25,000-1,05,000)=₹ 5,000
$$

- Amount to be transferred to Profit \& Loss A/c

$$
=\frac{1}{3} \times 80,000 \times \frac{1,50,000}{2,05,000}=₹ 19,512
$$

6. (a)

Statement of Equivalent Production

Inputs		Output		Equivalent Production Units							
		Material	Labour		Overhead						
Items	Units			Items	Units	\% Completion	Units	$\%$ Completion	Units	\% Completion	Units
Op. WIP	200	Op. WIP	200	-	-	60	120	60	120		
Units		Finished	900	100	900	100	900	100	900		
Introduced	1,050	Goods (Introduced									
		\& Completed) Cl. WIP	150	100	150	70	105	70	105		
	1,250		1,250		1,050		1,125		1,125		

Transfer to Next Process $=1,100$ units (given)
Work done on Op. WIP and Completed $=200$ units
Work done on units introduced and completed $(1,100-200)=900$ units
Statement of Cost per unit

Particulars	Amount (₹)	Equivalent Units	Cost per unit (₹)
Material	1,050	1,050	1
Labour	2,250	1,125	2
Production Overhead	1,125	1,125	1

PAPER-8

COST ACCOUNTING

Valuation of Closing Stock

Particulars	Units	Cost per unit (₹)	Total Cost (₹)
Material	150	1	150
Labour	105	2	210
Production Overhead	105	1	105
			465

Process Account

Particulars	Units	Rate	Amount $(₹)$	Particulars	Units	Rate	Amount $(₹)$
To Opening Stock A/c	200	4	800	By Closing Stock A/c	150	$\frac{465}{150}=3.10$	465
To Material A/c	1,050	1	1,050				
To Labour A/c			2,250	By Finished Stock A/c	1,100	$\frac{4,760}{1,100}=4.33$	4,760
To Production			1,125				
Overhead A/c					1,250		5,225
	1,250		5,225				

(b) Total Distance travelled by 10 bus per month
$=($ Distance of route one way $\times 2) \times$ Number of trips per day \times Number of days operating in the month \times Number of buses
$=20 \times 2 \times 3 \times 25 \times 10=30,000 \mathrm{~km}$ per month

Computation of Passenger-Km per month

$=$ Total Distance Travelled by 10 bus per month x Number of passenger $=30,000 \times 40=12,00,000$ passenger -km per month

Computation of Total Cost for 10 bus per month
(Excluding Commission of Driver and Conductor)

Particulars	₹ Fixed or Standing Charges (Cost per month)	
Depreciation		$8,333.33$
Insurance	$\frac{\text { ₹ } 50,000 \times 10 \times 3 \%}{12}$	$1,250.00$
Tax	$\frac{₹ 1,000 \times 10}{12}$	833.33
Garage Charges		$1,000.00$
Salary of Drivers	₹ 150×10	$1,500.00$

PAPER-8

COST ACCOUNTING

Salary of Conductors	$₹ 100 \times 10$	$1,000.00$
Cost of Stationery		500.00
Salary of Manager		$2,000.00$
Salary of Accountant	$\frac{₹}{1,000 \times 10}$	
Maintenance Charges		$1,500.00$
Repairs	$\frac{30,000 \mathrm{~km}}{100 \mathrm{~km}} x ₹ 25$	833.34
Running Charges		7,500
Petrol and Oil		$26,250.00$

Let the taking be ₹ X
Total Cost (Excluding Commission) + Commission + Profit $=$ Takings
or, $26,250+\frac{10}{100} X+\frac{15}{100} X=X$
or , $\frac{75}{100} X=26,250$
or, $X=35,000$
\therefore Takings $=$ ₹ 35, 000
Profit $=15 \% \times 35,000=₹ 5,250$
Commission of Driver and Conductor $=10 \% x 35,000=₹ 3,500$

$$
\begin{gathered}
\therefore \text { Fare per passenger }-k m=\frac{₹ .35,000}{1,20,000 \text { passenger }-k m}=₹ 0.0292 \\
\approx ₹ 0.03
\end{gathered}
$$

7. (a) Fixed production costs absorbed

Particulars	₹
Budgeted fixed production costs	$1,60,000$
Budgeted output (normal level of activity 800 units)	
Therefore, the absorption rate : 1,60,000/800 = ₹200 per unit	
During the first quarter, the fixed production cost absorbed by Boost Would be (220 units \times ₹ 200)	44,000

Under / over recovery of overheads during the period

Particulars	₹
Actual fixed production overhead (1/4 of ₹1,60,000)	40,000
Absorbed fixed production overhead	44,000
Over-recovery of overheads	4,000

Particulars	₹	₹
Sales revenue (160 units \times ₹2,000) : (A)		$3,20,000$
Less : Production costs:		
- Variable cost (220 units \times ₹ 800)	$1,76,000$	
- Fixed overheads absorbed (220units \times ₹ 200)	44,000	$2,20,000$

Profit for the Quarter (Absorption Costing)

Particulars	₹	₹
Add :Opening Stock		-----
Less: Closing Stock (₹ 2,20,000/220 units $\times 60$ units)		$(60,000)$
Cost of Goods sold		$1,60,000$
Less: Adjustment forever-absorption of fixed production overheads		$(4,000)$
Less: Selling \& Distribution Overheads:		
-Variable (160 units ₹ 400)	64,000	
- Fixed (1/4 $4^{\text {th }}$ of ₹ 2,40,000)	60,000	$1,24,000$
Cost of Sales (B)		$2,80,000$
Profit $\{(\mathrm{A})-(\mathrm{B})\}$		40,000

Profit for the Quarter (Marginal Costing)

Particulars	₹	₹
Sales revenue (160 units \times ₹ 2,000$):(\mathrm{A})$		$3,20,000$
Less: Production costs: -Variable cost $(220$ units \times ₹ 800$)$		$1,76,000$
Add: Opening Stock Less: Closing Stock (₹ $1,76,000 / 220$ units $\times 60$ units)		----
Variable cost of goods sold		$1,28,000)$
Add: Selling \& Distribution Overheads: - Variable $(160$ units \times ₹ 400)		64,000
Total Variable Cost (B)	$(40,000)$	$1,92,000$
Contribution $\{(\mathrm{C})=(\mathrm{A})-(\mathrm{B})\}$	$(60,000)$	$(1,00,000)$
Less: Fixed Costs: - Production cost - Selling \& distribution cost		28,000
Profit		

(b) a. Applying limiting factor analysis to make or buy.

Statement of profitability on which the above decision is to be taken

	Component A	Component B	Component C
Variable cost of production	3	4	6
Outside purchase price	2	6	12
Excess (variable cost of production minus buy price)	1	-2	-6

Component A should be bought out regardless of any limiting factor since variable cost of production is higher than the outside purchase price.
b. If machine hours are limited to 4,000 hours (Component A is to be bought and thus the in house production of component A is not considered).

	Component B	Component C
Excess cost	2	6
Machine hours per unit	0.5	2
Excess cost per machine hour	$₹ 4$	$₹ 3$

Component C has the lowest excess cost per limiting factor so it should be bought out.

Check

	Component B	Component C
Units production in 4ooo machine hours	8000 units	2000 units
Production costs	$₹ 32,000$	$₹ 14,000$
Purchase costs	$₹ 48,000$	$₹ 26,000$
Excess cost of purchase	$₹ 16,000$	$₹ 12,000$

c. If labour hours are limited to 4,000 hours Component A is to be bought and thus the in house production of component A is not considered).

	Component B	Component C
Excess cost	2	6
Labour hours	3	4
Excess cost per labour hour	Rs 0.66	Rs 1.50

Therefore, component B has the lowest excess cost per limiting factor and should be bought out

COST ACCOUNTING

Check

	Component B	Component C
Units production in 4 labour hours	1333 units	1000 units
Production costs	$₹ 5332$	$₹ 6000$
Purchase costs	$₹ 7998$	$₹ 12000$
Excess cost of purchase	$₹ 2666$	$₹ 6000$

8. (a) $\mathrm{SQ}=$ Standard Quantity for Actual Output

Material $A=\frac{40}{90} x 4,18,500=1,86,000 \mathrm{~kg}$
Material $B=\frac{10}{90} x 4,18,500=46,500 \mathrm{~kg}$
Material $\mathrm{C}=\frac{50}{90} x 4,18,500=2,32,500 \mathrm{~kg}$
SP = Standard Price per unit
Material A = ₹ 76 Material B = ₹ $50 \quad$ Material C = ₹ 20
$\mathrm{AQ}=$ Actual Quantity used
Material $A=1,95,000 \mathrm{~kg} \quad$ Material $B=42,500 \mathrm{~kg} \quad$ Material $\mathrm{C}=2,25,000 \mathrm{~kg}$
$\mathrm{AP}=$ Actual Price per unit
Material $\mathrm{A}=₹ 80$ Material $\mathrm{B}=₹ 52$ Material C = ₹ 21
RSQ $=$ Revised Standard Quantity for Actual Input
Material $\mathrm{A}=\frac{40}{100} x(1,95,000+42,500+2,25,000)=\frac{40}{100} x 4,62,500=1,85,000 \mathrm{~kg}$
Material $B=\frac{10}{100} x 4,62,500=46,250 \mathrm{~kg}$
Material $\mathrm{C}=\frac{50}{100} \times 4,18,500=2,31,250 \mathrm{~kg}$
i. Material Cost Variance $=\mathrm{SQ}$ x SP $-\mathrm{AQ} \times \mathrm{AP}$

Material A $=1,86,000 \times ₹ 76-1,95,000 \times ₹ 80=₹ 14,64,000(\mathrm{~A})$
Material B $=46,500 \times ₹ 50-42,500 \mathrm{x} ₹ 52=$ ₹ $1,15,000(\mathrm{~F})$
Material C $=2,32,500 \mathrm{x} ₹ 20-2,25,000 \mathrm{x} ₹ 21 \quad=$ ₹ 75,000 (A)
$=\boldsymbol{₹} \mathbf{1 4 , 2 4 , 0 0 0 (A)}$
ii. \quad Material Price Variance $=(S P-A P) \times A Q$

Material $A=₹(76-80) \times 1,95,000=₹ 7,80,000(\mathrm{~A})$
Material $B=₹(50-52) \times 42,500 \quad=₹ 85,000(A)$
Material C $=₹(20-21) \times 2,25,000 \quad=₹ 2,25,000(\mathrm{~A})$
$=₹ \mathbf{1 0 , 9 0 , 0 0 0 (A)}$

COST ACCOUNTING

iii. \quad Material Usage Variance $=(S Q-A Q) \times S P$

Material $A=(1,86,000-1,95,000) x$ ₹ $76=₹ 6,84,000(A)$
Material B $=(46,500-42,500) x ₹ 50=₹ 2,00,000(\mathrm{~F})$
Material C $=(2,32,500-2,25,000) x ₹ 20=₹ 1,50,000(\mathrm{~F})$

$$
=₹ \mathbf{3 , 3 4 , 0 0 0}(\mathbf{A})
$$

iv. \quad Material Mix Variance $=(R S Q-A Q) x$ SP

Material $\mathrm{A}=(1,85,000-1,95,000) \mathrm{x} ₹ 76=₹ 7,60,000(\mathrm{~A})$
Material B $=(46,250-42,500) x$ ₹ $50 \quad=₹ 1,87,500(\mathrm{~F})$
Material C $=(2,31,250-2,25,000) x$ ₹ $20=₹ 1,25,000(\mathrm{~F})$
$=₹ \mathbf{4 , 4 7 , 5 0 0}(\mathrm{~A})$
v. Material Yield Variance $=(S Q-R S Q) x$ SP

Material A $=(1,86,000-1,85,000) \times ₹ 76=₹ 76,000(F)$
Material B $=(46,500-46,250) x$ ₹ $50 \quad=₹ 12,500(\mathrm{~F})$
Material C $=(2,32,500-2,31,250) x ₹ 20=₹ 25,000(F)$
= ₹ 1,13,500 (F)
(b)

KAEHLER CO.LTD

Production Budget for the Quarter ended March 2022 and for the month April, 2022
(Figures in Units)

Particulars	January	February	March	April
Budgeted Sales	10,800	15,600	12,200	10,400
Add: Closing Inventory	$\underline{3,900}$	$\underline{3,050}$	$\underline{2,600}$	$\underline{2,450}$
	14,700	18,650	14,800	12,850
Less: Opening Inventory	$\underline{2,700}$	$\underline{3,900}$	$\underline{3,050}$	$\underline{2,600}$
Required Monthly Production	$\underline{12,000}$	$\underline{14,750}$	$\underline{11,750}$	$\underline{10,250}$

KAEHLER CO.LTD.
Direct Material Usage and Purchase Budget
for the Quarter ended March 2022
Material A

Particulars	January	February	March
Production Requirement - 4 units of Material A			
for each unit of finished Product			
Add: Closing Inventory	48,000	59,000	47,000
	$\underline{29,500}$	$\underline{23,500}$	$\underline{20,500}$
Less : Opening Inventory	$\underline{77,500}$	82,500	67,500
Budgeted Purchase	$\underline{24,000}$	$\underline{29,500}$	$\underline{23,500}$
	$\underline{53,500}$	$\underline{53,000}$	$\underline{44,000}$

Material B

Particulars	January	February	March
Production Requirement - 5 units of Material B for			
each unit of finished Product			
Add: Closing Inventory	60,000	73,750	58,750
	$\underline{36,875}$	$\underline{29,375}$	$\underline{25,625}$
Less : Opening Inventory	96,875	$1,03,125$	67,500
Budgeted Purchase	$\underline{30,000}$	$\underline{36,785}$	$\underline{29,375}$
	$\underline{66,875}$	$\underline{66,250}$	$\underline{55,000}$

