Chapter 13. A.C CIRCUITS

MCQ'S (1 Mark Each)

- 1) An electric current in an LC circuit at resonance is called
 - a) The wattless current
 - b) The displacement current.
 - c) The idle current
 - d) The apparent current

Ans: a) The wattless current

- 2) In a series LCR circuit at resonance, the applied emf and current are
 - a) Out of phase
 - b) Differ in phase by $\pi/4$ radian.
 - c) Differ in phase by $\pi/2$ radian.
 - d) In phase

Ans: d) In phase

- 3) A series LCR resonant circuit is used as
 - a) A potential divider circuit.
 - b) A radio wave transmitter
 - c) A source of displacement current
 - d) A tunning circuit in a television receiver set.

Ans: d) A tunning circuit in a television receiver set.

- 4) If AC voltage is applied to pure capacitor, then voltage across the capacitor
 - a) Leads the current by phase angle π rad.
 - b) Leads the current by phase $\pi/2$ rad.
 - c) Lags the current by phase angle π rad.
 - d) Lags the current by phase angle $\pi/2$ rad.

Ans: d) Lags the current by phase angle $\pi/2$ rad.

- 5) A parallel LC resonant circuit is used as
- a) a tunning circuit in a television receiver set.
- b) a transformer
- c) a rectifier

d) a filter circuit.

Ans: d) a filter circuit

- 6) An electric bulb operates 10 V d.c. If this bulb is connected to an a.c. source and gives normal brightness, then peak value of the source is
 - a) 141.4 V
 - b) 14.14 V
 - c) 1.414 V
 - d) 0.1414 V

Ans: b) 14.14 V

- 7) A coil of resistance 300Ω and inductance 1.0 H is connected across an alternating voltage of frequency $\frac{300}{2\pi}$ Hz, therefore phase difference between the voltage and current in the circuit is
 - a) 180°
 - b) 90°
 - c) 45°
 - d) 0^{0}

Ans: c) 45°

Very Short Answer (VSA) (1 MARK Each)

- 1. Define capacitive reactance.
- 2. A charged 10 micro farad capacitor is connected to a 81 mH inductor. What is the angular frequency of free oscillations of the circuit? (Ans: 1.1 X 10³ rad per sec)
- 3. State the equation for impedance Z in an A.C. circuit.
- 4. In LCR series circuit, what is the condition for current resonance?
- 5. State any one characteristic of a parallel LC AC resonance circuit.
- 6. State the expression for an average power consumed over one cycle in the case of a series LCR AC circuit.
- 7. What is the relation between average current and rms current over half cycle.

(Ans:
$$\frac{2\sqrt{2}}{\pi}i_{rms}$$
)

8. If the peak value of an alternating emf is 15V, what is its mean value over half cycle?

(Ans: 9.548 V)

Short Answer I (SA1) (2 MARKS Each)

1. State the average or mean value of an alternating emf? Obtain the expression for it.

- 2. Explain term impedance and state the formula for it in the case of an LCR series circuit.
- 3. State any two characteristics of a series LCR AC resonance circuit.
- 4. In LCR series circuit, what is the (a) impedance and (b) reactance at current resonance?
- 5. A series LCR circuit has resistance 10Ω and reactance is $7\sqrt{2} \Omega$. What is the impedance of the circuit? (Ans: 14.07 Ω)
- 6. A coil of resistance 10 Ω and inductance 100mH and a capacitor of variable capacitance are connected across a 20V,50Hz A.C. supply. At what capacitance will resonance occur? (Ans: 318.5 μ F)
- 7. Find the current in a circuit consisting of a coil and a capacitor in series with an A.C source of 110V (r.m.s.), 60Hz. The inductance of a coil in 0.80 H and its resistance is 50Ω . The capacitance of a capacitor is 8μ F. (Ans: $I_{rms} = 1.88A$)
- A 0.5μF capacitor is discharged through a 10 millihenry inductor. Find the frequency of discharged. (Ans: 2.25×10³ Hz)
- 9. What is the capacitive reactance of a capacitor of $5\mu F$ at a frequency (1) 50 Hz and (2) 20KHZ? (Ans: 636.94Ω , 1.59Ω)

Short Answer II (SA2) (3 MARKS Each)

- 1) State the rms value of an alternating current? Write the relation between the rms value and peak value of an alternating current that varies with time.
- 2) Explain the term inductive reactance. State its unit and dimensions.
- 3) Explain the term capacitive reactance. State its unit and dimensions.
- 4) Define power and obtain an expression for the average power (cover one cycle) in an ac circuit containing a pure (an ideal) resistor.
- 5) Explain the terms sharpness of resonance and Q factor (quality factor).
- 6) What is the inductive reactance of a coil of inductance 10mH at a frequency (1) 50Hz (2) 1000Hz (3) 20kHz? (Ans: 3.14Ω , 62.8Ω , 1256Ω)
- 7) An alternating emf of 230V,50Hz is connected across a pure ohmic resistance of 50Ω . Find (1) the current (2) equations for instantaneous values of current and voltage. (Ans: $I_{rms} = 4.6A$, $E_{\theta} = 325.27$ V, $I_{\theta} = 6.5A$, $I = 6.5 \sin \sin 100\pi t$, $E = 325.27 \sin \sin 100\pi t$)
- 8) A radio can tune over the frequency range of a portion of MW broadcast-band(800kHz-1200kHz). If its LC circuit has an effective inductance of 200mH, what must be the range of its variable condenser? (Ans: 88pF to 198pF)

Long Answer (LA) (4 marks Each)

- 1) Obtain the expression for the applied emf and the effective resistance of the circuit when alternating emf is applied to an LR circuit.
- 2) Obtain the expression for the applied emf and the effective resistance of the circuit when alternating emf is applied to an CR circuit.
- 3) Obtain the expression for the resonant frequency of the LCR series circuit and explain electrical resonance in an LCR series circuit.