INDIAN MARITIME UNIVERSITY
 (A Central University, Government of India)

B.Tech. (Marine Engineering)
Semester - I - December 2015 End Semester Examinations
Mathematics - I
Subject Code: UG11T2102/ UG11T1102

Time: 3 Hours
Max Marks: 100
Date: 12.12.2015
Pass Marks: 50

Part - A

(10 X 3 Marks = 30 marks $)$

Compulsory Question

(a) If $f(x)=x^{3}+8 x^{2}+15 x-24$, calculate the value of $f(11 / 10)$ by the application of Taylor's series.
(b) Find the asymptote of the spiral $r=\frac{a}{\theta}$.
(c) If $u=\frac{x-y}{1+x y}, v=\tan ^{-1} x-\tan ^{-1} y$, then verify that they are functionally dependent and if so find it.
(d) Find the saddle point of the function $x^{3}+y^{3}-3 x-12 y+10$.
(e) Show that the value of $\Gamma(1 / 2)=1.772$
(f) Find the equation of the tangent plane to the surface $2 x^{2}+y^{2}+2 z-3$ at $(2,2,-3)$.
(g) The orthonormal vector triad (I, J, K) is self reciprocal where I, J and K are unit vectors along x, y and z axis respectively.
(h) If (a, b, c) and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ are reciprocal triads of vectors, show that $[a b c]\left[a^{\prime} b^{\prime} c^{\prime}\right]=1$.
(i) Using Cayley Hamilton theorem, find A^{8} if $\mathrm{A}=\left(\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right)$.
(j) Evaluate $\int_{C} \frac{z-3}{z^{2}+2 z+5} d z$, where c is the circle $|\mathrm{z}|=1$

Part - B
(5×14 Marks=70Marks)
Answer any five of the following
2. (a) Show that the n th derivative of $\frac{\log x}{x}$ is
$\frac{(-1)^{n} n!}{x^{n+1}}\left[\log x-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \frac{1}{n}\right]$
(b) If ρ_{1} and ρ_{2} be the radii of curvature at the ends of a focal chord of the parabola $y^{2}=4 a x$, then show that $\rho_{1}^{-2 / 3}+\rho_{2}^{-2 / 3}=(2 a)^{-2 / 3}$.

3(a) If $u=x \phi(y / x)+\psi(y / x)$, prove that

$$
\begin{equation*}
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0 . \tag{7}
\end{equation*}
$$

(b) Divide 24 into three parts such that the continued product of the first, square of the second and the cube of the third may be maximum.

4(a) Trace the curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$.
(b) Find the volume of the solid formed by revolving about x -axis, the area enclosed by the parabola $Y^{2}=4 a x$, its evolute $27 a y^{2}=4(x-2 a)^{3}$ and the x -axis.

5(a) Prove that the shortest distance between the two points in a plane is a straight line.
(b) Find the curves on which the functional $\int_{0}^{\Pi / 2}\left(y^{\prime 2}-y^{2}+2 x y\right) d y$ with $y(0)=0$ and $Y(\Pi / 2)=0$ can be extremized.
6(a) Show that the vector $\vec{F}=(2 x-y z) I+(2 y-z x) J+(2 z-x y) K$ is irrotational.
For this F, find a scalar function ϕ, such that $F=\operatorname{grad} \phi$.
(b) Find $\operatorname{div} \vec{F}$ and curl \vec{F}, where $\vec{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$

7(a) Reduce the following matrix into its normal form and hence find its rank.

$$
\left(\begin{array}{cccc}
2 & 3 & -1 & -1 \tag{8}\\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right)
$$

(b) Given that $A=\left(\begin{array}{ll}0 & 1+2 \mathrm{i} \\ -1+2 \mathrm{i} & 0\end{array}\right)$, show that $(I-A)(I+A)^{-1}$ is a unitary matrix,

Where I is the unit matrix.
8(a) Determine the poles of the function $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ and the residue at each pole.
Hence evaluate $\int f(z) d z$, where C is the circle $|z|=2.5$
c
(b) Evaluate $\int_{c} \tan z d z$, where C is the circle $|z|=2$

