Section A: Q.1 – Q.10 Carry ONE mark each.

Q.1 The total number of Na and Cl ions per unit cell of the NaCl crystal is:

(D) 16

Q.2 The sum of three binary numbers, 10110.10, 11010.01, and 10101.11, in decimal system is:

(A) 70.75

(B) 70.25

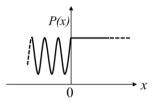
(C) 70.50

(D) 69.50

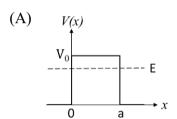
PH 1/40

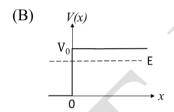
Q.3 Which of the following matrices is Hermitian as well as unitary?

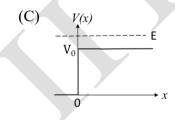
- (A) $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
- (B) $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$
- (C) $\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$
- (D) $\begin{pmatrix} 0 & 1+i \\ 1-i & 0 \end{pmatrix}$

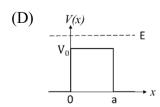

Q.4 The divergence of a 3-dimensional vector $\frac{\hat{r}}{r^3}$ (\hat{r} is the unit radial vector) is:

- (A) $-\frac{1}{r^4}$
- (B) Zero
- (C) $\frac{1}{r^3}$
- (D) $-\frac{3}{r^4}$

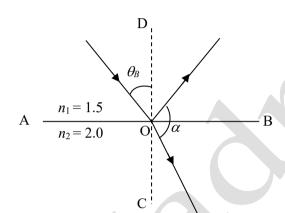

Q.5 The magnitudes of spin magnetic moments of electron, proton and neutron are μ_e , μ_p and μ_n , respectively. Then,


- (A) $\mu_e > \mu_p > \mu_t$
- (B) $\mu_e = \mu_p > \mu_n$
- (C) $\mu_e < \mu_p < \mu_n$
- (D) $\mu_e < \mu_p = \mu_n$


Q.6 A particle moving along the x-axis approaches x = 0 from $x = -\infty$ with a total energy E. It is subjected to a potential V(x). For time $t \to \infty$, the probability density P(x) of the particle is schematically shown in the figure.



The correct option for the potential V(x) is:



PH 4/40

Q.7 A plane electromagnetic wave is incident on an interface AB separating two media (refractive indices $n_1 = 1.5$ and $n_2 = 2.0$) at Brewster angle θ_B , as schematically shown in the figure. The angle α (in degrees) between the reflected wave and the refracted wave is:

- (A) 120
- (B) 116
- (C) 90
- (D) 74

PH 5/40

Q.8 If the electric field of an electromagnetic wave is given by,

$$\vec{E} = (4\hat{x} + 3\hat{y})e^{i(\omega t + ax - 600y)},$$

then the value of a is:

(all values are in the SI units)

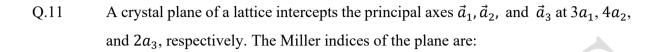
- (A) 450
- (B) -450
- (C) 800
- (D) -800

PH 6/40

Q.9 A vector field is expressed in the cylindrical coordinate system (s, ϕ, z) as,

$$\vec{F} = \frac{A}{S}\hat{S} + \frac{B}{S}\hat{Z}.$$

If this field represents an electrostatic field, then the possible values of A and B, respectively, are:

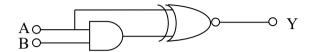

- (A) 1 and 0
- (B) 0 and 1
- (C) -1 and 1
- (D) 1 and -1

Q.10 Which of the following types of motion may be represented by the trajectory, $y(x) = ax^2 + bx + c$?

(Here a, b, and c are constants; x, y are the position coordinates)

- (A) Projectile motion in a uniform gravitational field
- (B) Simple harmonic motion
- (C) Uniform circular motion
- (D) Motion on an inclined plane in a uniform gravitational field

Section A: Q.11 - Q.30 Carry TWO marks each.


- (A) (436)
- (B) (342)
- (C) (634)
- (D) (243)

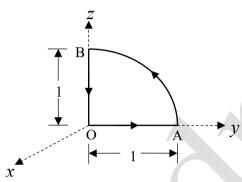
Q.12 The number of atoms in the *basis* of a primitive cell of hexagonal closed packed structure is:

- (A)
- (B) 2
- (C) 3
- (D) 4

PH 8/40

Q.13 Consider the following logic circuit.

The output Y is LOW when:


- (A) A is HIGH and B is LOW
- (B) A is LOW and B is HIGH
- (C) Both A and B are LOW
- (D) Both A and B are HIGH

PH 9/40

Q.14 The value of the line integral for the vector,

$$\vec{v} = 2\hat{x} + yz^2\hat{y} + (3y + z^2)\hat{z}$$

along the closed path OABO (as shown in the figure) is:

(Path AB is the arc of a circle of unit radius)

(A)
$$\frac{1}{4}(3\pi - 1)$$

(B)
$$3\pi - \frac{1}{4}$$

(C)
$$\frac{3\pi}{4} - 1$$

(D)
$$3\pi - 1$$

Q.15 In the x-y plane, a vector is given by

$$\vec{F}(x,y) = \frac{-y\hat{x} + x\hat{y}}{x^2 + y^2}.$$

The magnitude of the flux of $\vec{\nabla} \times \vec{F}$, through a circular loop of radius 2, centered at the origin, is:

- (A) π
- (B) 2π
- (C) 4π
- (D) 0

Q.16 The roots of the polynomial, $f(z) = z^4 - 8z^3 + 27z^2 - 38z + 26$, are $z_1, z_2, z_3, \& z_4$, where z is a complex variable. Which of the following statements is correct?

(A)
$$\frac{z_1 + z_2 + z_3 + z_4}{z_1 z_2 z_3 z_4} = -\frac{4}{19}$$

(B)
$$\frac{z_1 + z_2 + z_3 + z_4}{z_1 z_2 z_3 z_4} = \frac{4}{13}$$

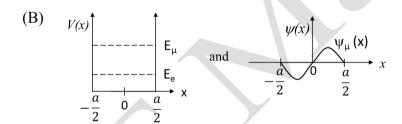
(C)
$$\frac{z_1 z_2 z_3 z_4}{z_1 + z_2 + z_3 + z_4} = -\frac{26}{27}$$

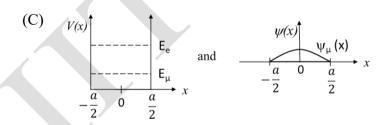
(D)
$$\frac{z_1 z_2 z_3 z_4}{z_1 + z_2 + z_3 + z_4} = \frac{13}{19}$$

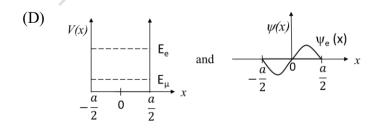
Q.17	The ultraviolet catastrophe in the classical (Rayleigh-Jeans) theory of cavity
	radiation is attributed to the assumption that

- (A) the standing waves of all allowed frequencies in the cavity have the same average energy
- (B) the density of the standing waves in the cavity is independent of the shape and size of the cavity
- (C) the allowed frequencies of the standing waves inside the cavity have no upper limit
- (D) the number of allowed frequencies for the standing waves in a frequency range v to (v + dv) is proportional to v^2

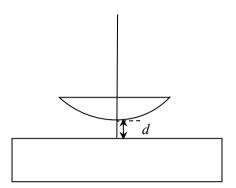
- Q.18 Given that the rest mass of electron is $0.511 \text{MeV}/c^2$, the speed (in units of c) of an electron with kinetic energy 5.11 MeV is closest to:
 - (A) 0.996
 - (B) 0.993
 - (C) 0.990
 - (D) 0.998


PH 13/40

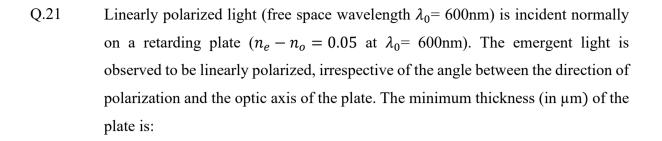

Q.19 A one-dimensional infinite square-well potential is given by:


$$V(x) = 0 \quad for -\frac{a}{2} < x < +\frac{a}{2}$$
$$= \infty \quad elsewhere$$

Let $E_e(x)$ and $\psi_e(x)$ be the ground state energy and the corresponding wave function, respectively, if an electron (e) is trapped in that well. Similarly, let $E_{\mu}(x)$ and $\psi_{\mu}(x)$ be the corresponding quantities, if a muon (μ) is trapped in the well. Choose the correct option:



PH 14/40


Q.20 In a Newton's rings experiment (using light of free space wavelength 580nm), there is an air gap of height *d* between the glass plate and a plano-convex lens (see figure). The central fringe is observed to be bright.

The least possible value of d (in nm) is:

- (A) 145
- (B) 290
- (C) 580
- (D) 72.5

PH 15/40

- (A) 6
- (B) 3
- (C) 2
- (D) 1
- Q.22 A 15.7mW laser beam has a diameter of 4mm. If the amplitude of the associated magnetic field is expressed as $\frac{A}{\sqrt{\varepsilon_0 c^3}}$, the value of A is:

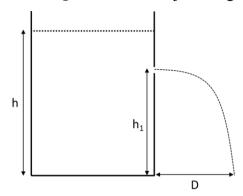
 $(\varepsilon_0$ is the free space permittivity and c is the speed of light)

- (A) 50
- (B) 35.4
- (C) 100
- (D) 70.8

PH 16/40

Q.23 The plane z=0 separates two linear dielectric media with relative permittivities $\varepsilon_{r1}=4$ and $\varepsilon_{r2}=3$, respectively. There is no free charge at the interface. If the electric field in the medium 1 is $\vec{E}_1=3\hat{x}+2\hat{y}+4\hat{z}$, then the displacement vector \vec{D}_2 in medium 2 is:

 (ε_0) is the permittivity of free space)


(A)
$$(3\hat{x} + 4\hat{y} + 6\hat{z})\varepsilon_0$$

(B)
$$(3\hat{x} + 6\hat{y} + 8\hat{z})\varepsilon_0$$

(C)
$$(9\hat{x} + 6\hat{y} + 16\hat{z})\varepsilon_0$$

(D)
$$(4\hat{x} + 2\hat{y} + 3\hat{z})\varepsilon_0$$

Q.24 A tank, placed on the ground, is filled with water up to a height h. A small hole is made at a height h_1 such that $h_1 < h$. The water jet emerging from the hole strikes

the ground at a horizontal distance D, as shown schematically in the figure. Which of the following statements is correct?

(g is the acceleration due to gravity)

- (A) Velocity at h_1 is $\sqrt{2gh_1}$
- (B) $D = 2(h h_1)$
- (C) D will be maximum when $h_1 = \frac{2}{3}h$
- (D) The maximum value of D is h

PH 18/40

Q.25 An incompressible fluid is flowing through a vertical pipe (height h and cross-sectional area A_o). A thin mesh, having n circular holes of area A_h , is fixed at the bottom end of the pipe. The speed of the fluid entering the top-end of the pipe is v_o . The volume flow rate from an individual hole of the mesh is given by:

(g is the acceleration due to gravity)

(A)
$$\frac{A_o}{n}\sqrt{v_o^2+2gh}$$

(B)
$$\frac{A_o}{n}\sqrt{v_o^2 + gh}$$

(C)
$$n(A_o - A_h)\sqrt{v_o^2 + 2gh}$$

(D)
$$n(A_o - A_h)\sqrt{v_o^2 + gh_o}$$

- Q.26 A ball is dropped from a height h to the ground. If the coefficient of restitution is e, the time required for the ball to stop bouncing is proportional to:
 - (A) $\frac{2+e}{1-e}$
 - (B) $\frac{1+e}{1-e}$
 - (C) $\frac{1-e}{1+e}$
 - (D) $\frac{2-e}{1+e}$
- Q.27 A cylinder-piston system contains N atoms of an ideal gas. If t_{avg} is the average time between successive collisions of a given atom with other atoms. If the temperature T of the gas is increased isobarically, then t_{avg} is proportional to:
 - (A) \sqrt{T}
 - (B) $\frac{1}{\sqrt{T}}$
 - (C) T
 - (D) $\frac{1}{T}$

Q.28 A gas consists of particles, each having three translational and three rotational degrees of freedom. The ratio of specific heats, C_p/C_v , is:

(C_p and C_v are the specific heats at constant pressure and constant volume, respectively)

- (A) 5/3
- (B) 7/5
- (C) 4/3
- (D) 3/2

Q.29 If two traveling waves, given by

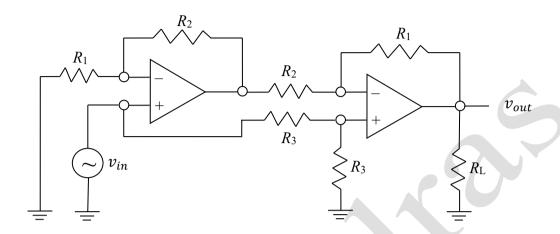
$$y_1 = A_0 \sin(kx - \omega t)$$
 and $y_2 = A_0 \sin(\alpha kx - \beta \omega t)$

are superposed, which of the following statements is correct?

- (A) For $\alpha = \beta = 1$, the resultant wave is a standing wave
- (B) For $\alpha = \beta = -1$, the resultant wave is a standing wave
- (C) For $\alpha = \beta = 2$, the carrier frequency of the resultant wave is $\frac{3}{2}\omega$
- (D) For $\alpha = \beta = 2$, the carrier frequency of the resultant wave is 3ω

Q.30 Suppose that there is a dispersive medium whose refractive index depends on the wavelength as given by $n(\lambda) = n_0 + \frac{a}{\lambda^2} - \frac{b}{\lambda^4}$. The value of λ at which the group and phase velocities would be the same, is:

- (B) $\sqrt{\frac{b}{2a}}$
- (C) $\sqrt{\frac{3b}{a}}$
- (D) $\frac{b}{3a}$


Section B: Q.31 – Q.40 Carry TWO marks each.

Q.31 A pure Si crystal can be converted to an *n*-type crystal by doping with

- (A) P
- (B) As
- (C) Sb
- (D) In

PH 23/40

Q.32 In the following OP-AMP circuit, v_{in} and v_{out} represent the input and output signals, respectively.

Choose the correct statement(s):

- (A) v_{out} is out-of-phase with v_{in}
- (B) Gain is unity when $R_1 = R_2$
- (C) v_{out} is in-phase with v_{in}
- (D) v_{out} is zero

PH 24/40

Q.33 A spring-mass system (spring constant 80N/m and damping coefficient 40N-s/m), initially at rest, is lying along the y-axis in the horizontal plane. One end of the spring is fixed and the mass (5kg) is attached at its other end. The mass is pulled along the y-axis by 0.5m from its equilibrium position and then released. Choose the correct statement(s).

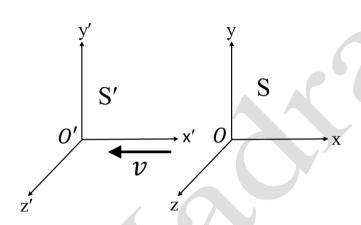
(Ignore mass of the spring)

- (A) Motion will be under damped
- (B) Trajectory of the mass will be $y(t) = \frac{1}{2}(1+t)e^{-4t}$
- (C) Motion will be critically damped
- (D) Trajectory of the mass will be $y(t) = \frac{1}{2}(1+4t)e^{-4t}$

Q.34 Consider two different Compton scattering experiments, in which X-rays and γ -rays of wavelength (λ) 1.024Å and 0.049Å, respectively, are scattered from stationary free electrons. The scattered wavelength (λ') is measured as a function of the scattering angle (θ). If Compton shift is $\Delta\lambda = \lambda' - \lambda$, then which of the following statement(s) is/are true:

$$(h = 6.63 \times 10^{-34} \text{J.s}, m_e = 9.11 \times 10^{-31} \text{kg}, c = 3 \times 10^8 \text{m/s})$$

- (A) For γ -rays, $\lambda'_{\text{max}} \approx 0.098 \text{Å}$
- (B) For X-rays, $(\Delta \lambda)_{\text{max}}$ is observed at $\theta = 180^{\circ}$
- (C) For X-rays, $(\Delta \lambda)_{\text{max}} \approx 1.049 \text{Å}$
- (D) For γ -rays, at $\theta = 90^{\circ}$, $\lambda' \approx 0.049 \text{Å}$

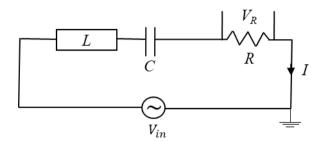

PH 26/40

Q.35 A particle of mass m, having an energy E and angular momentum L, is in a parabolic trajectory around a planet of mass M. If the distance of the closest approach to the planet is r_m , which of the following statement(s) is(are) true?

(G is the Gravitational constant)

- (A) E > 0
- (B) E = 0
- (C) $L = \sqrt{2GMm^2r_m}$
- (D) $L = \sqrt{2GM^2mr_m}$

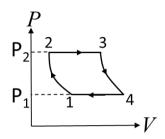
Q.36 The inertial frame S' is moving away from the inertial frame S with a speed v = 0.6c along the negative x-direction (see figure). The origins O' and O of the frames coincide at t = t' = 0. As observed in the frame S', two events occur simultaneously at two points on the x'-axis with a separation of $\Delta x' = 5m$. If, Δt and Δx are the magnitudes of the time interval and the space interval, respectively, between the events in S, then which of the following statements is(are) correct?



$$(c = 3 \times 10^8 \text{ m/s})$$

- (A) $\Delta t = 12.5 \text{ns}$
- (B) $\Delta t = 4.2 \text{ns}$
- (C) $\Delta x = 10.6$ m
- (D) $\Delta x = 6.25 \text{m}$

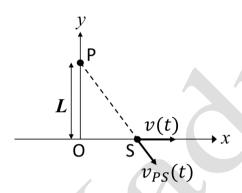
PH 28/40


Q.37 For the LCR AC-circuit (resonance frequency ω_0) shown in the figure below, choose the correct statement(s).

- (A) ω_0 depends on the values of L, C, and R
- (B) At $\omega = \omega_0$, voltage V_R and current I are in-phase
- (C) The amplitude of V_R at $\omega = \omega_0/2$ is independent of R
- (D) The amplitude of V_R at $\omega = \omega_0$ is independent of L and C

PH 29/40

Q.38 The *P-V* diagram of an engine is shown in the figure below. The temperatures at points 1, 2, 3 and 4 are T_1 , T_2 , T_3 and T_4 , respectively. 1 \rightarrow 2 and 3 \rightarrow 4 are adiabatic processes, and 2 \rightarrow 3 and 4 \rightarrow 1 are isochoric processes.

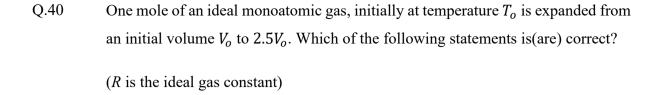

Identify the correct statement(s).

[γ is the ratio of specific heats C_p (at constant P) and C_v (at constant V)]

- $(A) \quad T_1 T_3 = T_2 T_4$
- (B) The efficiency of the engine is $1 \left(\frac{P_1}{P_2}\right)^{\frac{\gamma-1}{\gamma}}$
- (C) The change in entropy for the entire cycle is zero
- (D) $T_1T_2 = T_3T_4$

Q.39 A whistle S of sound frequency f is oscillating with angular frequency ω along the x-axis. Its instantaneous position and the velocity are given by $x(t) = a \sin(\omega t)$ and $v(t) = v_0 \cos(\omega t)$, respectively. An observer P is located on the y-axis at a distance L from the origin (see figure). Let $v_{PS}(t)$ be the component of v(t) along the line joining the source and the observer. Choose the correct option(s):

(Here a and v_0 are constants)



(A)
$$v_{PS}(t) = \frac{1}{2} \frac{av_0}{\sqrt{a^2 \sin^2 \omega t + I^2}} \sin(2\omega t)$$

- (B) The observed frequency will be f when the source is at x = 0 and $x = \pm a$
- (C) The observed frequency will be f when the source is at position $x = \pm \frac{a}{2}$

(D)
$$v_{PS}(t) = \frac{1}{2} \frac{av_0}{\sqrt{a^2 + L^2}} \sin(2\omega t)$$

PH 31/40

- (A) When the process is isothermal, the work done is $RT_o \ln 2$
- (B) When the process is isothermal, the change in internal energy is zero
- (C) When the process is isobaric, the work done is $\frac{3}{2}RT_0$
- (D) When the process is isobaric, the change in internal energy is $\frac{9}{2}RT_0$

Section C: Q.41 – Q.50 Carry ONE mark each.

Q.41 Consider a p-n junction diode which has 10^{23} acceptor-atoms/m³ in the p-side and 10^{22} donor-atoms/m³ in the n-side. If the depletion width in the p-side is $0.16\mu m$, then the value of depletion width in the n-side will be _____ μm . (Rounded off to one decimal place)

PH 32/40

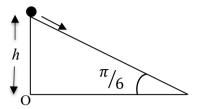
Q.42 The co-ordinate system (x,y,z) is transformed to the system (u,v,w), as given by:

$$u = 2x + 3y - z$$

$$v = x - 4y + z$$

$$w = x + y$$

The Jacobian of the above transformation is ______.

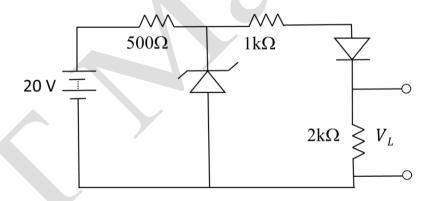

Q.43 Two sides of a triangle OAB are given by:

$$\overrightarrow{OA} = \hat{x} + 2\hat{y} + \hat{z}$$

$$\overrightarrow{OB} = 2\hat{x} - \hat{y} + 3\hat{z}$$

The area of the triangle is . (Rounded off to one decimal place)

Q.44 A particle of mass 1kg, initially at rest, starts sliding down from the top of a frictionless inclined plane of angle $\pi/6$ (as schematically shown in the figure). The magnitude of the torque on the particle about the point O after a time 2 seconds is N-m. (Rounded off to nearest integer)



(Take $g = 10 \text{m/s}^2$)

Q.45 The moment of inertia of a solid hemisphere (mass M and radius R) about the axis passing through the hemisphere and parallel to its flat surface is $\frac{2}{5}MR^2$. The distance of the axis from the center of mass of the hemisphere (in units of R) is ______. (Rounded off to two decimal places)

Q.46 A collimated light beam of intensity I_0 is incident normally on an air-dielectric (refractive index 2.0) interface. The intensity of the reflected light is _____ I_0 . (Rounded off to two decimal places)

PH 34/40

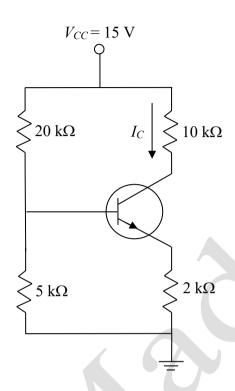
Q.49 The Fermi energy of a system is 5.5eV. At 500K, the energy of a level for which the probability of occupancy is 0.2, is _____eV. (Rounded off to two decimal places)

(Boltzmann constant $k_B = 8.62 \times 10^{-5} \text{ eV/K}$)

PH 35/40

Q.50 One mole of an ideal monoatomic gas is heated in a closed container, first from 273K to 303K, and then from 303K to 373K. The net change in the entropy is _____R. (Rounded off to two decimal places)

(R is the ideal gas constant)


Section C: Q.51 - Q.60 Carry TWO marks each.

Q.51 For a simple cubic crystal, the smallest inter-planar spacing d that can be determined from its second order of diffraction using monochromatic X-rays of wavelength 1.32Å is

Å. (Round off to two decimal places)

PH 36/40

Q.52 A transistor ($\beta = 100$, $V_{BE} = 0.7V$) is connected as shown in the circuit below.

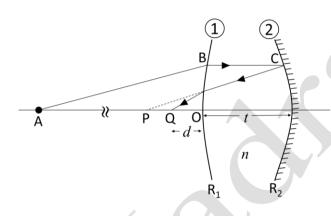
The current I_C will be _____ mA. (Rounded off to two decimal places)

Q.53 In the Taylor expansion of function, $F(x) = e^x \sin x$, around x = 0, the coefficient of x^5 is ______. (Rounded off to three decimal places)

PH 37/40

Q.54 A stationary nitrogen $\binom{14}{7}N$) nucleus is bombarded with α - particle $\binom{4}{2}He$) and the following nuclear reaction takes place:

$${}^{4}_{2}He + {}^{14}_{7}N \longrightarrow {}^{17}_{8}O + {}^{1}_{1}H$$
Mass: $4.003u$ $14.003u$ $16.999u$ $1.008u$

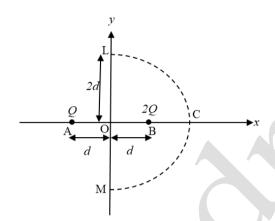

If the kinetic energies of ${}_{2}^{4}He$ and ${}_{1}^{1}H$ are 5.314MeV and 4.012MeV, respectively, then the kinetic energy of ${}_{8}^{17}O$ is _____MeV. (Rounded off to one decimal place) (Masses are given in units of $u = 931.5 \text{MeV/c}^2$)

Q.55 A satellite of mass 10kg, in a circular orbit around a planet, is having a speed v=200m/s. The total energy of the satellite is _____kJ. (Rounded off to nearest integer)

Q.56 When a system of multiple long narrow slits (width 2μm and period 4μm) is illuminated with a laser of wavelength 600nm. There are 40 minima between the two consecutive principal maxima observed in its diffraction pattern. Then maximum resolving power of the system is ______.

PH 38/40

Q.57 Consider a thick biconvex lens (thickness t = 4 cm and refractive index n = 1.5) whose magnitudes of the radii of curvature R_1 and R_2 , of the first and second surfaces are 30cm and 20cm, respectively. Surface 2 is silvered to act as a mirror. A point object is placed at point A on the axis (OA = 60cm) as shown in the figure. If its image is formed at point Q, the distance d between O and Q is _____cm. (Rounded off to two decimal places)



Q.58 An unstable particle created at a point P moves with a constant speed of 0.998c until it decays at a point Q. If the lifetime of the particle in its rest frame is 632ns, the distance between points P and Q is _____m. (Rounded off to the nearest integer)

 $(c = 3 \times 10^8 \text{ m/s})$

PH 39/40

Q.59 Two positive charges Q and Q are kept at points A and B, separated by a distance Q, as shown in the figure. MCL is a semicircle of radius Q centered at the origin O. If Q = Q and Q = Q and Q = Q are kept at points A and B, separated by a distance Q as shown in the figure. MCL is a semicircle of radius Q centered at the origin O. If Q = Q and Q are kept at points A and B, separated by a distance Q are kept at points A and B, separated by a distance Q as shown in the figure. MCL is a semicircle of radius Q centered at the origin O. If Q = Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q are kept at points A and B, separated by a distance Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points A and B, separated by a distance Q and Q are kept at points Q and Q are kept at points Q and Q are kept at Q and Q are kept at

Q.60 A time dependent magnetic field inside a long solenoid of radius 0.05m is given by $\vec{B}(t) = B_0 \sin \omega t \,\hat{z}$. If $\omega = 100 \text{rad/s}$ and $B_0 = 0.98 \text{Weber/m}^2$, then the amplitude of the induced electric field at a distance of 0.07m from the axis of the solenoid is V/m. (Rounded off to two decimal places)

PH 40/40