GATE 2024
 dISC Bengaluru

Note: The DA test paper is newly introduced in GATE 2024. This is a sample question paper for the candidates to practice the subject. We will not be able to answer any queries or provide answer keys to these questions.

Q.1 - Q.25 Carry ONE mark each.	
Q.1	Let b be the branching factor of a search tree. If the optimal goal is reached after d actions from the initial state, in the worst case, how many times will the initial state be expanded for iterative deepening depth first search (IDDFS) and iterative Deepening A* search (IDA*)?
(A)	IDDFS - d, IDA* $-d$.
(B)	IDDFS - d, IDA* $-b^{d}$
(C)	IDDFS - b^{d}, IDA* $-d$.
(D)	IDDFS - b^{d}, IDA* $-b^{d}$.
Q.2	Given 3 literals A, B, and C, how many models are there for the sentence $A \vee$ $\neg B \vee C ?$

Q. 7	A fair coin is flipped twice and it is known that at least one tail is observed. The probability of getting two tails is
(A)	$\frac{1}{2}$
(B)	$\frac{1}{3}$
(C)	$\frac{2}{3}$
(D)	$\frac{1}{4}$
(B)	
(A)	
Given n indistinguishable particles and $m(>n)$ distinguishable boxes, we place	
at random each particle in one of the boxes. The probability that in n preselected	
boxes, one and only one particle will be found is	

| Q. 9 | For two events A and B,
 correct? |
| ---: | :--- | :--- |
| (A) | $\quad P(B \mid A) \geq P(B)$ Which of the following statement is |

Q. 13	A decision tree classifier learned from a fixed training set achieves 100% accuracy. Which of the following models trained using the same training set will also achieve 100% accuracy? i) Logistic regressor. ii) A polynomial of degree one kernel SVM. iii) A linear discriminant function. iv) Naïve Bayes classifier.
(A)	i
(B)	i and ii
(C)	all of the above
(D)	none of the above
Q. 14	Consider two relations $\mathrm{R}(\mathrm{x}, \mathrm{y})$ and $\mathrm{S}(\mathrm{x}, \mathrm{z})$. Relation R has 100 records, and relation S has 200 records. What will be the number of attributes and records of the following query? SELECT * from R CROSS JOIN S;
(A)	3 attributes, 20000 records
(B)	4 attributes, 20000 records

(C)	3 attributes, 200 records
(D)	4 attributes, 200 records
Q. 15	Consider two relations $\mathrm{R}(\mathrm{x}, \mathrm{y})$ and $\mathrm{S}(\mathrm{y})$, and perform the following operation R(x,y) DIVIDE S(Y) If X is the relation returns by the above operation, which of the following option(s) is/are always TRUE?
(A)	$\|X\| \leq\|R\|$
(B)	$\|X\| \leq\|S\|$
(C)	$\|X\| \leq\|R\|$ AND $\|X\| \leq\|S\|$
(D)	All of the Above
Q. 16	Which of the following statements is/are TRUE?
(A)	Every relation with two attributes is also in BCNF.
(B)	Every relation in BCNF is also in 3NF.

(C)	No relation can be in both BCNF and 3NF.
(D)	None of Above
Q.17	For matrix $H=\left[\begin{array}{cc\|}9 & -2 \\ -2 & 6\end{array}\right]$, one of the eigenvalues is 5. Then, the other (A)
12	
(B)	10
(C)	8
(D)	6
Q. 18	Two non-zero vectors \mathbf{x} and \mathbf{y} are perpendicular if
(B)	$\mathbf{x}^{\mathrm{T}} \mathbf{y}>0$
(C)	$\mathbf{x}^{\mathrm{T}} \mathbf{y}<0$
(D)	$\mathbf{x}^{\mathrm{T}} \mathbf{y}=0$

Q. 23	Which of the following correctly describes the recurrence relation for the standard binary search algorithm on a sorted array of n numbers where c is a constant.
(A)	$\mathrm{T}(\mathrm{n})=2 * \mathrm{~T}(\mathrm{n} / 2)+\mathrm{c}$
(B)	$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)$
(C)	$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{c}$
(D)	$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{c}$
Q. 24	Consider the following C program ```int func(int A[], int n, int m) { int s = A[0]; for(int i=1; i<= n-1; i++) total = m*s + A[i]; return m; }``` Let Z be an array of 10 elements with $Z[i]=2$ for all i such that $0<=i<=9$; The value returned by func $(Z, 10,2)$ is \qquad
Q. 25	Two eigenvalues of 3×3 matrix \mathbf{X} are $(1+i)$ and 2 . The determinant of the matrix X is \qquad

Q. 26 - Q. 55 Carry TWO marks each.

Q. 26	Given the following relation instances X Y Z 142 153 143 152 321 Which of the following conditions is/are TRUE?
(A)	XY -> Z and Z -> Y
(B)	YZ -> X and X ->> Y
(C)	Y -> X and Y ->> X
(D)	XZ -> Y and Y -> X
Q. 27	Consider the search space depicted in the Figure below. S is the initial state. G1 and G2 are two states that satisfy the goal test. The cost of traversing from one state to another is depicted by the numerical value close to the edge connecting the two states. The estimated cost to the goal is reported inside the states. Use alphabetical order of nodes to break ties. Which goal state is reached if you perform A* (graph) search? What is the largest value that the heuristic function can take for node A while still being admissible?

(A)

(C)	$V D K$
(D)	$K(V+D)$
Q. 29	$K\left(x, x^{\prime}\right)=f(x) g\left(x^{\prime}\right)+f\left(x^{\prime}\right) g(x)$, where f and g are real-valued functions $\left(\mathcal{R}^{D} \rightarrow \mathcal{R}\right)$ is not a valid kernel function. What additional terms would you include to the summation in K to make it a valid kernel?
(A)	$f(x)+g(x)$
(B)	$f(x) g(x)+f\left(x^{\prime}\right) g\left(x^{\prime}\right)$
(C)	$f(x) f\left(x^{\prime}\right)+g(x) g\left(x^{\prime}\right)$
(D)	$f\left(x^{\prime}\right)+g\left(x^{\prime}\right)$
Q. 30	For perfectly spherical 2D data centered at the origin, which of the following the pairs of vectors are possible pairs of principal components? i) $(1,0)$ and $(0,1)$ ii) $(0,-1)$ and $(-1,0)$ iii) $(1,1)$ and $(1,-1)$ $(-1,1)$ and $(-1,-1)$
(A)	1
(B)	i and iii

(C) i, ii, and iii

Q. 35	Given a smooth sufficiently differentiable function, the following statements are given (P) A concave function can have a global minimum (Q) All convex functions have a global minimum
(A)	P and Q are true
(B)	P is true and Q is false
(C)	P is false and Q is true
(D)	P and Q are false
Q. 36	Consider the following joint distribution of random variables X and Y : $f(x, y)=\left\{\begin{array}{cl} \frac{x\left(1+3 y^{2}\right)}{4}, & 0 \leq x \leq 2,0 \leq y \leq 1 \\ 0, & \text { otherwise } \end{array}\right.$ Which one or more of the following statements is/are correct?
(A)	X and Y are mutually uncorrelated.
(B)	X and Y are mutually independent.
(C)	The mean of X is 1.
(D)	The mean of Y is 0.5

Q. 37	For matrix $H=\left[\begin{array}{cc}3 & -1 \\ -1 & 3\end{array}\right]$, one of the eigenvectors is $\left[\begin{array}{l}-1 \\ -1\end{array}\right]$. Then, the other eigenvector is
(A)	$\left[\begin{array}{c} 1 \\ -1 \end{array}\right] .$
(B)	$\left[\begin{array}{l} 1 \\ 1 \end{array}\right]$
(C)	$\left[\begin{array}{l} 1 \\ 0 \end{array}\right]$
(D)	$\left[\begin{array}{l} 0 \\ 1 \end{array}\right] .$
Q. 38	Given a matrix $\mathbf{A}_{\mathrm{mxn}}$. The following statements are made regarding the matrix A. P. The column space is orthogonal to the row space Q. The column space is orthogonal to the left null space R. The row space is orthogonal to the null space T. The null space is orthogonal to the left null space. Which of the statement(s) is/are true?
(A)	P and Q
(B)	P and R
(C)	Q and R

(D)	P and T
Q. 39	Consider a matrix $\left[\begin{array}{lll}0 & 1 & 0 \\ a & 2 & d \\ b & 3 & c\end{array}\right]$. The matrix cannot have rank
(A)	0
(B)	1
(C)	2
(D)	3
Q. 40	A file with 100,000 records is indexed with B+ tree. If the size of a memory block is 2 K bytes, the size of a key is 4 bytes, the size of a pointer is 4 bytes, what is the minimum possible height of the $\mathrm{B}+$ tree index. Height is always greater than equal to 1 . Hints: No records are store in the nodes, only keys are stored. The sizes of the pointers are same, irrespective of they point to a node of a record.
Q. 41	Consider a schema R(A, B, C, D, E, F) and functional dependencies A -> B, C $>$ D, and $\mathrm{E}->\mathrm{F}$. What is the number of superkeys?

$\left.\begin{array}{|r|l|}\hline \text { Q.42 } & \left.\begin{array}{l}\text { Given the dataset: }(1,1),(3,3),(4,4),(5,5),(6,6),(9,9),(0,3),(3,0) \text { and } \\ \text { assuming the initial centroids for }(K=3-\text { means clustering }) \text { to be } C_{1}= \\ (3,3), \mathrm{C}_{2}=(5,5) \text { and } \mathrm{C}_{3}=(6,6) . \text { One iteration of the Expectation } \\ \text { Maximization Algorithm for K-means clustering, will update } C_{3} \text { to }(\ldots,\end{array}\right) \\ \hline \text { Q.43 } & \begin{array}{l}\text { Consider a Multi-Layer Perceptron (MLP) model with one hidden layer and one } \\ \text { output layer. The hidden layer has } 10 \text { neurons, and the output layer has } 3 \\ \text { neurons. The input to the MLP is a 5-dimensional vector. Each neuron is } \\ \text { connected to every neuron in the previous layer, and a bias term is included for } \\ \text { each neuron. The activation function used is the sigmoid function. }\end{array} \\ \hline \text { Calculate the total number of trainable parameters in this MLP model. }\end{array}\right\}$

Q.47	Let $\{\mathrm{O} 1, \mathrm{O} 2, \mathrm{O}, \mathrm{O} 4\}$ represent the outcome of a random experiment, with $\mathrm{P}(\{\mathrm{O} 1\})=\mathrm{P}(\{\mathrm{O} 2\})=\mathrm{P}(\{\mathrm{O} 3\})=\mathrm{P}(\{\mathrm{O} 4\})$. Consider the following events: $\mathrm{P}=\{\mathrm{O} 1, \mathrm{O} 2\}$, $\mathrm{Q}=\{\mathrm{O} 2, \mathrm{O} 3\}, \mathrm{R}=\{\mathrm{O} 3, \mathrm{O} 4\}, \mathrm{S}=\{\mathrm{O}, \mathrm{O} 2, \mathrm{O} 3\}$. Then, which of the following statements is true?
(A)	P and Q are independent

Q. 50	Assume that S is a stack and Q1 and Q2 are two Queues which support the Enqueue and Dequeue operations. Consider the following pseudo code for implementing the Pop and Push operation on S. ```Push(S,x) A(Q2,x) while(Q1 not empty) B(Q2,C(Q1)); Swap(Q1,Q2) Pop(S) return(D(Q1))``` Which of the following options for the functions A, B, C, and D would correspond to correctly implementing the Push and Pop operations on the stack S?
(A)	A,B-Enqueue C,D-Dequeue
(B)	A, C-Enqueue B, D- Dequeue
(C)	A,C-Dequeue B,D-Enqueue
(D)	A,D - Enqueue B,C - Dequeue
Q. 51	Consider the following program. ```int fun(float a[], float b[],int d) { float n1 = 0; float n2 = 0; int flag = 1; for (int i = 0;i< d; i++) n1 = n1 + (a[i]*a[i]); n2 = n2 + (b[i]*b[i]); for(int i = 0;i< d; i++) a[i] =a[i]/sqrt(n1); b[i] = b[i]/sqrt(n2);```


	```for (int i=0;i< d; i++) { if(a[i] != b[i]) flag = 0; break; } return flag; }```   For which of the following inputs does the above algorithm produce 1 as an output?   (P) $a=\{1,2,3,4\} ; b=\{3,4,5,6\}, d=4$   (Q) $a=\{1,2,3,4\} ; b=\{2,4,6,8\}, d=4$   (R) $a=\{1,2,3,4\} b=\{10,20,30,40\}, d=4$   (S) $a=\{1,2,3,4\}, b=\{1.1,2.1,3.1,4.1\}, d=4$
(A)	P, Q, R, S
(B)	Q, R, S
(C)	Q, R
(D)	R, S
Q. 52	Consider the following undirected graph on 5 nodes


Assume you are performing breadth first search on this graph using a queue   data structure. How many unique breadth first orderings are possible on this   graph?   (A) 9   (B) 24   (C) 48   (D) 120


Q. 53	Let $S^{2}$ be the variance of a random sample of size $n>1$ from a normal   population with an unknown mean $\mu$ and an unknown finite variance $\sigma^{2}<\infty$.   Consider the following statements:   (I) $S^{2}$ is an unbiased estimator of $\sigma^{2}$, and $S$ is an unbiased estimator of $\sigma$.   (II) (n-1/n) $S^{2}$ is a maximum likelihood estimator of $\sigma^{2}$, and $\sqrt{\frac{n-1}{n}} S$ is a   maximum likelihood estimator of $\sigma$.   Which of the above statements is/are true?
(A)	(I) only
(B)	(II) only
(C)	Both (I) and (II)
(D)	Neither (I) nor (II)


Q. 54	The value of the real variable $\mathrm{x} \geq 0$, which maximizes the function $f(x)=$ $x^{e} e^{-x}$ is $\qquad$ (up to two decimal places)
Q. 55	Consider the following relational schema:   employee (empId, empName, empDept)   customer (custId, custName, salesRepId, rating)   salesRepId is a foreign key referring to empId of the employee relation. Assume that each employee makes a sale to at least one customer. What does the following query return?   SELECT empName   FROM employee E   WHERE NOT EXISTS (SELECT custId   FROM customer C   WHERE C.salesRepId = E.empId   AND C.rating <> 'GOOD');
(A)	Names of all the employees with at least one of their customers having a 'GOOD' rating.
(B)	Names of all the employees with at most one of their customers having a ‘GOOD' rating.
(C)	Names of all the employees with none of their customers having a 'GOOD' rating.
(D)	Names of all the employees with all their customers having a 'GOOD' rating.
	End of Sample Question Paper
GATE 2024 Sample Question Paper   Data Science and Artificial Intelligence (DA) Page $\mathbf{2 8}$ of $\mathbf{2 8}$	

