

CBSE

ADDITIONAL PRACTICE QUESTIONS Biology (044) Class XII| 2023–24

Max Marks: 80

Time: 3 hours

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper has five sections and 33 questions. All questions are compulsory.
- (iii) Section–A has 16 questions of 1 mark each; Section–B has 5 questions of 2 marks each; Section–C has 7 questions of 3 marks each; Section–D has 2 case-based questions of 4 marks each; and Section–E has 3 questions of 5 marks each.
- (iv) There is no overall choice. However, internal choices have been provided in some questions. A student has to attempt only one of the alternatives in such questions.
- (v) Wherever necessary, neat and properly labeled diagrams should be drawn.

Q.Nos.	Questions	Marks
1	During the pollen grain formation, the generative cell divides to give rise to the two male gametes.	1
	What is the ploidy of the generative cell?	
	(a) n	
	(b) 2n	
	(c) 3n	
	(d) 4n	
2	Kiwi is a dioecious species. Which of the following methods can be	1
	definitely RULED OUT as a possible mode of pollination in its case?	
	P) cleistogamous autogamy	
	Q) chasmogamous autogamy	
	R) geitonogamy	
	S) xenogamy	
	(a) only P and R	

Section A

	(b) only P and Q (c) only Q and S	
	(d) only P, Q and R	
3	Arun thinks that identifying the exact mRNA sequence from the protein sequence is difficult.	1
	Is he correct and why?	
	 (a) No, as the genetic code is universal. (b) Yes, as the genetic code is degenerate. (c) No, as the mRNA is translated into a protein sequence. (d) Yes, as the mRNA contains introns which are non-coding sequences. 	
4	Crickets are insects that follow the XO type of sex determination. Which of the following statements is ALWAYS TRUE about this type of sex determination?	1
	(a) Eggs that have an O chromosome will give rise to a male cricket.(b) Eggs that have an X chromosome will give rise to a female cricket.(c) Sperms that have an X chromosome will give rise to a male cricket.(d) Sperms that have an O chromosome will give rise to a male cricket.	
5	Oysters are generally either dark or light in colour. Dark oysters excel in dark environments, while light oysters thrive in bright environments. Intermediate-coloured oysters are disadvantaged, lacking effective camouflage in either setting.	1
	Which type of natural selection does this phenomenon exemplify?	
	 (a) directional (b) stabilising (c) disruptive (d) (The phenomenon described does not exemplify natural selection.) 	
6	A team of archaeologists found a fossilized skeleton of a human-like creature with a brain capacity of more than 700cc. The structure and its associated findings also show evidence that this creature could use tools for hunting.	1
	Which stage of human evolution is this creature NOT from?	
	(a) Homo erectus	

	(b) <i>Homo</i> (c) Neand (d) <i>Austra</i>	habilis lerthal Man alopithecines							
7	Which of agarose g	Which of the following is CORRECT about the movement of DNA on an agarose gel and the reason for it?							
	Option	Movement across terminals	Reason						
	P	positive to negative	charge on histones						
	Q	negative to positive	charge on histones						
	R	positive to negative	charge on DNA						
	S	negative to positive	charge on DNA						
	(a) P (b) Q (c) R (d) S								
8	What is the MINIMUM possibility of a dominant trait being expressed in the offspring after a test cross?1(a) 25% (b) 50% (c) 75% (d) 100%1								
9	Which pro whisky af (a) maltin (b) dilutio (c) distilla (d) matura	ocess is responsible for increasing ter fermentation? g on ation	ng the percentage of	alcohol in	1				
10	What doe (a) It cuts (b) It is th (c) There bacterium (d) There S2 for the	s I in the restriction enzyme name after the first nucleotide in the re- se first enzyme isolated from stra- is definitely more than one enzyme is only one enzyme that can be bacterium.	ned 'Hin S2 I' indicat restriction site. ain S2 of the bacteriu me isolated from the used to digest a plass	e? m. same nid from strain	1				
11	Sumi and	Nisha said the following about	somatic hybridizatio	n in plants.	1				
	Sumi: Ga	metes are not required for hybrid	dization.						

	Nisha: The resultant plant that grows after the fusion of the cells is genetically identical to the parent plants.	
	Who among them is/are CORRECT? (a) only Sumi (b) only Nisha (c) both Sumi and Nisha (d) neither Sumi nor Nisha	
12	Rupal says that in marine food chains where the pyramid of biomass is inverted, the 10% rule of energy transfer is not applicable.	1
	Is she CORRECT and why?	
	(a) No, because every level still gets 10% of the energy from the lower level.(b) Yes, because there are more consumers and so more energy is transferred.	
	(c) No, because the pyramid of biomass can never be inverted for any food	
	(d) Yes, because there is lower biomass of producers in these food chains so less energy is transferred.	
Questio questio a) Both b) Both c) A is	on No. 13 to 16 consist of two statements – Assertion (A) and Reason (R). Answ ns selecting the appropriate option given below: A and R are true and R is the correct explanation of A. A and R are true and R is not the correct explanation of A. true but R is false.	er these
$\frac{d}{12}$ A is	false but R is true.	1
15	Assertion (A). The cocond endosperm is multilucieate throughout its development. Reason (R): Some endosperms undergo free nuclear division without the formation of distinct cell boundaries.	1
14	Assertion (A): DNA ligase is not used in PCR. Reason (R): Discontinuous fragments are not formed in the amplification of DNA by PCR.	1
15	Assertion (A): To promote sustainability while minimizing waste, it is recommended to reuse needles up to two times for the same person. Reason (R): Sterilisation of needles eliminates all pathogens and ensures safety.	1
16	Assertion (A): Nuclear DNA extracted from a cell is visible to the naked eye but unstained plasmid DNA running in an agarose gel is not. Reason (R): Plasmid DNA is transparent but nuclear DNA is not.	1

Section B

17	Kavya says that the placenta produces relaxin which plays a crucial role during pregnancy.	2
	(a) Is she correct? Justify.(b) Name TWO other hormones secreted by the placenta during pregnancy	
18	Thalassemia is an autosomal recessive disorder that causes anaemic conditions in an individual. A blood smear from a heterozygous individual shows blood cells that are small, pale and irregularly shaped along with normal RBCs.	2
	(a) State the genotypic and phenotypic ratios of offspring born to a carrier mother and a thalassemic father.(b) Does the allele for thalassemia exhibit codominance? Justify.	
19	Explain any TWO reasons why the treatment of AIDS is only partially effective.	2
20	Rati wants to grow a variant of the <i>lactobacillus spps</i> . in a bioreactor. Lactobacillus is an anaerobic bacterium commonly used as a starter culture for diary products. Shown below is a bioreactor she had in her laboratory.	2
	(b) Explain TWO quantities that the sensors in the bioreactor should monitor.	

			Arr
21	Shown below is a food chain.	2	
	Fallen leaf		
	(A) (B) (C) (D)		
	(a) Millipedes have a hard exoskeleton whose composition is different from that of the leaves. Considering all other conditions to remain the same, which step is likely to be slower between A to B and B to C and why?(b) What would be the direction of the flow of energy in this food chain?		
	OR		
	(a) A coral reef can be regarded as an ecosystem. Mention any TWO reasons why. (b) The net primary productivity (NPP) of a coral reef is approximately 2000 g $C/m^2/year$ and the gross primary productivity (GPP) is 4000 g $C/m^2/year$.	2	
	Calculate the respiration losses (R) of this ecosystem.		

Section C

22	A biologist sees the following cells in a cross-section of the seminiferous tubule and its surrounding tissues and counts the number of various kinds of cells.	3
	Spermatozoa, Spermatid, Primary spermatocyte, Secondary spermatocyte, Leydig cells, Sertoli cells, Spermatogonium.	
	From these cells, identify the cells: (a) that are diploid.	
	(b) that can produce hormones and their names.	
23	A couple is trying to conceive and start a family.	3
	(a) If the woman's period, which is regular, is scheduled to start on July 19, what was the estimated date of ovulation for the previous cycle?(b) Name the four important reproductive hormones and state whether their levels will be high or low on the date identified in (a).	
24	As part of assisted reproductive technologies (ART),	3
	(a) What is the destination for blastomeres with a count of less than 8 cells and more than 8 cells?(b) What could be the reason behind transferring to the destinations identified in (a)?(c) What techniques are used to transfer the blastomeres to the destinations identified in (a)?	

25	 (a) State any FOUR phenomena in which the Hardy-Weinberg theorem may not hold true. (b) A population of 100 individuals has a frequency of allele A of 0.3 and a frequency of allele a of 0.7. The frequency of the heterozygous genotype (Aa) is 0.49. Is this population in Hardy-Weinberg equilibrium? Justify. 								
26	State whether each of these statements given below is/are true or false. Justify your answer. 3								
	(a) Flocs reduce the pollution in water by increasing its BOD.(b) Mycorrhiza is a type of parasitic relationship in which only the plants benefit from fungi.								
27	Erythropoietin is a glycoprotein hormone that is otherwise naturally produced in the kidney when the body becomes anaemic. However, this does not happen in the case of chronic renal diseases where kidney function is lost. Epoetin alfa is a human erythropoietin produced in cell culture using recombinant DNA technology. The cell culture used is called Namalwa cells, a human cell culture. There are eight exons and seven introns in a single gene that encodes the hormone, whose sequence is known.								
	Explain the step-by-step human erythropoietin in	process that she culture.	ould be followe	ed for producing					
	OR								
	Today, many genetic dis embryo. This helps in pla even treating the disorde (a) Identify a biotechnolo reason to support your an (b) Can the technique ide Justify.	orders can be d anning the child r while the baby ogical technique nswer. entified in (a) be	etected using a d's health care in y is still in the v e that can be use e used to detect	single cell from an n advance, and in some cases womb. ed for this purpose. Give a the presence of RNA viruses?					
28	In a study comparing two relationship was investig	o continents - A ated using the f	Antarctica and A following data:	Asia, the species-area	3				
	Parameter	Antarctica	Asia						
	Area	$14 \text{ x} 10^6 \text{ km}^2$	$44 \text{ x } 10^6 \text{ km}^2$						
		1	1						
	Regression coefficient	1	1						
	Regression coefficient Y-intercept	5	1 10						

(a) Calculate the species richness value for each region.(b) Based on (a), which continent will have greater biodiversity and why?

(c) State ONE disadvantage of using the other two restriction enzymes not chosen in (b).

Section E

31	A Non-Government Organisation (NGO) aims to increase awareness against STDs.	5
	 (a) What could be the ideal target age group for the NGO? (b) Mention any TWO potential long-term health-related complications of untreated STDs that the NGO should educate the target age group about. (c) Mention ONE contraceptive method that provides protection against the STD. Justify. (d) State TWO contraceptive methods that do not protect against STDs that they can educate the group about. 	
L		

5

OR

Amey and Lalita are expecting their first child, with Lalita being in her second month of pregnancy with no known complications. Amey's family has a history of cystic fibrosis while Lalita's family has a history of Down's syndrome, leading to a concern that the baby may have one of these conditions.

(a) Suggest and explain a way of testing if their baby is at risk for any genetic disorders.

(b) In case of the presence of one or both of the abnormalities and posing a risk to the mother's health, mention one possible option for them to consider.

(c) Is the process mentioned in (b) safe for Lalita at the current gestational age? Justify.

(d) Under what conditions is the process mentioned in (b) illegal?

32 Shown below is a pedigree of an individual X who is suffering from ocular albinism which results in permanent vision loss. Use the pedigree to answer the questions that follow:

(a) Complete the following statement about this disease:

The trait for the disease is linked to ______ (X-chromosome/Y-chromosome/autosome) and is ______ (dominant/recessive).

(b) Give a reason to support your answer to (a).

(c) Identify the genotypes of individuals P, Q, R and S marked in the pedigree.

OR

Shown below is a nucleotide sequence and the genetic code.

5' - ATGCGTAGACTCGTA - 3'

			2	nd ba	se in co	nobc			
			U	C	A	G			
		U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr STOP STOP	Cys Cys STOP Trp	DUAG		
	in codon	С	Leu Leu Leu Leu	Pro Pro Pro Pro	His His Gin Gin	Arg Arg Arg Arg	UCAG	in codon	
	1st base	A	lle lle Met	Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	DUAG	3rd base	
		G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu		UCAG		
	(b) The first guanine bas type of mutation caused (c) Will the mutated seq	by t	the r this c this c	hangerman	otide e. n mRN	seque NA ar	ence	changes to cytosine. Identify the otein? Justify.	
33	 (a) Classify the following answer. (i) A fetus receives antibe (ii) A person accidentalle (iii) A person receives a against a disease. (b) Zoya is bitten by an another non-infected Arrimmediately. How likely 	g sc oodie y ge bloe infee oph	enari es fro ets cu od tra cted A eles 1 Zaheo	os as om its t by a unsfu Anop mosq er to	activ s moth a blad sion f heles uito b get m	e/pas ner thr e and rom a mosc pites Z alaria	sive roug laten don juito Zoya ? Jus	immunity and justify your h the placenta. r receives a tetanus shot. for who has been vaccinated in the morning. In the evening, and then bites Zaheer stify your answer.	5
	OR								
	A patient is suffering fro observing an increasing a very short time.	om f nun	atigu 1ber a	e, hig and si	gh fev ize of	er, an lump	nd we os in ¹	eight loss, and has been various regions of her body over	

(a) What could she be suffering from?
(b) Mention FOUR ways in which the disease identified in (a) is caused and FOUR
techniques that can be used to diagnose it.

Additional Practice Questions Subject: Chemistry Theory (043) Class: XII 2023-24

Max. marks: 70

Time: 3 hours

General Instructions:

- (a) There are 33 questions in this question paper with internal choice.
- (b) **SECTION A** comprises **16** multiple -choice questions carrying 1 mark each.
- (c) **SECTION B** comprises **5** short answer questions carrying 2 marks each.
- (d) **SECTION C** comprises **7** short answer questions carrying 3 marks each.
- (e) **SECTION D** comprises **2** case based questions carrying 4 marks each.
- (f) **SECTION E** comprises **3** long answer questions carrying 5 marks each.
- (g) All questions are compulsory.
- (h) Use of log tables and calculators is not allowed.

Section A

The following questions are multiple -choice questions with one correct answer. Each question carries 1 mark. There is no internal choice in this section.

	 Which of the following statements is INCORRECT? (a) Electrons flow from Zn rod to Cu rod hence current flows from Cu to Zn in case (P). (b) The chemical reaction takes place in case (Q) till the opposing voltage reaches 1.1 V. (c) Zinc is deposited at the zinc electrode and copper dissolves at copper electrode in case (P). (d) Electrons flow from Cu to Zn and current flows from Zn to Cu in case (R). 								
2	 Two compounds M and N have the general formula C_nH_{2n}O but different structural formulae. i) Compound N belongs to that homologous series where the first member contains 3 carbon atoms. ii) Compound M reacts with one equivalent of monohydric alcohol in the presence of dry hydrogen chloride to yield a hemiacetal. Identify the homologous series to which compounds M and N belong to? (a) Both the compounds are aldehydes. (b) Compound M is an aldehyde and compound N is a ketone. (c) Both the compounds are ketones. (d) Compound N is an aldehyde and compound M is a ketone. 								
3	During a q characteris	uiz comp stics of R	petition, team A and team B have to answer a tie question on the NA.						
	Name	Team	Response						
	Adrika	A	Different RNA molecules of a cell are involved in the synthesis of proteins.						
	Shaakho	Α	The single-stranded helix of RNA folds upon itself to form the secondary structure.						
	Rounak	В	The C-2 atom of the pentose sugar for a ribose nucleotide contains an -OH group.						
	RitamaBThe message for the synthesis of a particular protein is present only in the RNA.What is the expected result of the quiz and why? (a) Team A wins the quiz as both the responses are correct. (b) Team B wins the quiz as both the responses are correct. (c) Team A loses the quiz as Adrika's response is incorrect. (d) Team B loses the quiz as Rounak's response is incorrect.								

	following reaction?						
	Metal + conc. sulphuric acid → Metal sulphate + sulphur dioxide + water (a) Cu (b) Co (c) Ti (d) Zn						
7	7 The table given below shows the results of three experiments on the rate of the reaction between compounds P and Q at a constant temperature.						ate of the
	Experiment	xperimentThe initial concentration of P (mol dm-3)		The initi of Q (mo	The initial concentration of Q (mol dm ⁻³)		Initial rate (mol dm ⁻³ s ⁻¹)
	1	0.1		0.2			1.10 x 10 ⁻⁴
	2	0.3		0.2			9.91 x 10 ⁻⁴
	3	0.3		0.1		4.96 x 10 ⁻⁴	
	Based on the data, what will be the rate equation for the reaction between P and Q?						
	(a) k[P] ² [Q] (b) k[P][Q] ² (c) k[P][Q] (d) k[P]						
8 The table below shows the K _H values for some gasses at 293 K and at the s pressure.					he same		
	K _H values (kbar)	144.97	69.16	76.48	34.86		
	Gas	Heliu m	Hydrogen	Nitrogen	Oxygen		
In which of the following are the gases arranged in their decreasing order of (from left to right)?					der of solubility		
	(a) Helium > M (b) Hydrogen	litrogen > Hyc > Helium > Ni	lrogen > Oxy trogen > Oxy	vgen vgen			
	(c) Nitrogen > (d) Oxygen > I	Hydrogen > (Iydrogen > Ni)xygen > Hel trogen > Hel	ium lium			
9	Sampriti took 4 acids. Help her to arrange the acids from left to right, in the increasing order of their acidity: 2, 4, 6 - Trinitrophenol, acetic acid, phenol, and benzoic acid.						

	(a) 2, 4, 6 - Trinitrophenol, acetic acid, benzoic acid, phenol
	(b) phenol, acetic acid, benzoic acid, 2, 4, 6 - Trinitrophenol
	(c) 2, 4, 6 - Trinitrophenol, benzoic acid, acetic acid, phenol
	(d) phenol, benzoic acid, acetic acid, 2, 4, 6 – Trinitrophenol
10	
10	An archeologist found that the percentage of carbon-14 in a wooden artifact was 20%
	of what carbon-14 would have been in the wood when it was cut from the tree.
	What would be the expressionate are of this weeden entifiert?
	What would be the approximate age of this wooden at matter $(C_{inspired})$
	(Given the hulf-life of curbon-14– 5750 years)
	(a) 5,790 years
	(b) 12,060 years
	(c) 13,300 years
	(d) 38,000 years
4.4	Constructioner a basilities a construction of the clock o
11	Sourima was naving a severe neadacne. She took a medicine to relieve her pain. The
	medicine is industrially prepared by:
	(a) mononitration of phenyl methanoate
	(b) acetylation of salicylic acid in presence of an acid
	(c) hydrogenation of anisole with Br_2 in ethanoic acid
	(d) nitration of anisole with a mixture of concentrated sulphuric and nitric acids
10	
12	Which of the following options give the correct arrangement of the atomic radii of the
	3d, 4d, and 5d transition series of elements?
	(a) atomic radii of 3d < atomic radii of 4d < atomic radii of 5d
	(b) atomic radii of 3d < atomic radii of 4d ≈ atomic radii of 5d
	(c) atomic radii of 3d ≈ atomic radii of 4d > atomic radii of 5d
	(d) atomic radii of 3d > atomic radii of 4d > atomic radii of 5d
13	Two statements are given below - one labelled Assertion (A) and the other labelled
	Reason (R).
	Assertion (A): 2-Methoxy-2-methyl propane reacts with hydrogen lodide to form
	methyl alcohol and 2-1000-2-methylpropane. Posson (P): The reaction given in (A) follows $S_{\rm W}^2$ mechanism
	Which of the following is correct?
	which of the following is correct:
	(a) Both A and R are true, and R is a correct explanation of A.
	(b) Both A and R are true, but R is not the correct explanation of A.
	(c) A is true, but R is false.
	(d) A is false, but R is true.
1.4	Two statements are since below, and be lad Assertion (A) and the other labeled
14	I wo statements are given below - one labeled Assertion (A) and the other labeled
	Assertion (A): In acetaldebyde the carbonyl carbon acts as a Lowis acid and the
	carbonyl oyygen acts as a Lewis hase
	כמו שטחוניו טאנצברו מכנס מס מ בביאים שמסב.

	 Reason (R): Carbonyl compounds have substantial dipole moments. Which of the following is correct? (a) Both A and R are true, and R is a correct explanation of A. (b) Both A and R are true, but R is not the correct explanation of A. (c) A is true, but R is false. (d) A is false, but R is true.
15	 Two statements are given below - one labelled Assertion (A) and the other labelled Reason (R). Assertion (A): Denaturation of protein does not change the primary structure of proteins. Reason (R): The bonding between the carbon and hydrogen atoms during denaturation of proteins remains intact. Which of the following is correct? (a) Both A and R are true, and R is the correct explanation of A. (b) Both A and R are true, but R is not the correct explanation of A. (c) A is true, but R is false. (d) A is false, but R is true.
16	Two statements are given below - one labelled Assertion (A) and the other labelled Reason (R). Assertion (A): Copper does not form copper (II) sulphate on reaction with dil. sulphuric acid. Reason (R): The standard potential for Cu ⁺² Cu electrode is negative. Which of the following is correct? (a) Both A and R are true, and R is a correct explanation of A. (b) Both A and R are true, but R is not the correct explanation of A. (c) A is true, but R is false. (d) A is false, but R is true.

Section B

This section contains 5 questions with internal choice in one question. The following questions are very short answer type and carry 2 marks each.

17		. (
1/	Given below is a graph of concentration of reactant vs time	e for a reaction.				
	acta					
	G					
	(a) Based on the granh above draw a rate of reaction vs co	ncentration of reactant				
	graph for the same reaction.	neend adon of reactant				
	(b) What will be the order of this reaction? Justify.					
18	'Colligative properties help in determining the molar mass	ses of the solutes.'				
	The method based on which colligative property is prefer	red over others for				
	determining molar masses of biomolecules and why?					
19	In which of the two compounds CH ₃ CH ₂ CH ₂ Cl or C ₆ H ₅ Cl w	ill the C-Cl bond be longer?				
	Why?					
20	Correctly match the items in the 'Reactants' column with t	hose in the 'Product'				
20	column.					
	column.					
	column.					
	column. Reactants	Products				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and	Products (i) Butanal				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO ₄ and H ₂ SO ₄	Products (i) Butanal				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the	Products(i) Butanal(ii) 2-Chloro-2-				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid	Products(i) Butanal(ii) 2-Chloro-2- phenylacetic acid				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid	Products(i) Butanal(ii) 2-Chloro-2- phenylacetic acid(iii) Adipic acid				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid	Products(i) Butanal(ii) 2-Chloro-2- phenylacetic acid(iii) Adipic acid				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO ₄ and H ₂ SO ₄ (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid	Products(i) Butanal(ii) 2-Chloro-2- phenylacetic acid(iii) Adipic acid(iii) Adipic none				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid	Products(i) Butanal(ii) 2-Chloro-2- phenylacetic acid(iii) Adipic acid(iv) Propiophenone				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid OR	Products(i) Butanal(ii) 2-Chloro-2- phenylacetic acid(iii) Adipic acid(iii) Propiophenone				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid OR Aqueous hydrogen cyanide is allowed to react separately of the second s	Products(i) Butanal(ii) 2-Chloro-2- phenylacetic acid(iii) Adipic acid(iv) Propiophenone				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid OR Aqueous hydrogen cyanide is allowed to react separately In which case will the rate of reaction be faster and why?	Products(i) Butanal(ii) 2-Chloro-2- phenylacetic acid(iii) Adipic acid(iv) Propiophenonewith propanone and ethanal.				
	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid OR Aqueous hydrogen cyanide is allowed to react separately in which case will the rate of reaction be faster and why?	Products (i) Butanal (ii) 2-Chloro-2- phenylacetic acid (iii) Adipic acid (iv) Propiophenone				
21	Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid OR Aqueous hydrogen cyanide is allowed to react separately in which case will the rate of reaction be faster and why? Glucose does not give a positive result with the Schiff's real paged on the character	Products (i) Butanal (ii) 2-Chloro-2- phenylacetic acid (iii) Adipic acid (iv) Propiophenone with propanone and ethanal. agent in the Schiff's test.				
21	Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid OR Aqueous hydrogen cyanide is allowed to react separately with the case will the rate of reaction be faster and why? Glucose does not give a positive result with the Schiff's real Based on the above information (a) Cive a reason for the observation	Products (i) Butanal (ii) 2-Chloro-2- phenylacetic acid (iii) Adipic acid (iv) Propiophenone with propanone and ethanal. agent in the Schiff's test.				
21	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid OR Aqueous hydrogen cyanide is allowed to react separately in which case will the rate of reaction be faster and why? Glucose does not give a positive result with the Schiff's real Based on the above information (a) Give a reason for the observation.	Products (i) Butanal (ii) 2-Chloro-2- phenylacetic acid (iii) Adipic acid (iv) Propiophenone with propanone and ethanal. agent in the Schiff's test.				
21	column. Reactants (a) Cyclohexene heated in the presence of KMnO4 and H2SO4 (b) Propanenitrile hydrolysed after reduction in the presence of stannous chloride and hydrochloric acid OR Aqueous hydrogen cyanide is allowed to react separately in which case will the rate of reaction be faster and why? Glucose does not give a positive result with the Schiff's real Based on the above information (a) Give a reason for the observation. (b) What type of carbonyl group is present in a glucose model	Products (i) Butanal (ii) 2-Chloro-2- phenylacetic acid (iii) Adipic acid (iv) Propiophenone with propanone and ethanal. agent in the Schiff's test. oblecule?				

Section C

	(a) 3-Methylphenol				
	(b) 2,4,6-Trinitrophenol				
	(c) Benzene-1,3-diol				
25	(a) If acetaldehyde, propane, propanone, acetic acid, and ethyl alcohol are arranged in the increasing order of their boiling points, which two compounds are expected to be at the third and the fourth position?				
	(b) The resonance structures of the carboxylic acid group are shown below, which of them is the most stable and why?				
	$-c \xrightarrow{\diamond} -c \xrightarrow{\diamond} -c \xrightarrow{\diamond} -c$				
	ё-н ё-н				
	(1) (2) (3)				
26	(a) Write a balanced equation for the reaction between glucose and hydrogen cyanide. What inference can we draw from it?				
	(b) Samta reacted glucose with acetic anhydride. Will the reaction help her to determine the number of secondary alcoholic groups and the number of primary alcoholic groups that are present in a glucose molecule? Justify your answer.				
27	Three sets of pairs (i) and (ii) of S_N1 reactions are given below. For each set of reactions state which reaction (i) or (ii) is expected to be slower? Justify your answer.				
	(a) (i) $(CH_3)_3CCl + CH_3CH_2O^- \rightarrow (CH_3)_3COCH_2CH_3 + Cl^- [In presence of ethanol]$				
	(ii) $(CH_3)_3CCl + 2 CH_3CH_2O^- \rightarrow (CH_3)_3COCH_2CH_3 + Cl^- [In presence of ethanol]$				
	(b) (i) $(CH_3)_3CCl + H_2O \rightarrow (CH_3)_3COH + HCl$				
	(ii) $(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$				
	(c)(i) (CH ₃) ₃ CCl + H ₂ O \rightarrow (CH ₃) ₃ COH + HCl				
	(ii) $C_6H_5Cl + H_2O \rightarrow C_6H_5OH + HCl$				
28	(a) Write any four methods to increase the rate of a reversible reaction in the forward direction.(b) What is the unit for rate of reaction in SI units?				

Section D

The	following questions are case -based questions. Each question has an internal choice and carries 4 marks.					
29	One of the most distinctive properties of transition metal complexes is their wide cange of colours. This means that some of the visible spectrum is being removed from white light as it passes through the sample, so the light that emerges is no onger white. The colour of the complex is complementary to that which is absorbed. The complementary colour is the colour generated from the wavelength left over; for example, if green light is absorbed by the complex, the complex appears red.					
The colour of a co-ordination compound depends on two factors: - presence of ligands: For example, anhydrous CuSO4 is white, but CuSO4.5 in colour.						
	- influence of ligands: If ligands like 'en' are added to $[Ni(H_2O)_6]^{2+}$ in the molar ratios en: Ni, 1:1, 2:1, 3:1 a series of reactions and their associated colour changes occur.					
	(a) Give an example of another complex that shows properties similar to those shown in the compound of Cu mentioned above. What is the geometry of the central metal atom of this complex?					
	(b) What is the type of ligand added above to [Ni(H ₂ O) ₆] ²⁺ to demonstrate the influence of ligand on colours of complex compounds?					
(c) Complete the table given below:						
	en:N Colour absorbed i					
	2:1					
	3:1					
	OR					
	en:N Formula of the ion formed					
	1:1					
	3:1					
30	Conductivity measurements are used routinely in many industrial and environmental applications as a fast, inexpensive and reliable way of measuring the ionic content in a solution.					

For example, the measurement of conductivity is a typical way to monitor and continuously trend the performance of water purification systems.

In many cases, conductivity is linked directly to the total dissolved solids (TDS). High quality deionized water has a conductivity of about 5×10^{-6} S/m at STP, typical drinking water is in the range of 0.02–0.08 S/m, while sea water is about 5 S/m.

According to research, the TDS in a sample of fresh water can be calculated as TDS $(mg/L) = 10^4 \times 0.65 \times conductivity (S/m).$

The conductivity of a sample of water taken from a borewell is given as 0.13 S/m at STP.

A conductivity cell is created using the water above. The resistance of the cell is found to be 10 ohms.

(a) What is the cell constant of the cell given above?

(b) What is the amount of TDS in the sample of water taken?

(c) According to some studies TDS of 250 mg/L represents a good source of drinking water. What would the conductivity of such a sample of water be? If such water was made by diluting the sample of water given above, what would be the resistance of a conductivity cell made using that?

OR

If the resistance of a cell made from diluting the sample of water taken above was found to be 79 ohms, calculate the TDS of the new sample.

Section E

The following questions are long answer type and carry 5 marks each. All questions have an internal choice.

31 Answer any **five** questions with respect to the series of ions given below: Sc⁺³, Ti⁺⁴, V⁺⁴, V⁺², Cr⁺², Fe⁺³, Ni⁺², Cu⁺², Zn⁺²

(a) Which of these ions are isoelectronic?

(b) Why do Sc⁺³, Ti⁺⁴, and Zn⁺² form colourless aqueous solution?

(c) Which ion(s) from the list is/are not transition element(s) and why?

(d) Cr forms two types of oxides - Cr^{+2} and Cr^{+3} . Which of them is expected to turn red litmus blue?

(e) Arrange the following ions in the increasing order of their magnetic moments: Sc^{+3} , V^{+2} , V^{+4} , Ni^{+2} .

(f) Why are alloys mostly prepared from transition metals?

(g) Which ion can also has a +1 oxidation state?

	[Atomic numbe	r of Sc - 21 Ti - 22 V - 2	3 Cr-24 Fe-26 Ni-28 Cu	-29 7n-301	
32	The following table contains osmotic pressure data for three compounds dissolved in various solvents.				
	Collulação				
	Cellulose	12.5	0.0021		
	Protein	28.5	0.0026		
	Haemoglobin	5	0.0018		
	(R = 0.083 L bai	r mol ⁻¹ K ⁻¹)			
	 (a) If the concentration of protein is doubled keeping all other variables constant, what will be the osmotic pressure of the new solution? (b) When one litre of cellulose solution was heated to 315 K, its osmotic pressure changed to 0.00248 atm. What is the molecular mass of the cellulose in the solution? (c) A solution of 10 g of protein in a litre of solvent was found to be isotonic to the haemoglobin solution given above in the table, at the same temperature. If the molecular weight of the protein is 130,000 g/mol, what is the molecular weight of haemoglobin. 				
	OR				
	The relation between the osmotic pressure of three solutions A, B, and C is: $\pi_B < \pi_C$ $\pi_C > \pi_A$ $\pi_A > \pi_B$				
	The three solutions have the same molarity and are at the same temperature. (a) For which of the solutions is the value of 'i' expected to be the greatest? Give a reason.			mperature. greatest? Give a	
	(b) Which of the solutions is MOST LIKELY to be glucose, potassium sulphate, and sodium chloride?				
	(c) Which of the solutions is expected to give a vapour pressure-mole fraction graph similar to that of an acetone-chloroform mixture? Give reason.				
33	The compound anhydride in pr reaction.	$C_6H_5NHCOCH_3$ is obtained esence of pyridine. This of the sence of pyridine is the sence of pyridine is the sence of t	ed when compound A reac compound A does not und	ts with acetic ergo Friedel-Crafts	
	 (a) Write the reaction showing the formation of C₆H₅NHCOCH₃ from compound A. (b) The pH of the aq. solution of A is less than 7. Is this statement true? Give reason. (c) State what type of functional group can be introduced into compound A, that will: (i) increase the pH of the aqueous solution 				

(ii) decrease the pH of the aqueous solution
(d) What do you observe when compound A reacts with bromine water at room temperature? **OR**Parul was given two test tubes. One of the test tubes contained ethyl amine and the other contained aniline. To distinguish between the two compounds, she adds a reagent X to both the test tubes. She observes that in only one of the test tubes a yellow dye is formed.
(a) Identify the reagent X.
(b) Describe how this reagent is prepared and give a reason why it is not readily available in a laboratory.
(c) Which of the two compounds forms the yellow dye?
(d) Draw the structure of the yellow dye formed.

Additional Practice Questions Subject: Mathematics (041) Class: XII 2023-24

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQs and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

SECTION A

(This section comprises of Multiple-choice questions (MCQ) of 1 mark each.)

Serial No.	Question	Marks
1	For any 2×2 matrix P, which of the following matrices can be Q such that PQ = QP?	1
	(a) ^[1]	
	$(c)\begin{bmatrix}1 & 1\\1 & 1\end{bmatrix}$	
	(No such matrix exists as matrix $_{\rm (d)}$ multiplication is not commutative.)	

1

V is a matrix of order 3 such that |adj V| = 7.

Which of these could be |V|?

- (a) 7^2 (b) 7 (c) $\sqrt{7}$ (d) $\sqrt[3]{7}$
- 3

The points D, E and F are the mid-points of AB, BC and CA respectively. 1

(Note: The figure is not to scale.)

What is the area of the shaded region?

(a) 2 sq units (b) $\frac{3}{2}$ sq units (c) $\frac{1}{2}$ sq units (d) $(2\sqrt{26} - 1)$ sq units

4

If $f(x) = \cos^{-1}\sqrt{x}$, 0 < x < 1, which of the following is equal to f(x)?

(b)
$$\frac{1}{\sqrt{1-x}}$$

(c) $\frac{1}{2\sqrt{x(1-x)}}$
(d) $\frac{-1}{2\sqrt{x(1-x)}}$

5

A function $f: R \rightarrow R$ is defined by:

$$f(x) = \begin{cases} e^{-2x}, & x < \ln \frac{1}{2} \\ 4, & \ln \frac{1}{2} \le x \le 0 \\ e^{-2x}, & x > 0 \end{cases}$$

Which of the following statements is true about the function at the point $x = \ln \frac{1}{2}$?

(a) f(x) is not continuous but differentiable.
(b) f(x) is continuous but not differentiable.
(c) f(x) is neither continuous nor differentiable.
(d) f(x) is both continuous as well as differentiable.

6

In which of these intervals is the function $f(x) = 3x^2 - 4x$ strictly decreasing? 1

(a) $(-\infty, 0)$ (b) (0, 2)(c) $(\frac{2}{3}, \infty)$ (d) $(-\infty, \infty)$

7 Which of these is equal to $\int e^{(x \log 5)} e^x dx$, where *C* is the constant of integration?

 $\begin{array}{c} (a) \frac{(5e)^{x}}{\log 5e} + C \\ (b) \log 5^{x} + x + C \\ (c) 5^{x} e^{x} + C \\ (d) (5e)^{x} \log x + C \end{array}$

1

8 Shown below is the curve defined by the equation $y = \log (x + 1)$ for $x \ge 0$. 1

Which of these is the area of the shaded region?

(a) 6log(2) - 2 (b) 6log(2) - 6 (c) 6log(2) (d) 5log(2)

9

In which of the following differential equations is the degree equal to its order? 1

(a)
$$x^{3} \left(\frac{dy}{dx}\right) - \frac{d^{3}y}{dx^{3}} = 0$$

(b) $\left(\frac{d^{3}y}{dx^{3}}\right)^{3} + \sin\left(\frac{dy}{dx}\right) = 0$
(c) $x^{2} \left(\frac{dy}{dx}\right)^{4} + \sin y - \left(\frac{d^{2}y}{dx^{2}}\right)^{2} = 0$
(d) $\left(\frac{dy}{dx}\right)^{3} + x \left(\frac{d^{2}y}{dx^{2}}\right) - y^{3} \left(\frac{d^{3}y}{dx^{3}}\right) + y = 0$

- 10 Kapila is trying to find the general solution of the following differential equations.
 - (i) $xe^{\frac{x}{y}}dx ye^{\frac{3x}{y}}dy = 0$
 - (ii) $(2x + 1)\frac{dy}{dx} = 3 2y$
 - (iii) $\frac{dy}{dx} = \sin x \cos y$

Which of the above become variable separable by substituting y = b.x, where *b* is a variable?

- (a) only (i)
 (b) only (i) and (ii)
 (c) all (i), (ii) and (iii)
 (d) None of the above
- 11 For which of these vectors is the projection on the y-axis zero?
- 1

1

- (i) $2\hat{j}$ (ii) $-5\hat{k}$ (iii) $\hat{i} - 4\hat{k}$ (a) only (i) (b) only (ii) (c) only (i)
- (c) only (i) and (ii)(d) only (ii) and (iii)

12 If $(\hat{i} + \lambda \hat{j}) \times (5\hat{i} + 3\hat{j} + \sigma \hat{k}) = 0$, what are the values of λ and σ ?

- 1
- (a) $\lambda = \frac{3}{5}, \sigma = 0$ (b) $\lambda = \frac{5}{3}, \sigma = 5$ (c) $\lambda = 3, \sigma = 0$ (d) (cannot be found as there are two unknowns and only one equation)

A line $\overrightarrow{\mathsf{OP}}$ in space, represented by the figure below, has a magnitude of 2 $\sqrt{2}$ units. 1

Which of these are the direction ratios of \overrightarrow{OP} ?

(a) $(2, \sqrt{2}, 2)$ (b) $(\sqrt{2}, 2, \sqrt{2})$ (c) $(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2})$ (d) $(2\sqrt{2}, 2\sqrt{2}, 2\sqrt{2})$

14 A line *m* passes through the point (-4, 2, -3) and is parallel to line *n*, given by: 1 $\frac{-x-2}{4} = \frac{y+3}{-2} = \frac{2z-6}{3}$

The vector equation of line m is given by:

 $\vec{r} = (-4\hat{i} + 2\hat{j} - 3\hat{k}) + \lambda(p\hat{i} + q\hat{j} + r\hat{k}), \text{ where } \lambda \in \mathbf{R}$

Which of the following could be the possible values for p, q and r?

(a) p = 4, q = (-2), r = 3(b) p = (-4), q = (-2), r = 3(c) p = (-2), q = 3, r = (-6)(d) p = 8, q = 4, r = (-3)

15 L_1 and L_2 are two skew lines.

How many lines joining L_1 and L_2 can be drawn such that the line is perpendicular to both L_1 and L_2 ?

(a) exactly one(b) exactly two(c) infinitely many(d) (there cannot be a line joining two skew lines such that it is perpendicular to both)

16 A linear programming problem (LPP) along with the graph of its constraints is 1 shown below. The corresponding objective function is Minimize: Z = 3x + 2y. The minimum value of the objective function is obtained at the corner point (2, 0).

The optimal solution of the above linear programming problem _____.

(a) does not exist as the feasible region is unbounded.

(b) does not exist as the inequality 3x + 2y < 6 does not have any point in common with the feasible region.

(c) exists as the inequality 3x + 2y > 6 has infinitely many points in common with the feasible region.

(d) exists as the inequality 3x + 2y < 6 does not have any point in common with the feasible region.

17 The feasible region of a linear programming problem is bounded. The corresponding objective function is Z = 6x - 7y.

The objective function attains _____ in the feasible region.

- (a) only minimum
- (b) only maximum
- (c) both maximum and minimum
- (d) either maximum or minimum but not both

18

M and N are two events such that $P(M \cap N) = 0$.

1

1

Which of the following is equal to $P(M|(M \cup N))$?

(a)
$$\frac{P(M)}{P(N)}$$

(b) $\frac{P(M \cup N)}{P(M \cup N)}$
(c) $\frac{P(M)}{P(M) + P(N)}$

(d)
$$\frac{P(M)}{P(M) \times P(N)}$$

19 $X = \{0, 2, 4, 6, 8\}.$ P is a relation on X defined by P = $\{(0, 2), (4, 2), (4, 6), (8, 6), (2, 4), (0, 4)\}.$

Based on the above information, two statements are given below - one labelled Assertion (A) and the other labelled Reason (R). Read the statements carefully and choose the option that correctly describes statements (A) and (R).

Assertion (A): The relation P on set X is a transitive relation.

Reason (R): The relation P has a subset of the form $\{(a, b), (b, c), (a, c)\}$, where $a, b, c \in X$.

(a) Both (A) and (R) are true and (R) is the correct explanation for (A).
(b) Both (A) and (R) are true but (R) is not the correct explanation for (A).
(c) (A) is true but (R) is false.
(d) (A) is false but (R) is true.

20 Two statements are given below - one labelled Assertion (A) and the other labelled Reason (R). Read the statements carefully and choose the option that correctly describes statements (A) and (R).

Assertion (A): The maximum value of the function $f(x) = x^5, x \in [-1, 1]$, is attained at its critical point, x = 0.

Reason (R): The maximum of a function can only occur at points where derivative is zero.

(a) Both (A) and (R) are true and (R) is the correct explanation for (A).

(b) Both (A) and (R) are true but (R) is not the correct explanation for (A).

(c) (A) is false but (R) is true.

(d) Both (A) and (R) are false.

SECTION B

(This section comprises of very short answer type-questions (VSA) of 2 marks each.)

Serial No.	Question	Marks
21	Find the domain of the function $y = \cos^{-1}(x - 1)$. Show your steps.	2
	OR	
	Draw the graph of the following function:	2
	$y = 2\sin^{-1}(x), \ -\pi \le y \le \pi$	
22	The sum of a matrix and its transpose is $\begin{bmatrix} 6 & -1 \\ -1 & 4 \end{bmatrix}$.	2
	Find one such matrix for which this holds true. Show your work.	
23	If $x = \cot t$ and $y = \operatorname{cosec}^2 t$, find:	2

i) <u>dy</u>

ii) $\frac{d^2y}{dx^2}$

Show your steps.

24 Iqbal, a data analyst in a social media platform is tracking the number of active 2 users on their site between 5 pm and 6 pm on a particular day.

The user growth function is modelled by $N(t) = 1000e^{0.1t}$, where N(t) represents the number of active users at time *t* minutes during that period.

Find how fast the number of active users are increasing or decreasing at 10 minutes past 5 pm. Show your steps.

OR

The population of rabbits in a forest is modelled by the function below:

 $P(t) = \frac{2000}{1 + e^{-0.5t}}$, where P represents the population of rabbits in t years

Determine whether the rabbit population is increasing or not, and justify your answer.

25 Solve the integral:

I = $\int x(k-x)^{23} dx$, where k is a constant

Show your steps.

SECTION C

(This section comprises of short answer type questions (SA) of 3 marks each)

Serial No.	Question	Marks
		3
26		

2

Solve the integral:

 $I = \int \frac{3x+5}{x^2+4x+7} dx$

Show your work.

Evaluate the integral:

 $\int_0^{\frac{\pi}{2}} \frac{\sin \theta \ d\theta}{(25 + \cos \theta)(26 + \cos \theta)}$

Show your steps.

OR

Using the properties of definite integrals, prove the following: $\int_0^{\pi} h(\sin x) \, dx = 2 \int_0^{\frac{\pi}{2}} h(\sin x) \, dx, \text{ where } h(\sin x) \text{ is a function of } \sin x.$

State the property used.

28 When an object is thrown vertically upward, it is under the effect of gravity 3 and air resistance. For small objects, the force due to air resistance is numerically equal to some constant k times v, where v is the velocity of the object (in m/s) at time t (s).

This situation can be modelled as the differential equation shown below.

 $m\frac{\mathrm{d}v}{\mathrm{d}t} = -F_R - mg$

where, m is the mass of the object in kg. $\frac{dv}{dt}$ is the acceleration of the object in m/s². F_R is the force due to air resistance. g is the acceleration due to gravity (10 m/s²).

A tennis ball of mass 0.050 kg is hit upwards with a velocity of 10 m/s. An air resistance numerically equal to 0.4v acts on the ball.

(i) Model the above situation using a differential equation.

(ii) Write an expression for the velocity of the ball in terms of the time.

Show your work.

27

3

3

Shown below is a curve.

 L_1 is the tangent to any point (x, y) on the curve. L_2 is the line that connects the point (x, y) to the origin.

The slope of L_1 is one third of the slope of L_2 .

Find the equation of the curve. Show your work.

OR

Given $x + (y + 1)\frac{dy}{dx} = 2$.

(i) Solve the differential equation and show that the solution represents a family of circles.

(ii) Find the radius of a circle belonging to the above family that passes through the origin.

Show your work.

30 Each unit of Product A that a company produces, is sold for Rs 100 with a production cost of Rs 60 and each unit of Product B is sold for Rs 150 with production cost of Rs 90. On a given day, the company has a budget of Rs 8000 to spend on production. The production process makes it such that they can only produce a maximum of 100 units each day. Also, the number of product B produced cannot be more than twice as many of Product A.

> Frame a linear programming problem to determine how many units of Product A and B should the company produce in a day in order to maximize their profit?

(Note: No need to find the feasible region and optimal solution.)

OR

Shown below is the feasible region of a maximisation problem whose objective function is given by Z = 5x + 3y.

i) List all the constraints the problem is subjected to.ii) Find the optimal solution of the problem.

Show your work.

31 A company follows a model of bifurcating the tasks into the categories shown 3 below.

	URGENT	NOT URGENT
IMPORTANT	urgent and important	not urgent but important
NOT IMPORTANT	urgent but not important	not urgent and not important

At the beginning of a financial year, it was noticed that:

- \blacklozenge 40% of the total tasks were urgent and the rest were not.
- ♦ half of the urgent tasks were important, and
- \bullet 30% of the tasks that were not urgent, were not important

What is the probability that a randomly selected task that is not important is urgent? Use Bayes' theorem and show your steps.

SECTION D

(This section comprises of long answer-type questions (LA) of 5 marks each)

Serial No.	Question	Marks
32	 The Earth has 24 time zones, defined by dividing the Earth into 24 equal longitudinal segments. These are the regions on Earth that have the same standard time. For example, USA and India fall in different time zones, but Sri Lanka and India are in the same time zone. A relation R is defined on the set U = {All people on the Earth} such that R = {(x, y) the time difference between the time zones x and y reside in is 6 hours}. i) Check whether the relation R is reflexive, symmetric and transitive. ii) Is relation R an equivalence relation? 	5

5

5

A function $f: \mathbb{R} - \{-1, 1\} \rightarrow \mathbb{R}$ is defined by:

 $f(x) = \frac{x}{x^2 - 1}$

i) Check if *f* is one-one.ii) Check if *f* is onto.

Show your work.

33 Abdul threw a basketball in the direction of the basketball hoop which traversed a parabolic path in a vertical plane as shown below.

(Note: The image is for representation purpose only.)

The equation of the path traversed by the ball is $y = ax^2 + bx + c$ with respect to a *xy*-coordinate system in the vertical plane. The ball traversed through the points (10, 16), (20, 22) and (30, 25). The basketball hoop is at a horizontal distance of 70 feet from Abdul. The height of the basketball hoop is 10 feet from the floor to the top edge of the rim.

Did the ball successfully go through the hoop? Justify your answer.

(*Hint: Consider the point where Abdul is standing as the origin of the xy-coordinate system.*)

34 Shown below are concrete elliptical water pipes, each 10 feet in length.

The graph given above represents the inner circumference of the elliptical pipe, where x and y are in feet. Assume that the water flows uniformly and fully covers the inner cross-sectional area of the pipe.

Find the volume of water in the pipe at a given instant of time, in terms of π . Use the integration method and show your steps.

(*Note: Volume = Area of the base × Height*)

35 i) Find the vector and cartesian equations of the straight line passing through 5 the point (-5, 7, -4) and in the direction of (3, -2, 1).

ii) Find the point where this straight line crosses the xy-plane.

Show your work.

OR

Given below are two lines L_1 and L_2 :

L₁: 2x = 3y = -zL₂: 6x = -y = -4z

i) Find the angle between the two lines.ii) Find the shortest distance between the two lines.

Show your work.

SECTION E

(This section comprises of 3 case-study/passage-based questions of 4 marks each with two sub-questions. First two case study questions have three sub questions of marks 1, 1, 2 respectively. The third case study question has two sub questions of 2 marks each.)

Serial		
No.	Question	Marks

36 Answer the questions based on the given information.

The flight path of two airplanes in a flight simulator game are shown below. The coordinates of the airports P and Q are given.

Airplane 1 flies directly from P to Q.

Airplane 2 has a layover at R and then flies to Q.

The path of Airplane 2 from P to R can be represented by the vector $5\hat{i} + \hat{j} - 2\hat{k}$.

(Note: Assume that the flight path is straight and fuel is consumed uniformly throughout the flight.)

i) Find the vector that represents the flight path of Airplane 1. Show your steps.

ii) Write the vector representing the path of Airplane 2 from R to Q. Show 1 your steps.

iii) What is the angle between the flight paths of Airplane 1 and Airplane 2 2 just after takeoff? Show your work.

OR

iii) Consider that Airplane 1 started the flight with a full fuel tank.

2

Find the position vector of the point where a third of the fuel runs out if the entire fuel is required for the flight. Show your work.

37 Answer the questions based on the given information.

Rubiya, Thaksh, Shanteri, and Lilly entered a spinning zone for a fun game, but there is a twist: they don't know which spinner will appear on their screens until it is their turn to play. They may encounter one of the following spinners, or perhaps even both:

Different combinations of numbers will lead to exciting prizes. Below are some of the rewards they can win:

♦ Get the number '5', from Spinner A and '8' from Spinner B, and you'll win a music player!

♦ You win a photo frame if Spinner A lands on a value greater than that of Spinner B!

i) Thaksh spun both the spinners, A and B in one of his turns.

What is the probability that Thaksh wins a music player in that turn? Show your steps.

ii) Lilly spun spinner B in one of her turns.

What is the probability that the number she got is even given that it is a multiple of 3? Show your steps.

iii) Rubiya spun both the spinners.

What is the probability that she wins a photo frame? Show your work.

OR

iii) As Shanteri steps up to the screen, the game administrator reveals that for 2 her turn, the probability of seeing Spinner A on the screen is 65%, while that of Spinner B is 35%.

What is the probability that Shanteri gets the number '2'? Show your steps.

38 Answer the questions based on the given information.

Two metal rods, R_1 and R_2 , of lengths 16 m and 12 m respectively, are insulated at both the ends. Rod R_1 is being heated from a specific point while rod R_2 is being cooled from a specific point.

The temperature (T) in Celsius within both rods fluctuates based on the distance (*x*) measured from either end. The temperature at a particular point along the rod is determined by the equations T = (16 - x)x and T = (x - 12)x for rods R₁ and R₂ respectively, where the distance *x* is measured in meters from one of the ends.

i) Find the rate of change of temperature at the mid point of the rod that is being heated. Show your steps.

2

ii) Find the minimum temperature attained by the rod that is being cooled. 2 Show your work.

1

1

CBSE

ADDITIONAL PRACTICE QUESTIONS

Physics-Theory Class XII | 2023–24

Maximum marks: 70

Time Allowed: 3 hours

General instructions:

- 1. There are 33 questions in all. All questions are compulsory.
- 2. This question paper has five sections: Section A, Section B, Section C, Section D, and Section E.
- 3. All the sections are compulsory.
- 4. Section A contains sixteen questions, twelve MCQ and four Assertion Reasoning based of 1 mark each, Section B contains five questions of two marks each, Section C contains seven questions of three marks each, Section D contains two case study based questions of four marks each and Section E contains three long answer questions of five marks each.
- 5. There is no overall choice. However, an internal choice has been provided in one question in Section B, one question in Section C, one question in each CBQ in Section D and all three questions in Section E. You have to attempt only one of the choices in such questions.
- 6. Use of calculators is not allowed.

Q.No	Questions	Marks
	SECTION A	
1	An electric dipole having a dipole moment of 4×10^{-9} C m is placed in a uniform electric field such that the dipole is in stable equilibrium. If the magnitude of the electric field is 3×10^3 N/C, what is the work done in rotating the dipole to a position of unstable equilibrium? A. zero B. 1.2×10^{-5} J C. 2.4×10^{-5} J D. -1.2×10^{-5} J	1
2	An infinite line of charge has a linear charge density of 10^{-7} C/m. What will be the magnitude of the force acting on an alpha particle placed at a distance of 4 cm from the line of charge? A. 14.4×10^{-15} N B. 7.2×10^{-15} N C. 4.5×10^{4} N D. 9×10^{4} N	1

				An
3	The graph below emitted photoelec metal.	shows the variation tron with the frequ	n of the maximum kinetic energy of the ency of the incident radiation for a given	1
	Photoelectron kinetic energy (J)	,		
	Light fre	equency (Hz)		
	Which of the follo	owing gives the wo	rk function of the metal?	
	A. x-intercep B. y-intercep C. the slope of D. the area up	t t of the graph nder the graph		
4	When an electron level what happen	in an atom moves as to its kinetic and	from the ground state to a higher energy potential energies?	1
	kinetic energy	potential energy		
	A increases	Increases		
	B increases	Decreases		
	C decreases	Increases		
	D decreases	Decreases		
5	Two long and stra each other separa carrying a current below.	hight current-carryi ted by a distance of t of 4 A is placed be	ng wires, P and Q are placed parallel to f 10 cm. A wire 'R' of length 8 cm and etween the two wires P and Q as shown	1

7	Three students constru	uct a solenoid of	f length 35 cm. Th	ney are each given		
	insulated copper wire	of the same len	gth. The table bel	ow lists some details		
	about the solenoids m	ade by them.				
	Ν	Aagnetic field	Radius of	Core of solenoid		
		roduced	solenoid	•		
	Student I I	3 1	3 cm			
	Student 2 I	D 2	5 CIII			
	Student 5 I	D 3	0 011	all		
	Compare the magneti	a field produced	by the colonoide	mode by the three		
	compare the magnetic	l liela producec	i by the solenoids	made by the three		
	students.					
	$\Delta B_1 - B_2 < B_2$					
	$\begin{array}{c} R. B_1 = B_3 < B_2 \\ R. B_2 < B_1 < B_2 \end{array}$					
	$D_1 = B_3 < B_1 < B_2$ $C_2 = B_1 < B_2 < B_3$					
	D. $B_1 = B_2 > B_3$					
8	Δ charged particle '+a' having a mass 'm' moves in a uniform electric and					
U	A charged particle $+q$ having a mass in moves in a uniform electric and magnetic field. In which of the following scenarios will the path of the					
	charged particle be linear and described by the velocity time graph shown					
	charged particle be linear and described by the velocity time graph shown					
	below?					
	102					
	Ag /					
	leloc					
	†					
	O → Time					
	A. $E \perp B \perp veloc$	ity of the partic	le			
	A. $E \perp B \perp$ velocB. $E \parallel B$ and the	ity of the partic particle is initial	le lly at rest			
	A. $E \perp B \perp$ velocB. $E \parallel B$ and theC. $E \parallel B$ and the	ity of the partic particle is initial particle has an i	le lly at rest nitial velocity alo	ng the electric field		
	A. $E \perp B \perp veloc$ B. $E \parallel B$ and the p C. $E \parallel B$ and the p D. $E \perp B$ and the	ity of the partic particle is initial particle has an i particle has an	le lly at rest nitial velocity alo initial velocity alo	ng the electric field ong the electric field		
	A. $E \perp B \perp veloc$ B. $E \parallel B$ and the p C. $E \parallel B$ and the p D. $E \perp B$ and the	ity of the partic particle is initial particle has an i particle has an	le lly at rest nitial velocity alo initial velocity alo	ng the electric field ong the electric field		
9	 A. E ⊥ B ⊥ veloc B. E B and the j C. E B and the j D. E ⊥ B and the A pure resistor is complete 	ity of the partic particle is initial particle has an i particle has an mected to an AC	le lly at rest nitial velocity alo initial velocity alo power source as	ng the electric field ong the electric field shown below.		
9	A. $E \perp B \perp$ veloc B. $E \parallel B$ and the p C. $E \parallel B$ and the p D. $E \perp B$ and the A pure resistor is comp	ity of the partic particle is initial particle has an i particle has an nected to an AC	le lly at rest nitial velocity alo initial velocity alo	ng the electric field ong the electric field shown below.		
9	A. E L B L veloc B. E B and the p C. E B and the p D. E L B and the A pure resistor is com	ity of the partic particle is initial particle has an i particle has an nected to an AC	le lly at rest nitial velocity alo initial velocity alo power source as	ng the electric field ong the electric field shown below.		
9	A. E L B L veloc B. E B and the p C. E B and the p D. E L B and the A pure resistor is com	ity of the partic particle is initial particle has an i particle has an nected to an AC	le lly at rest nitial velocity alo initial velocity alo power source as	ng the electric field ong the electric field shown below.		
9	A. $E \perp B \perp veloc$ B. $E \parallel B$ and the p C. $E \parallel B$ and the p D. $E \perp B$ and the A pure resistor is com	ity of the partic particle is initial particle has an i particle has an i nected to an AC	le lly at rest nitial velocity alo initial velocity alo	ng the electric field ong the electric field shown below.		
9	A. E L B L veloc B. E B and the p C. E B and the p D. E L B and the A pure resistor is com	ity of the partic particle is initial particle has an i particle has an nected to an AC	le lly at rest nitial velocity alo initial velocity alo power source as	ng the electric field ong the electric field shown below.		
9	A. E L B L veloc B. E B and the p C. E B and the p D. E L B and the A pure resistor is com	ity of the partic particle is initial particle has an i particle has an i nected to an AC	le lly at rest nitial velocity alo initial velocity alo power source as	ng the electric field ong the electric field shown below.		

		A				
	II: The current in the resistor leads the voltage by $\pi/2$.					
	III: The average power dissipated by the resistor is zero.					
	A. only I					
	B. only I and II					
	C. only II and III					
	D. all - I, II and III					
10						
10	At what rate does the electric field change between the plates of a square	1				
	capacitor of side 5 cm, if the plates are spaced 1.2 mm apart and the voltage					
	across them is changing at a rate of ou \sqrt{s} ?					
	$\Delta = 7.2 \text{ y} 10^{-2} \text{ Vm}^{-1}\text{s}^{-1}$					
	B $30 \times 10^{-1} \text{ Vm}^{-1} \text{s}^{-1}$					
	$\frac{1}{C} = \frac{12 \times 10^2 \text{ Vm}^{-1} \text{s}^{-1}}{12 \text{ Vm}^{-1} \text{s}^{-1}}$					
	D. $5 \times 10^4 \text{ Vm}^{-1}\text{s}^{-1}$					
11	Three loops as shown below move into the magnetic field with a velocity v.	1				
		-				
	>V					
	x x x x x					
	x x x x x					
	Magnetic field					
	In which loop(s) will the induced emf be the largest at the instant when the					
	loops enter the magnetic field?					
	A. only P					
	B. only Q					
	C. only P and Q					
	D. only Q and R					
10		1				
12	The emission spectrum of an element is the spectrum of frequencies of em	1				
	radiations emitted due to electrons making a transition from a nigher energy					
	state to a lower ellergy state.					
	The diagram below shows electrons transitioning from higher energy states to					
	lower energy states					
1	lower energy states.					

	Reason (R): As per Einstein's photoelectric equation $hv = \phi + KE$, work function ϕ is directly proportional to the frequency v of the incident radiation.		
14	Assertion (A): The conductivity of intrinsic semiconductors increases with an increase in temperature. Reason (R): Increase in temperature decreases the average time between collisions of electrons.		
15	Assertion (A): The direction of the electric field is always perpendicular to the equipotential surface. Reason (R): Work is done by the electric force in moving a charge between any two points on an equipotential surface is zero.		
16	 Assertion (A): If the focal length of two convex lenses is the same, the lens with the larger diameter will produce brighter images. Reason (R): Convex lenses with larger diameters are able to focus light better. 		
	SECTION B		
17	The graph shows the variation in hole concentration with doping concentration in an extrinsic semiconductor doped with pentavalent impurities. 2.5 * 10 ⁷ 2-6 7 5 1.5-6 9 9 0.5-6 0 10 ¹³ 10 ¹⁴ 10 ¹⁵ 10 ¹⁶ 10 ¹⁷ 10 ¹⁶ Doping concentration, cm ⁻³ Why does the hole concentration reduce when pentavalent doping is increased?	2	
18	λ_{α} and λ_{p} are the wavelengths associated with a moving alpha particle and a proton respectively. Obtain the relation between velocities of the two particles for which, (a) $\lambda_{\alpha} > \lambda_{p}$ (b) $\lambda_{\alpha} = \lambda_{p}$	2	

24	(a) Compare the de Preclia wavelength associated with the electron in the	2
24	 (a) Compare the de Broglie wavelength associated with the electron in the third orbit to the circumference of the orbit. (b) In which of the following will the electrons have the same de Broglie wavelength? (i) Third orbit of He atom (ii) Fourth orbit of He atom (iii) Third orbit of Li atom (iv) Sixth orbit of Be atom 	3
25	Show your calculations. Using Kirchhoff's laws, calculate the current flowing through 4 Ω , 1 Ω , and 2 Ω resistors in the circuit shown below. P 4 Ω 0 1 Ω R 2 Ω 1 Ω R 1 Ω 6 V S	
26	Two charges A and B, each having a velocity of v, traverse circular paths in a uniform magnetic field as shown below.	3

	 (a) Compare the charge-to-mass ratio of the two particles A and B. Show the necessary mathematical calculations. (b) Which of the two particles is likely to be a proton if the other is an alpha particle? Give reason. 				
27	(a) A radio wave and an infrasonic wave have the same wavelength when travelling through air. Are their frequencies the same or different? Give a reason for your answer.				3
	(b) An electromagnetic wave traveling east has a magnetic field that oscillates vertically and has a frequency of 60 kHz and an rms strength of 8×10^{-9} T. Determine the frequency and the rms strength of the electric field. What is the direction of the electric field?				
28	 A circular ring of diameter 0.2 m is placed in a uniform magnetic field of 0.4 T. The ring is rotated about its diameter at a frequency of 60 Hz. (a) If the ring has 50 turns, then what is the maximum induced emf in the ring? (b) State one condition under which the induced emf in the circular ring will be zero? 				3
	OR				
	Given below are a few characteristics of sole	noids p and	q.		
		solenoid p	solenoid q		
	length of the solenoid	l (m)	l (m)		
	number of turns (N)	200	50		
	cross-sectional area of the wire	A (m ²)	A (m ²)		
	relative permeability of the core material	1	500		
	self-inductance	2 (mH)	?		
	What is the self-inductance of the solenoid q	?			
	SECTION)			
29	Read the following paragraph and answer	the questio	ns that follo	ow.	4

Reflected light undergoes a 180° phase shift when it falls on a denser medium from a rarer medium and no phase shift when it falls on a rarer medium from a denser medium. (Note: The thickness of coating is much less than the glass.) To answer the questions below, consider a monochromatic light of wavelength λ incident on the coating of thickness t at a small angle of incidence and n1 < n2 < n3. Also Consider PQ \approx t.

- (i) Which of the following occurs, if there is no coating on the glass?
 - A. The object behind the case looks distorted.
 - B. The colours of the object behind the glass case appear dull.
 - C. A reflection of the objects in front of the glass case is seen on the case.
 - D. Multiple reflections of the object behind the glass case are seen on the case

(ii) What is the path difference between rays 1 and 2? (Consider PQ \approx t.)

- A. t B. 2t C. λ
- D. 2λ

(iii) For what minimum thickness of the coating, do the two rays 1 and 2 undergo destructive interference? (*Remember the wavelength of the light ray changes as it moves from one media to another.*)

A. $n_2 \lambda/2$ B. $n_2 \lambda/4$ C. $\lambda/(2n_2)$ D. $\lambda/(4n_2)$

