PART : CHEMISTRY

Which of the following ions does not show disproportion reaction

(1) CIO-(2) ClO₂- (3) ClO₃

(4) ClO₄

Ans. (4)

Itdoesnotundergo CIO, disproportonationreaction

- Highest oxidation Sol.
- 2. Density of 3M NaOH is 1.25 g/mL. Molality of solution is (2) 3(1) 2.79(3) 2.17

(4) 2.65

Ans. (4)

1000×3 1000×M Sol. 1000d - M×MM_{solute} 1000×1.25-3×40

3. Arrange according to CFSE value

(i) [Co(NH3)4P+ (ii) [Co(NH₃)₆]³⁺ (iii) [Co(NH3)6P+ (iv) [Co(en)3P+

(1) (iv) > (ii) > (iii) > (i) (2) (iv) > (iii) > (i) (3) (i) > (ii) > (ii) > (iv) (4) (i) > (ii) > (iv)

Ans.

Sol. Co2+: [Ar] 4s03d7 | Co3+: [Ar] 4d6

CFSE & Strength of ligand

CFSE & Charge on cation

200 mL of 0.2 M solution of NaOH is mixed with 400 mL of 0.5 M NaOH solution. Molarity of mixture is 4. x x 10-1, x is:

(4) Ans.

- 200×0.2+400×0.5 40 + 200Sol. 600 600
- 5. S1: A spectral line is produced upon election transition from 2px → 2py

S2: 2px & 2py are degenerate orbitals

(1) S1 True, S2 False

(2) S1 False, S2 True

(3) Both S1 & S2 True

(4) Both S1 & S2 False

Ans. (2)

- Sol. Since orbitals are degenerate, no spectral line will be produced in transition.
- Select the correct statement : 6.

T, P, d – They are intensive variables

(2) V, P, d – They are intensive variables

(3) m, V, P – They are extensive variables

(4) m, V, T – They are extensive variables

- Ans. (1)
- Sol. T, P, d - intensive

m. V - extensive

7. Compare dipole moment

i. NF₃

ii. CHCl3 (1) i > ii > iii > iv (2) ii > iii > i > iv iii. H₂S

(3) ii > iii > iv > i

iv. HBr (4) iii >1 >iv >ii

Ans. 3

Sol. $NF_3 = 0.23 D$ CHCl3 = 1.04 D $H_2S = 0.95 D$ HBr = 0.79 D

Match the column

Column-I

Column-II

(i)
$$\left(\frac{\partial G}{\partial T}\right)_{t}$$

(ii)
$$\left(\frac{\partial H}{\partial T}\right)_{r}$$

(iii)
$$\left(\frac{\partial U}{\partial T}\right)$$

(iv)
$$\left(\frac{\partial G}{\partial P}\right)_T$$

Ans. Sol.

dG =Vdp - SdT

At constant P,
$$\frac{\partial G}{\partial T} = -S$$

At constant T,
$$\frac{\partial G}{\partial P} = V$$

$$\left(\frac{\partial H}{\partial T}\right) = Cp; \left(\frac{\partial U}{dT}\right)_{V} = Cv$$

Solubility product of salt Zr₃(PO₄)₄ is K_{sp} then solubility of salt in term of K_{sp} is 9.

$$(1) \left(\frac{K_{sp}}{27 \times 256} \right)^{\frac{1}{7}} \qquad (2) \left(\frac{K_{sp}}{27 \times 256} \right)^{\frac{1}{5}} \qquad (3) \left(\frac{K_{sp}}{27 \times 256} \right)^{7} \qquad (4) \left(\frac{K_{sp}}{27 \times 256} \right)^{7}$$

$$(2) \left(\frac{K_{sp}}{27 \times 256} \right)^{\frac{2}{5}}$$

$$(3) \left(\frac{K_{sp}}{27 \times 256}\right)^{7}$$

$$(4) \left(\frac{K_{sp}}{27 \times 256}\right)^{\frac{1}{2}}$$

Ans.

Sol.
$$Zr_3(PO_4)_4 \implies 3Zr_{3s}^{4+} + 4PO_4^{3-}$$

$$K_{sp} = (3s)^3 (4s)^4$$

$$K_{sp} = (3s)^3 (4s)^4$$

 $K_{sp} = 27(s)^3 \times 256(s)^4$

$$S = \left(\frac{K_{sp}}{27 \times 256}\right)^{\frac{1}{7}}$$

10. Sum of number of 4d electrons in Nb & Ru is

Ans.

Sol. Nb(5s14d4) & Ru(5s14d7)

11. Statement-I: Corrosion is an electrochemical process, in which pure metal is present at anode and impure is present at cathode.

Statement-II: Corrosion occur foster in alkaline medium than in acidic medium.

- Both Statement-I & Statement-II are true.
- (2) Both Statement-I is true & Statement-II is false.
- (3) Statement-I is false & Statement-II is true.
- (4) Both Statement-I and Statement-II is false.

(4)Ans.

Sol. Statement-I: Corrosion is an electrochemical process which oxidation of metal take place at anode but impure metal is not present at cathode.

Statement-II: Corrosion occur foster in acidic medium.

12. Find number of hydrogen in [Ni(DMG)₂]

Ans. (14)

Sol.

No. of H-atom =14

Given below are two statements

S-I: Lassaigne test is used for detection of nitrogen, phosphorous, sulphur and halogen.

S-II: Lassaigne extract is made with magnesium metal.

- (1) Both Statement I and statement II are true
- (2) Both statement I and statement II are false
- (3) Statement I is true but statement II is false
- (4) Statement I is false but statement II is true

Ans. (3)

Compound A and B are respectively

Ans. (2)

- 15. Which of the following has 'two secondary' hydrogens.
 - (1) 2,2, 3, 3-dimethyl pentane
- (2) 2,2,3,4-dimethyl heptane

dil HCI

- (3) 4-ethyl-2,2-dimethyl benzene
- (4) NOT

- Ans. (1)
- Correct order of stability of cation.

- (1) a > b > c > d
- (2) c >a >d >b
- (3) a > c > d > b
- (4) c >b >a >d

Ans. (3)

- 17. Total number of π-electron in a compound with molecular formula C₆H₆, which adds four moles of H₂ and gives one single product on mono bromination.
- Ans. (8)

Sol.

18. Br₂ Major product

Ans. (2)

Radical is most stable