Kerala Plus Two Class 12 Mathematics Answer Key 2024

Question 1(i) $\mathrm{R}=\{(1,1),(2,3),(3,5),(4,7),(5,9),(6,11)\}$

Question 1(ii)

To determine whether R is an equivalence relation, we need to verify three properties:

1. Reflexivity: (a, a) is in R for all a in the set.
2. Symmetry: If (a, b) is in R, then (b, a) must also be in R.
3. Transitivity: If (a, b) and (b, c) are in R, then (a, c) must also be in R.

Let's analyze each property:

1. Reflexivity: For $R,(a, a)$ should be in R for every a in the set. In our case, for every a in the set $A=\{1,2,3,4,5,6\}$, the pairs $(a, 2 a-1)$ are in R. Since (a, a) can be rewritten as $(a, 2 a-$ 1) for every a, R is reflexive.
2. Symmetry: If (a, b) is in R, then (b, a) must also be in R. In our relation, $R=$ $\{(1,1),(2,3),(3,5),(4,7),(5,9),(6,11)\}$. We notice that the relation is not symmetric. For instance, $(2,3)$ is in R, but $(3,2)$ is not. Therefore, R is not symmetric.
3. Transitivity: For R to be transitive, if (a, b) and (b, c) are in R, then (a, c) must also be in R. However, R doesn't fulfill this condition. For instance, $(2,3)$ and $(3,5)$ are in R, but $(2,5)$ is not in R. Thus, R is not transitive.

Since R fails to satisfy both the symmetry and transitivity properties, it is not an equivalence relation.

Question 2

$$
\Lambda^{2}=\Lambda \cdot \Lambda=(3) 1-12 \cdot(3) 1-12
$$

Performing the matrix multiplication:

$$
\begin{gathered}
\Lambda^{2}=(() 3 \times 3+1 \times(-1))(3 \times 1+1 \times 2)((-1) \times 3+2 \times(-1))((-1) \times 1+2 \times 2) \\
\Lambda^{2}=(() 9-1)(3+2)((-3)+(-2))((-1)+4) \\
\Lambda^{2}=(8) 5-53
\end{gathered}
$$

2. 5 :

$$
5 A=5 \times(3) 1-12=(1) 55-510
$$

3. 71 :

$$
7 I=7 \times(1) 001=(7) 007
$$

Now, let's subtract $5 A$ from Λ^{2} and add $7 I$:

$$
\begin{aligned}
& A^{2}-5 A+7 I=(8) 5-53-(1) 55-510+(7) 007 \\
& =(() 8-15+7)(5-5)((-5)-(-5)+0)(3-10+7) \\
& =(0) 000
\end{aligned}
$$

So, $A^{2}-5 A+7 I=(0) 0$
00

Question 3(i)

To check the continuity of the function $f(x)=2 x+3$ at $x=1$, we need to examine three conditions:

The function $f(x)$ is defined at $x=1$.
The limit of $f(x)$ as x approaches 1 exists.
The value of $f(x)$ at $x=1$ is equal to the limit.

Let's evaluate each condition:
$f(1)=2(1)+3=2+3=5$. The function is defined at $x=1$.
$\lim _{x \rightarrow 1}(2 x+3)=2(1)+3=2+3=5$. The limit as x approaches 1 exists and equals 5 .
$f(1)=5$. The value of the function at $x=1$ is indeed 5 .
Since all three conditions are satisfied, the function $f(x)=2 x+3$ is continuous at $x=1$.

Question 3(ii) - k=9/5
Question 4(i) - 30 degrees or $\pi / 6$ radians
Question 4(ii) - 45 degrees or $\pi / 4$ radians
Question 5(i) - $\log (x)$
Question 5(ii) - a) Increases for $x>2$

b) decreases in $x<2$

Question 6(i) - m/4 radians
Question 6(ii) - zero vector

Question 7(i) - 0.12
Question 7(ii) - 0.58

Question 7(iii) - 0.3

Question 8 -

To integrate the function $5 x^{4} \sqrt{x^{5}+1}$ from -1 to 1 , we can use the substitution method. Let's set:
$u=x^{5}+1$

Then, we have:
$\frac{d u}{d x}=5 x^{4}$
$d x=\frac{d u}{5 x^{4}}$

Now, we need to determine the limits of integration when $x=-1$ and $x=1$:

When $x=-1$:
$u=(-1)^{5}+1=-1+1=0$

When $x=1$:
$u=1^{5}+1=1+1=2$

When $x=1$:
$u=1^{5}+1=1+1=2$

So, the new integral becomes:
$\int_{0}^{2} \sqrt{u} d u$

Now, integrate \sqrt{u} with respect to u :

$$
\begin{aligned}
& \int_{0}^{2} u^{\frac{1}{2}} d u=\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{0}^{2} \\
& =\frac{2}{3}\left(2^{\frac{3}{2}}-0^{\frac{3}{2}}\right) \\
& =\frac{2}{3}(2 \sqrt{2}) \\
& =\frac{4 \sqrt{2}}{3}
\end{aligned}
$$

So, the value of the integral $\int_{-1}^{1} 5 x^{4} \sqrt{x^{5}+1} d x$ is $\frac{4 \sqrt{2}}{3}$.

Question 9

In a reflexive relation on a set of ' n ' elements, each element must be related to itself. Therefore, each element contributes one ordered pair to the reflexive relation.

For a set of four elements, there are four elements in total. Each element must be related to itself in a reflexive relation.

So, the minimum number of ordered pairs needed to form a reflexive relation on a set of four elements is 4 .

Question 18 (i)

To find $\frac{d y}{d x}$ from the equation $6 x+\cos (y)=x y$, we'll need to use implicit differentiation.

Given the equation:
$6 x+\cos (y)=x y$

We differentiate both sides of the equation with respect to x :
$\frac{d}{d x}(6 x)+\frac{d}{d x}(\cos (y))=\frac{d}{d x}(x y)$

Now, applying the chain rule for $\frac{d}{d x}(\cos (y))$:
$6+(-\sin (y)) \frac{d y}{d x}=x \frac{d y}{d x}+y$
Now, we need to solve for $\frac{d y}{d x}$. Let's isolate $\frac{d y}{d x}$:
$(-\sin (y)) \frac{d y}{d x}-x \frac{d y}{d x}=y-6$
$(-\sin (y)) \frac{d y}{d x}-x \frac{d y}{d x}=y-6$
$\frac{d y}{d x}(-\sin (y)-x)=y-6$
$\frac{d y}{d x}=\frac{y-6}{-\sin (y)-x}$
This is the derivative $\frac{d y}{d x}$ in terms of x and y from the given equation $6 x+\cos (y)=x y$.

To find $\frac{d y}{d x}$ in terms of t given $x=a(\cos t)^{3}$ and $y=b(\sin t)^{3}$, we'll use implicit differentiation.

We have:
$x=a(\cos t)^{3}$
$y=b(\sin t)^{3}$

We'll differentiate both equations with respect to t using the chain rule:

For x :
$\frac{d x}{d t}=3 a(\cos t)^{2} \cdot(-\sin t)=-3 a(\cos t)^{2} \sin t$

For y :
$\frac{d y}{d t}=3 b(\sin t)^{2} \cdot \cos t=3 b(\sin t)^{2} \cos t$
Now, we can find $\frac{d y}{d x}$ using the chain rule for differentiation:
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Substitute the derivatives we found:
$\frac{d y}{d x}=\frac{3 b(\sin t)^{2} \cos t}{-3 a(\cos t)^{2} \sin t}$

Simplify:
$\frac{d y}{d x}=-\frac{b(\sin t)^{2} \cos t}{a(\cos t)^{2} \sin t}$
$\frac{d y}{d x}=-\frac{b}{a} \cdot \frac{\sin t}{\cos t}$

Since $\frac{\sin t}{\cos t}=\tan t$, we have:
$\frac{d y}{d x}=-\frac{b}{a} \tan t$

So, $\frac{d y}{d x}$ in terms of t is $-\frac{b}{a} \tan t$.

