

EXERCISE 2.1

1. The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes ofp(x), in each case.

Solutions:

Graphical method to find zeroes:-

Total number of zeroes in any polynomial equation = total number of times the curve intersects x-axis.

- (i) In the given graph, the number of zeroes of p(x) is 0 because the graph is parallel to x-axis does not cut it at any point.
- (ii) In the given graph, the number of zeroes of p(x) is 1 because the graph intersects the x-axis at only one point.

(iii) In the given graph, the number of zeroes of p(x) is 3 because the graph intersects the x-axis at any three points.

- (iv) In the given graph, the number of zeroes of p(x) is 2 because the graph intersects the x-axis at two points.
- (v) In the given graph, the number of zeroes of p(x) is 4 because the graph intersects the x-axis at four points.
- (vi) In the given graph, the number of zeroes of p(x) is 3 because the graph intersects the x-axis at three points.

EXERCISE 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and thecoefficients.

Solutions:

(i) x^2-2x-8

 $\Rightarrow x^{2} - 4x + 2x - 8 = x(x - 4) + 2(x - 4) = (x - 4)(x + 2)$

Therefore, zeroes of polynomial equation x^2-2x-8 are (4, -2)

Sum of zeroes = 4-2 = 2 = -(-2)/1 = -(Coefficient of x)/(Coefficient of x²)

Product of zeroes = $4 \times (-2) = -8 = -(8)/1 = (\text{Constant term})/(\text{Coefficient of } x^2)$

(ii) 4s²-4s+1

 $\Rightarrow 4s^2 - 2s - 2s + 1 = 2s(2s - 1) - 1(2s - 1) = (2s - 1)(2s - 1)$

Therefore, zeroes of polynomial equation $4s^2-4s+1$ are (1/2, 1/2)

GETMYUNI.COM

s²) Product of zeros = $(1/2)\times(1/2) = 1/4 = (\text{Constant term})/(\text{Coefficient of s}^2)$ (iii) $6x^2-3-7x$ $\Rightarrow 6x^2-7x-3 = 6x^2 - 9x + 2x - 3 = 3x(2x - 3) + 1(2x - 3) = (3x+1)(2x-3)$ Therefore, zeroes of polynomial equation $6x^2-3-7x$ are (-1/3, 3/2)Sum of zeroes = $-(1/3)+(3/2) = (7/6) = -(\text{Coefficient of x})/(\text{Coefficient of x}^2)$ Product of zeroes = $-(1/3)\times(3/2) = -(3/6) = (\text{Constant term})/(\text{Coefficient of x}^2)$)

Sum of zeroes = $(\frac{1}{2})+(1/2) = 1 = -(-4)/4 = -(Coefficient of s)/(Coefficient of s)$

(iv) 4u²+8u

```
\Rightarrow 4u(u+2)
```

Therefore, zeroes of polynomial equation $4u^2 + 8u$ are (0, -2).

Sum of zeroes = 0+(-2) = -2 = -(8/4) = -(Coefficient of u)/(Coefficient of u)

u²) Product of zeroes = $0 \times -2 = 0 = 0/4 = (\text{Constant term})/(\text{Coefficient of } u^2)$

(v) t^2-15

 \Rightarrow t² = 15 or t = $\pm \sqrt{15}$

Therefore, zeroes of polynomial equation t^2-15 are ($\sqrt{15}$, $-\sqrt{15}$)

Sum of zeroes = $\sqrt{15+(-\sqrt{15})} = 0 = -(0/1) = -(Coefficient of t) / (Coefficient of t²)$

Product of zeroes = $\sqrt{15} \times (-\sqrt{15}) = -15 = -15/1 = (\text{Constant term}) / (\text{Coefficient of } t^2)$

(vi) $3x^2 - x - 4$

 $\Rightarrow 3x^{2}-4x+3x-4 = x(3x-4)+1(3x-4) = (3x-4)(x+1)$

Therefore, zeroes of polynomial equation $3x^2 - x - 4$ are (4/3, -1)

Sum of zeroes = (4/3)+(-1) = (1/3) = -(-1/3) = -(Coefficient of x) / (Coefficient of x²)

Product of zeroes= $(4/3)\times(-1) = (-4/3) = (\text{Constant term})/(\text{Coefficient of } x^2)$

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes,

respectively.(i) 1/4, -1 Solution:

From the formulas of sum and product of zeroes, we know,

Sum of zeroes = $\alpha + \beta$

Product of zeroes = $\alpha \beta$

Sum of zeroes = $\alpha + \beta$ =

1/4 Product of zeroes =

 $\alpha \beta = -1$

: If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly

as:- $x^{2}-(\alpha+\beta)x + \alpha\beta = 0 x^{2}-(1/4)x + (-1) = 0$

 $4x^{2}-x-4=0$

Thus, $4x^2-x-4$ is the quadratic polynomial.

GETMYUNI.COM

(ii) $\sqrt{2}$, 1/3 Solution:

Sum of zeroes = $\alpha + \beta$

 $=\sqrt{2}$ Product of zeroes =

 $\alpha \beta = 1/3$

: If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly

as:- x^{2} -(α + β)x + $\alpha\beta$ = 0 x² -($\sqrt{2}$)x + (1/3) = 0

 $3x^2-3\sqrt{2x+1} = 0$

Thus, $3x^2-3\sqrt{2x+1}$ is the quadratic polynomial.

(iii) 0, √5

Solution:

Given,

```
Sum of zeroes = \alpha + \beta = 0 Product
```

```
of zeroes = \alpha \beta =
```

 $\sqrt{5}$

: If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written

directly as:- $x^2 - (\alpha + \beta)x + \alpha\beta = 0 x^2 - \beta x^2$

 $(0)x + \sqrt{5} = 0$

Thus, $x^2 + \sqrt{5}$ is the quadratic polynomial.

(iv) 1, 1

Solution:

Given,

Sum of zeroes = $\alpha + \beta = 1$

Product of zeroes = $\alpha \beta$ =

```
1
```

: If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly

as:- $x^{2}(\alpha+\beta)x + \alpha\beta = 0 x^{2}x + 1 = 0$

Thus, $x^2 + 1$ is the quadratic

polynomial. (v) -1/4, 1/4

Solution:

Given,

Sum of zeroes = $\alpha + \beta = -1/4$

Product of zeroes = $\alpha \beta = 1/4$

: If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:- x^2 -(α + β)x + $\alpha\beta$ = 0 x²-(-1/4)x +(1/4) = 0 4x²+x+1 = 0

GETMYUNI.COM

Thus, $4x^{2+}x^{+1}$ is the quadratic polynomial.

(vi) 4, 1

Solution:

Given,

```
Sum of zeroes = \alpha + \beta
```

```
=4 Product of zeroes =
```

 $\alpha\beta = 1$

: If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly

as:- x^{2} -(α + β)x+ $\alpha\beta$ = 0 x^{2} -4x+1 = 0

Thus, x^2-4x+1 is the quadratic polynomial.