EXERCISE 2.1

1. The graphs of $\mathbf{y}=\mathbf{p}(\mathbf{x})$ are given in Fig. 2.10 below, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

Solutions:

Graphical method to find zeroes:-

Total number of zeroes in any polynomial equation $=$ total number of times the curve intersects x -axis.
(i) In the given graph, the number of zeroes of $\mathrm{p}(\mathrm{x})$ is 0 because the graph is parallel to x -axis does not cut it at any point.
(ii) In the given graph, the number of zeroes of $\mathrm{p}(\mathrm{x})$ is 1 because the graph intersects the x -axis at only one point.
(iii) In the given graph, the number of zeroes of $\mathrm{p}(\mathrm{x})$ is 3 because the graph intersects the x -axis at any three points.
(iv) In the given graph, the number of zeroes of $p(x)$ is 2 because the graph intersects the x-axis at two points.
(v) In the given graph, the number of zeroes of $p(x)$ is 4 because the graph intersects the x-axis at four points.
(vi) In the given graph, the number of zeroes of $p(x)$ is 3 because the graph intersects the x-axis at three points.

EXERCISE 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and thecoefficients.

Solutions:

(i) $\quad x^{2}-2 x-8$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+2 \mathrm{x}-8=\mathrm{x}(\mathrm{x}-4)+2(\mathrm{x}-4)=(\mathrm{x}-4)(\mathrm{x}+2)$
Therefore, zeroes of polynomial equation $x^{2}-2 x-8$ are $(4,-2)$
Sum of zeroes $=4-2=2=-(-2) / 1=-($ Coefficient of $x) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
Product of zeroes $=4 \times(-2)=-8=-(8) / 1=($ Constant term $) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
(ii) $4 s^{2}-4 s+1$
$\Rightarrow 4 \mathrm{~s}^{2}-2 \mathrm{~s}-2 \mathrm{~s}+1=2 \mathrm{~s}(2 \mathrm{~s}-1)-1(2 \mathrm{~s}-1)=(2 \mathrm{~s}-1)(2 \mathrm{~s}-1)$
Therefore, zeroes of polynomial equation $4 s^{2}-4 s+1$ are $(1 / 2,1 / 2)$

Sum of zeroes $=(1 / 2)+(1 / 2)=1=-(-4) / 4=-($ Coefficient of $s) /($ Coefficient of
$\left.s^{2}\right)$ Product of zeros $=(1 / 2) \times(1 / 2)=1 / 4=($ Constant term $) /\left(\right.$ Coefficient of $\left.s^{2}\right)$
(iii) $6 x^{2}-3-7 x$
$\Rightarrow 6 \mathrm{x}^{2}-7 \mathrm{x}-3=6 \mathrm{x}^{2}-9 \mathrm{x}+2 \mathrm{x}-3=3 \mathrm{x}(2 \mathrm{x}-3)+1(2 \mathrm{x}-3)=(3 \mathrm{x}+1)(2 \mathrm{x}-3)$
Therefore, zeroes of polynomial equation $6 x^{2}-3-7 x$ are ($-1 / 3,3 / 2$)
Sum of zeroes $=-(1 / 3)+(3 / 2)=(7 / 6)=-($ Coefficient of $x) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
Product of zeroes $=-(1 / 3) \times(3 / 2)=-(3 / 6)=($ Constant term $) /\left(\right.$ Coefficient of x^{2}
)
(iv) $4 u^{2}+8 u$
$\Rightarrow 4 \mathrm{u}(\mathrm{u}+2)$
Therefore, zeroes of polynomial equation $4 u^{2}+8 u$ are $(0,-2)$.
Sum of zeroes $=0+(-2)=-2=-(8 / 4)==-($ Coefficient of $u) /($ Coefficient of
$\left.u^{2}\right)$ Product of zeroes $=0 \times-2=0=0 / 4=($ Constant term $) /\left(\right.$ Coefficient of $\left.u^{2}\right)$
(v) $t^{2}-15$
$\Rightarrow \mathrm{t}^{2}=15$ or $\mathrm{t}= \pm \sqrt{ } 15$
Therefore, zeroes of polynomial equation $t^{2}-15$ are $(\sqrt{ } 15,-\sqrt{ } 15)$
Sum of zeroes $=\sqrt{ } 15+(-\sqrt{ } 15)=0=-(0 / 1)=-($ Coefficient of $t) /\left(\right.$ Coefficient of $\left.t^{2}\right)$
Product of zeroes $=\sqrt{ } 15 \times(-\sqrt{ } 15)=-15=-15 / 1=($ Constant term $) /\left(\right.$ Coefficient of $\left.\mathrm{t}^{2}\right)$
(vi) $3 x^{2}-x-4$
$\Rightarrow 3 \mathrm{x}^{2}-4 \mathrm{x}+3 \mathrm{x}-4=\mathrm{x}(3 \mathrm{x}-4)+1(3 \mathrm{x}-4)=(3 \mathrm{x}-4)(\mathrm{x}+1)$
Therefore, zeroes of polynomial equation $3 x^{2}-x-4$ are $(4 / 3,-1)$
Sum of zeroes $=(4 / 3)+(-1)=(1 / 3)=-(-1 / 3)=-($ Coefficient of $x) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
Product of zeroes $=(4 / 3) \times(-1)=(-4 / 3)=($ Constant term $) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes, respectively.(i) 1/4, -1 Solution:

From the formulas of sum and product of zeroes, we know,
Sum of zeroes $=\alpha+\beta$
Product of zeroes $=\alpha \beta$
Sum of zeroes $=\alpha+\beta=$
$1 / 4$ Product of zeroes $=$
$\alpha \beta=-1$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as: $-x^{2}(\alpha+\beta) x+\alpha \beta=0 x^{2}-(1 / 4) x+(-1)=0$
$4 \mathrm{x}^{2}-\mathrm{x}-4=0$
Thus, $4 x^{2}-x-4$ is the quadratic polynomial.
(ii) $\sqrt{ } 2,1 / 3$ Solution:

Sum of zeroes $=\alpha+\beta$
$=\sqrt{ } 2$ Product of zeroes $=$
$\alpha \beta=1 / 3$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly
as: $-x^{2}-(\alpha+\beta) x+\alpha \beta=0 x^{2}-(\sqrt{ } 2) x+(1 / 3)=0$
$3 x^{2}-3 \sqrt{ } 2 x+1=0$
Thus, $3 x^{2}-3 \sqrt{ } 2 x+1$ is the quadratic polynomial.
(iii) $0, \sqrt{ } 5$

Solution:

Given,
Sum of zeroes $=\alpha+\beta=0$ Product
of zeroes $=\alpha \beta=$
$\sqrt{ } 5$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written
directlyas:- $\mathrm{x}^{2}(\alpha+\beta) \mathrm{x}+\alpha \beta=0 \mathrm{x}^{2}$
(0) $x+\sqrt{ } 5=0$

Thus, $x^{2}+\sqrt{ } 5$ is the quadratic polynomial.
(iv) 1,1

Solution:

Given,
Sum of zeroes $=\alpha+\beta=1$
Product of zeroes $=\alpha \beta=$
1
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly
as: $-x^{2}-(\alpha+\beta) x+\alpha \beta=0 x^{2}-x+1=0$
Thus, $x^{2}-x+1$ is the quadratic
polynomial. (v) - $1 / 4,1 / 4$

Solution:

Given,
Sum of zeroes $=\alpha+\beta=-1 / 4$
Product of zeroes $=\alpha \beta=1 / 4$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly
as: $-x^{2}-(\alpha+\beta) x+\alpha \beta=0 x^{2}-(-1 / 4) x+(1 / 4)$
$=04 \mathrm{x}^{2}+\mathrm{x}+1=0$

NCERT Solutions for Class 10 Chapter 2 - Polynomials

Thus, $4 \mathrm{x}^{2}+\mathrm{x}+1$ is the quadratic polynomial.
(vi) 4,1

Solution:

Given,
Sum of zeroes $=\alpha+\beta$
$=4$ Product of zeroes $=$
$\alpha \beta=1$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly
as: $-x^{2}(\alpha+\beta) x+\alpha \beta=0 x^{2}-4 x+1=0$
Thus, $x^{2}-4 x+1$ is the quadratic polynomial.

