Unofficial CUET Mathematics Answer Key 2024

Questions	Answers
If A and B are symmetric matrices of the same order, then $A B-B A$ is a :	(3) skew symmetric matrix
$\|A\|$ is a square matrix of order 4 and $I A \mid=4$, then $\|2 A\|$ will be:	(2) 64
If $[\mathrm{A}]_{3 \times 2}[\mathrm{~B}]_{\times \times 4}=[\mathrm{C}]_{3 \times 1}$, then:	(2) $x=2, y=1$
If a function $f(x)=x^{2}+b x+1$ is increasing in the interval [1,2], then the least value of b is:	(3) -2
Two dice are thrown simultaneously. If X denotes the number of fours, then the expectation of X will be:	(2) $1 / 3$
For the function $f(x)=2 x 3-9 x 2+12 x-5, x \in[0,3]$, match List-I with List-II: List-I (A) Absolute maximum value (B) Absolute minimum value (C) Point of maxima (D) Point of minima List-II (I) 3 (II) 0 (III) -5 (IV) 4 Choose the correct answer from the options given below:	$\begin{gathered} \text { (4) (A) - (IV), (B) - (III), } \\ \text { (C) - (I), (D) - (II) } \end{gathered}$
An objective function $Z=a x+$ by is maximum at points $(8,2)$ and $(4,6)$. If $a \geq 0$ and $b \geq 0$ and $a b=25$, then the maximum value of the function is equal to:	(3) 50

The area of the region bounded by the lines $x+2 y=12, x=2, x=6$ and x-axis is:	(4) 16 sq. units
A die is rolled thrice. What is the probability of getting a number greater than 4 in the first and the second theve of dice and a number less than 4 in the third throw?	(4) $1 / 18$
The comer points of the feasible region determined by $x+y \leq 8,2 x+y \geq 8$, $x \geq 0, y \geq 0$ are $A(0,8),(4,0)$ and $C(8,0)$. If the objective function $Z=a x+$ by base its maximum value on the line sept $A B$, then the relation between a and b is:	(2) $a=2 b$
If $t=e^{2 x}$ and $y=\log _{e} t^{2}$, then $d^{2} y / d x^{2}$ is	(1) 0
$\int\left(\pi /\left(x^{n+1}\right)-x\right) d x=?$	$\begin{gathered} (1)(\pi / n) \log _{e} \mid\left(x^{n}-1\right) / x^{n} \\ \mid+C \end{gathered}$
$\int_{0}{ }^{1}\left(a-b x^{2}\right) d x /\left(a+b x^{2}\right)^{2}=?$	(4) $1 /(a+b)$
The second order derivative of which of the following functions is 5^{\times}?	(4) $5^{\times} /\left(\log _{e} 5\right)^{2}$
The degree of the differential equation $\left(1-(d y / d x)^{2}\right)^{3 / 2}=k d^{2} y / d x^{2}$	(2) 2
Let R be the relation over the set A of all straight lines in a plane such that $I_{1} R I_{2} \leftrightarrow I_{1}$ is parallel to I_{2}. Then R is	(2) An equivalence relation
The probability of not getting 53 Tuesdays in a leap year is:	(1) $2 / 7$
The angle between two lines whose direction ratios are proportional $<1,1$, $-2>$ and $<(\sqrt{3}-1),(-\sqrt{3}-1),-4>$ is:	(1) $\pi / 3$
If $(a-b) \cdot(a+b)=27$ and $\|a\|=2\|b\|$, then $\|\mathrm{b}\|$ is:	(1) 3

If $\tan ^{-1}\left(2 /\left(3^{-x}+1\right)\right)=\cot ^{-1}\left(3 /\left(3^{x}+1\right)\right)$ then which one of the following is true?	(2) There is one positive and one negative real value of x satisfying the above equation.			
If A, B and C are three singular matrices given by $A=\left[\begin{array}{ll}1 & 4\end{array}\right)$, (3 $\left.\left.22 a\right)\right]$, B $\left.=\left[\begin{array}{ll}(3 b & 5\end{array}\right),\left(\begin{array}{ll}a & 2\end{array}\right)\right]$ and $C=\left[\left(\begin{array}{ll}a+b+c & c+1\end{array}\right),\left(\begin{array}{ll}a+c & c\end{array}\right)\right]$, then the value of $a b c$ is:	(3) 45			
The value of integral $\operatorname{loge}^{\wedge} 2 \int^{\log e^{\wedge} 3}[(e 2 x-1) /(e 2 x+1)] d x$ is:	(2) $\log _{e^{\wedge} 4}-\log _{e^{\wedge} 3}$			
If a, b and c are three vectors such that $a+b+c=0$, where a and b are unit vectors and $\|c\|=2$, then the angle between the vectors b and c is:	(4) 180°			
Let $[\mathrm{x}]$ denote the greatest integer function. Then match List-I with List-II: List-I (A)\|x-1	+	x-2	 (B) $x-\|x\|$ (C) $x-\{x\}$ (D) $x\|x\|$ List-II (I) is differentiable everywhere except at $\mathrm{x}=0$ (II) is continuous everywhere (III) is not differentiable at $x 1$ (IV) is differentiable at $x=1$ Choose the correct answer from the options given below:	$\begin{gathered} \text { (4) (A) - (II), (B) - (I), (C) } \\ -(\mathrm{III}),(\mathrm{D})-(\mathrm{IV}) \end{gathered}$
The rate of change (in $\mathrm{cm}^{2} / \mathrm{s}$) of the total surface area of a hemisphere with respect to radius r at $r=(1.331)^{1 / 3} \mathrm{~cm}$ is	(2) 6.6π			
The area of the region bounded by the lines $x / 7 \sqrt{ } 3 a+y / b=4, x=0$ and $y=$ 0 is:	(1) $56 \sqrt{ } 3 \mathrm{ab}$			
If A is a square matrix and I is an identity matrix such that $A^{2}=A$. then $A(I$ $-2 A)^{3}+2 A^{3}$ is equal to	(4) A			

Match List-I with List-II: List-I (A) Integrating factor of $x d y-\left(y+2 x^{2}\right) d x=0 \quad$ (B) Integrating factor of $\left(2 x^{2}-3 y\right) d x=x d y \quad$ (C) Integrating factor of $\left(2 y+3 x^{2}\right) d x+x d y=0$ Integrating factor of $2 x d y+(3 x+2 y) d x=0$ List-II (I) $1 / x$ (II) x (III) x^{2} (IV) x^{3} Choose the correct answer from the options given below:	$\begin{gathered} \text { (2) (A) }-(\mathrm{I}),(\mathrm{B})-(\mathrm{IV}), \\ \text { (C) }-(\mathrm{III}),(\mathrm{D})-(\mathrm{II}) \end{gathered}$
If the function $f: N \rightarrow N$ is defined as $f(n)=\{(n-1 \quad$ if is in even), $(n+1$ if n is odd), then (A) f is injective (B) f is into, C) f is surjective (D) f is invertible Choose the correct answer from the options given below:	(4) (A), (C), and (D) only
${ }_{0} \int^{\pi / 2}[(1-\cot x) /(\operatorname{cosec} x+\cos x)] d x=$?	(1) 0

