SECTION - A

1.

Consider the above reaction, the product ' X ' and ' Y ' respectively are :
(1)

(2)

(3)

(4)

Ans. (2)

Sol.

2. The charges on the colloidal CdS sol and TiO_{2} sol are, respectively :
(1) positive and negative
(2) negative and negative
(3) negative and positive
(4) positive and positive

Ans. (3)
Sol. CdS \rightarrow Sulphide sol. \rightarrow Negative sol.
$\mathrm{TiO}_{2} \rightarrow$ Oxide sol. \rightarrow Positive sol.
3. The oxide that shows magnetic property is :
(1) SiO_{2}
(2) $\mathrm{Na}_{2} \mathrm{O}$
(3) $\mathrm{Mn}_{3} \mathrm{O}_{4}$
(4) MgO

Ans. (3)
Sol. $\mathrm{Mn}_{3} \mathrm{O}_{4}$ is paramagnetic due to presence of unpaired electrons.
4. Given below are two statements :

Statement I : Bohr's theory accounts for the stability and line spectrum of Li^{+}ion.
Statement II : Bohr's theory was unable to explain the splitting of spectral lines in the presence of a magnetic field.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both statement I and statement II are true.
(2) Statement I is true but statement II is false.
(3) Statement I is false but statement II is true.
(4) Both statement I and statement II are false.

Ans. (3)
Sol. $\quad \mathrm{S}-1 \rightarrow$ false
S-2 \rightarrow True
Hence option 3
5. Match List-I with List-II:
List-I

List-II

(1) Mercury
(i) Vapour phase refining
(2) Copper
(ii) Distillation Refining
(3) Silicon
(iii) Electrolytic Refining
(4) Nickel
(iv) Zone Refining

Choose the most appropriate answer from the option given below :
(1) (a)-(ii), (b)-(iii), (c)-(i), (d)-(iv)
(2) (a)-(i), (b)-(iv), (c)-(ii), (d)-(iii)
(3) (a)-(ii), (b)-(iv), (c)-(iii),(d)-(ii)
(4) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

Ans. (4)
Sol. Theory based
6. Match List-I with List-II :

List-I

(Class of Chemicals)
(a) Antifertility drug
(b) Antibiotic
(c) Tranquilizer
(d) Artificial Sweetener

List-II

(Example)
(i) Meprobamate
(ii) Alitame
(iii) Norethindrone
(iv) Salvarsan

Options:
(1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
(3) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
(4) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)

Ans. (4)
Sol. (a) Antifertility drug
(b) Antibiotic
(c) Tranquilizer
(d) Artificial sweetener
$\longrightarrow \quad$ Norethindrone
\longrightarrow Salvarsan
\longrightarrow Meprobamate
\longrightarrow Alitame
7. Main Products formed during a reaction of 1-methoxy naphthalene with hydroiodic acid are :
(1)

(2)

and $\mathrm{CH}_{3} \mathrm{OH}$
(3)

and $\mathrm{CH}_{3} \mathrm{OH}$

Ans. (4)
Sol.

8.

Consider the given reaction, percentage yield of :
(1) $A>C>B$
(2) $B>C>A$
(3) $C>B>A$
(4) $C>$ A $>$ B

Ans. (3)

Sol.

Order of \% yield \Rightarrow

9. An organic compound " A " on treatment with benzene sulphonyl chloride gives compound B. B is soluble in dil. NaOH solution. Compound A is:
(1) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NHCH}_{2} \mathrm{CH}_{3}$
(3)
(4) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2} \mathrm{NH} \mathrm{CH}_{3}$

Ans. (3)

Sol.

Soluble
10. The first ionization energy of magnesium is smaller as compound to that of elements X and Y, but higher than that of Z. The elements X, Y and Z, respectively are :
(1) argon, lithium and sodium
(2) chlorine, lithium and sodium
(3) neon, sodium and chlorine
(4) argon, chlorine and sodium

Ans. (4)
Sol. Order of I.E.
3rd period $\rightarrow \mathrm{Na}<\mathrm{Al}<\mathrm{Mg}<\mathrm{Si}<\mathrm{S}<\mathrm{P}<\mathrm{Cl}<\mathrm{Ar}$
11. In the following molecule,

Hybridisation of Carbon a, b and c respectively are :
(1) $\mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}^{2}$
(2) $s p^{3}, s p^{2}, s p$
(3) $s p^{3}, s p, s p$
(4) $s p^{3}, s p, s p^{2}$

Ans. (1)
Sol. $a \longrightarrow \mathrm{sp}^{3}$
$\mathrm{b} \longrightarrow \mathrm{sp}^{2}$
$\mathrm{c} \longrightarrow \mathrm{sp}^{2}$
12. In the reaction of hypobromite with amide, the carbonyl carbon is lost as :
(1) HCO_{3}^{-}
(2) $\mathrm{CO}_{3}{ }^{2-}$
(3) CO_{2}
(4) CO

Ans. (2)
Sol. $\mathrm{CO}_{3}{ }^{2-}$
13. The oxidation states of nitrogen in $\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}$ and $\mathrm{NO}_{3}{ }^{-}$are in the order of :
(1) $\mathrm{NO}_{2}>\mathrm{NO}_{3}^{-}>\mathrm{NO}>\mathrm{N}_{2} \mathrm{O}$
(2) $\mathrm{N}_{2} \mathrm{O}>\mathrm{NO}_{2}>\mathrm{NO}^{2}>\mathrm{NO}_{3}{ }^{-}$
(3) $\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}>\mathrm{NO}>\mathrm{N}_{2} \mathrm{O}$
(4) $\mathrm{NO}>\mathrm{NO}_{2}>\mathrm{N}_{2} \mathrm{O}>\mathrm{NO}_{3}{ }^{-}$

Ans. (3)
Sol. O.S. of ' N '
$\mathrm{NO} \rightarrow+2$
$\mathrm{NO}_{2} \rightarrow+4$
$\mathrm{N}_{2} \mathrm{O} \rightarrow+1$
$\mathrm{NO}_{3}{ }^{-} \rightarrow+5$
Decreasing order of ox. state of ' N ' is as follows
$\mathrm{NO}_{3}{ }^{-}>\mathrm{NO}_{2}>\mathrm{NO}>\mathrm{N}_{2} \mathrm{O}$
14. Match List-I and List-II :

List-I List-II
$\begin{array}{ll}\text { (a) } \mathrm{Be} & \text { (i) treatment of cancer } \\ \text { (b) } \mathrm{Mg} & \text { (ii) extraction of metals } \\ \text { (c) } \mathrm{Ca} & \text { (iii) incendiary bombs and signals } \\ \text { (d) } \mathrm{Ra} & \text { (iv) windows of X-ray tubes } \\ & \text { (v) bearings for motor engines }\end{array}$
Choose the most appropriate answer from the option given below :
Options :
(1) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(v)
(2) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
(3) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(4) (a)-(iii), (b)-(iv), (c)-(v), (d)-(ii)

Ans. (3)
Sol. Fact (NCERT)
Due to radioactive nature Ra - is used in treatment of cancer.
15. Deficiency of vitamin K causes:
(1) Cheilosis
(2) Increase in blood clotting time
(3) Increase in fragility of RBC's
(4) Decrease in blood clotting time

Ans. (2)
Sol. Deficiency of vitamin "K" causes \uparrow in blood clotting time.
16. Given below are two statements :

Statement I: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and AgCN both can general nucleophile.
Statement II : KCN and AgCN both will generate nitrile nucleophile with all reaction condition.
Choose the most appropriate option:
(1) Statement I is false but statement II is true.
(2) Statement I is true but statement II is false.
(3) Both statement I and statement II are false.
(4) Both statement I and statement II are true.

Ans. (2)

Sol. $\Rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \& \mathrm{AgCN}$ both can generate nucleophile
$\Rightarrow \mathrm{AgCN} \& \mathrm{KCN}$ both not generate nitrite nucleophile in all reaction condition.
17. Given below are two statements :

Statement I : Non-biodegradable wastes are generated by the thermal power plants.
Statement II : Bio-degradable detergents leads to eutrophication.
In the light of the above statements, choose the most appropriate answer from the options given below.
Options:
(1) Statement I is false but statement II is true.
(2) Both statement I and statement II are true.
(3) Both statement I and statement II are false
(4) Statement I is true but statement II is false.

Ans. (2)

Sol. Fact (NCERT-Based)
18. A hard substance melts at high temperature and is an insulator in both solid and in molten state. This solid is most likely to be a/an :
(1) Metallic solid
(2) Covalent solid
(3) Ionic solid
(4) Molecular solid

Ans. (2)
Sol. If substance is insulator in solid \& molten both phase, then it can't be ionic or metallic solid. If melting pt. is higher, then it can't be molecular solid.
\therefore It should be covalent network solid.
19. The secondary valency and the number of hydrogen bounded water molecule(s) in $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, respectively, are :
(1) 6 and 4
(2) 4 and 1
(3) 5 and 1
(4) 6 and 5

Ans. (2)
Sol.

20. In basic medium, $\mathrm{H}_{2} \mathrm{O}_{2}$ exhibits which of the following reactions ?
(A) $\mathrm{Mn}^{2+} \rightarrow \mathrm{Mn}^{4+}$
(B) $\mathrm{I}_{2} \rightarrow \mathrm{I}^{-}$
(C) $\mathrm{PbS} \rightarrow \mathrm{PbSO}_{4}$

Choose the most appropriate answer from the options given below :
(1) (A), (C) only (2) (A) only
(3) (B) only
(4) (A), (B) only

Ans. (4)

Sol. (1) Oxidising action in basic medium
$2 \mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{OH}^{-}$
$\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{Mn}^{4+}+2 \mathrm{OH}^{-}$
(2) Reducing action in basic medium
$\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
$2 \mathrm{MnO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$

SECTION - B

1. The solubility of CdSO_{4} in water is $8.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$. Its solubility in $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is \qquad $\times 10^{-6}$ $\mathrm{mol} \mathrm{L}^{-1}$. (Round off to the Nearest Integer).
Assume that solubility is much less than 0.01 M)
Ans. 64
Sol. $\mathrm{CdSO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Cd}^{+2}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
$\begin{array}{ll}\mathrm{S}=8 \times 10^{-4} & \mathrm{~S} \\ \mathrm{~K}_{\text {sp }}=\mathrm{S}^{2}=64 \times 10^{-8}\end{array}$
$\mathrm{CdSO}_{4}(\mathrm{~s}) \rightleftharpoons \quad \mathrm{Cd}^{+2}+\mathrm{SO}_{4}{ }^{2-}$ $\mathrm{S} \quad \mathrm{S}+10^{-2}$
$\mathrm{K}_{\mathrm{sp}}\left(\mathrm{CdSO}_{4}\right)=64 \times 10^{-8}=\mathrm{s}\left(\mathrm{s}+10^{-2}\right)$
$64 \times 10^{-8} \simeq s \times 10^{-2}=64 \times 10^{-6}$
2. The molar conductivities at infinite dilution of barium chloride, sulphuric acid and hydrochloric acid are 280, 860 and $426 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The molar conductivity at infinite dilution of barium sulphate is \qquad $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$. (Round off to the Nearest Integer).
Ans. 288
Sol. $\lambda_{\mathrm{M}}^{\infty}\left(\mathrm{BaCl}_{2}\right)=280$
$\lambda_{M}^{\infty}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=860$
$\lambda_{\mathrm{m}}^{\infty}(\mathrm{HCl})=426$
$\lambda_{\mathrm{M}}^{\infty}\left(\mathrm{BaSO}_{4}\right)=$??

$$
=\lambda_{\mathrm{M}}^{\infty}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)+\lambda_{\mathrm{M}}^{\infty}\left(\mathrm{BaCl}_{2}\right)-2 \times \lambda_{\mathrm{M}}^{\infty}(\mathrm{HCl})
$$

$=860+280-2 \times 426$
$=288$
3. A reaction has a half life of 1 min . The time required for 99.9% completion of the reaction is \qquad \min.
(Round off to the nearest integer)
[Use $: \ln 2=0.69 ; \ln 10=23]$
Ans. 10
Sol. $\quad \mathrm{t}_{99.9 \%}=$??

$$
\begin{aligned}
& \simeq 10 \times \mathrm{t}_{1 / 2} \\
& \simeq 10 \mathrm{~min}
\end{aligned}
$$

Derivation
$\mathrm{t}_{99.9 \%}=\frac{1}{\mathrm{~K}} \ell \mathrm{n}\left\{\frac{100}{0.1}\right\}=\frac{1}{\mathrm{~K}} \ell \mathrm{n}(1000)$
$=\frac{3}{\mathrm{~K}} \ell \mathrm{n}(10)=3 \frac{\left(\mathrm{t}_{1 / 2}\right)}{\ell \mathrm{n}(2)} \times \ln (10)$
$=3 \times(1 \mathrm{~min}) \times \frac{\ell \mathrm{n}(10)}{\ell \mathrm{n}(2)}$
$=\frac{3}{\log (2)}=\frac{3}{0.3} \simeq 10 \mathrm{~min}$
4. The gas phase reaction
$2 \mathrm{~A}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{2}(\mathrm{~g})$
at 400 K has $\Delta \mathrm{G} o=+25.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The equilibrium K_{C} for this reaction is \qquad $\times 10^{-2}$. (Round off to the Nearest Integer).
[Use : $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \ln 10=2.3$
$\left.\log _{10} 2=0.30,1 \mathrm{~atm}=1 \mathrm{bar}\right]$
[antilog $(-0.3)=0.501]$

Ans. 2

Sol. Using formula
$\Delta G^{\circ}=-$ RTInK $_{P}$
$25200=-2.3 \times 8.3 \times 400 \log \left(K_{P}\right)$
$K_{p}=10^{-3.3}=10^{-3} \times 0.501$
$=5.01 \times 10^{-4} \mathrm{Bar}^{-1}$
$=5.01 \times 10^{-5} \mathrm{~Pa}^{-1}$
$=\frac{\mathrm{K}_{\mathrm{C}}}{8.3 \times 400}$
$\mathrm{K}_{\mathrm{C}}=1.66 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{mole}$
$=1.66 \times 10^{-2} \mathrm{~L} / \mathrm{mol}$
Ans. 2
5.

Consider the above reaction where 6.1 g of benzoic acid is used to get 7.8 g of m -bromo benzoic acid. The percentage yield of the product is \qquad
(Round off to the Nearest integer)
[Given : Atomic masses : C : $12.0 \mathrm{u}, \mathrm{H}: 1.0 \mathrm{u}, \mathrm{O}: 16.0 \mathrm{u}, \mathrm{Br}: 80.0 \mathrm{u}$]
Ans. 78

Sol. $\mathrm{PhCOOH}+\mathrm{Br}_{2} \xrightarrow{\mathrm{FeBr}_{3}}$

6.1
7.8
$\frac{\text { moles of } \mathrm{PhCOOH}}{1}=\frac{\text { Moles of } \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOHBr}}{1}$
Moles of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOHBr}=\frac{6.1}{122}=\frac{1}{20} \mathrm{~mol}$
mass of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOHBr}=201 \times \frac{1}{20} \mathrm{gm}$
$\%$ yield $=\frac{7.8}{201 / 20} \times 100$
$=77.612 \%$
$\simeq 78$ Nearest Integer
6. A solute A dimerizes in water. The boiling point of a 2 molal solution of A is $100.52^{\circ} \mathrm{C}$. The percentage association of A is \qquad . (Round off to the Nearest integer.)
[Use : K_{b} for water $=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
Boiling point of water $=100^{\circ} \mathrm{C}$]
Ans. 1
Sol. $2 A \longrightarrow A_{2}$
$N=\frac{1}{2}$
$\mathrm{m}=2 ; \mathrm{T}_{\mathrm{b}}$ soln. $=100.52$
$\Delta \mathrm{T}_{\mathrm{b}}=0.52$
$=\mathrm{i} \times \mathrm{K}_{\mathrm{b}} \times \mathrm{m}$
$0.52=\mathrm{i} \times 0.52 \times 2$
$i=\frac{1}{2}=1+1+(1 / 2-1) \alpha$
$\alpha / 2=1 / 2$

$$
\alpha=1
$$

7. The number of species below that have two lone pairs of electrons in their central atom is \qquad .
(Round off to the Nearest Integer.)
$\mathrm{SF}_{4}, \mathrm{BF}_{4}{ }^{-}, \mathrm{CIF}_{3}, \mathrm{AsF}_{3}, \mathrm{PCl}_{5}, \mathrm{BrF}_{5}, \mathrm{XeF}_{4}, \mathrm{SF}_{6}$
Ans. (2)
Sol. ClF_{3} and XeF_{4} have two Ip -in their central atom
8. $\quad 10.0 \mathrm{~mL}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is titrated against 0.2 M HCl solution. The following litre values were obtained in 5 readings.
$4.8 \mathrm{~mL}, 4.9 \mathrm{~mL}, 5.0 \mathrm{~mL}, 5.0 \mathrm{~mL}$ and 5.0 mL
Based on these readings, and convention of titrimetric estimation the concentration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is
\qquad mM .
(Round off to the Nearest Integer)
Ans. 50
Sol. $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow$
$10 \mathrm{ml} \quad 0.2 \mathrm{M}$
$\mathrm{M}=$?? 5 ml
$M_{\text {eq. }}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{M}_{\text {eq. }}$ of HCl
$\mathrm{M} \times 10 \times 2=0.2 \times 5 \times 1$
$M=5 \times 10^{-2} \mathrm{M}=50 \times 10^{-3} \mathrm{M}=50 \mathrm{mM}$
Ans 50
9. In Tollen's test for aldehyde, the overall number of electron(s) transferred to the Tollen's reagent formula $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$per aldehyde group to form silver mirror is \qquad
(Round off to the Nearest Integer)
Ans. (2)
Sol. $\mathrm{R}-\mathrm{CHO} \xrightarrow{2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \mathrm{OH}^{\circ}} \mathrm{RCOOH}+2 \mathrm{Ag}+2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{Ag}^{+} \xrightarrow{2 \mathrm{e}^{-}} 2 \mathrm{Ag}$
10. A xenon compound ' A ' upon partial hydrolysis gives $\mathrm{XeO}_{2} F_{2}$. The number of lone pair of electrons presents in compound A is \qquad (Round off to the Nearest Integer).
Ans. (19)
Sol. Partial Hydro $\left\{\begin{array}{c}\mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeOF}_{4}+2 \mathrm{HF} \\ \mathrm{XeF}_{6}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeO}_{2} \mathrm{~F}_{2}+4 \mathrm{HF}\end{array}\right.$
Complete hydrolysis $\left\{\mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeO}_{3}+6 \mathrm{HF}\right.$
