MATHEMATICS

1. If
$$G(x) = \begin{vmatrix} f(x)f(-x) & 0 & x^4 \\ 3 & f(x) - f(-x) & \cos x \\ x^4 & 2x & f(x)f(-x) \end{vmatrix}$$
, then $\int_{-2}^2 x^4 G(x) dx$ is equal to

- A) -1

- D) 1

2. If
$$1, \alpha_1, \alpha_2, \alpha_3$$
 are the fourth roots of unity, then the value of $(1 + \alpha_1)(1 + \alpha_2)(1 + \alpha_3)$ is equal to

- A) -3
- B) -1
- C) 0
- D) 2

3. A conic has focus
$$(1,0)$$
 and corresponding directrix $x + y = 5$. If the eccentricity of the conic is 2, then its equation is

- A) $x^2 + 4xy + y^2 + 18x 20y + 49 = 0$ B) $x^2 4xy + y^2 18x 20y + 49 = 0$ C) $x^2 + 4xy + y^2 18x + 20y + 49 = 0$ D) $x^2 + 4xy + y^2 18x 20y + 49 = 0$

4. Let
$$\overline{u}$$
, \overline{v} , $\overline{\omega}$ to be three vectors such that $|\overline{u}| = 1$, $|\overline{v}| = 2$, $|\overline{\omega}| = 3$ and \overline{v} and $\overline{\omega}$ are mutually perpendicular. If projection of \overline{v} along \overline{u} is equal to that of $\overline{\omega}$ along \overline{u} then $|\overline{u} - \overline{v} + \overline{\omega}|$ equals to

- A) $\sqrt{7}$
- B) 14
- C) 2

5. A plane at a unit distance from the origin intersects the coordinate axes at P, Q and R. If the locus of the centroid of
$$\triangle PQR$$
 satisfies the equation $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k$, then the value of k is

- A) 3
- B) 4
- C) 9
- D) 16

6. If g be an inverse function of f and
$$f'(x) = \frac{1}{1+x^5}$$
, then $g'(x)$ will be:

- B) $1 + (g(x))^5$ C) $(\frac{1}{1+g(x)})^5$ D) $(g(x))^5$

7. The area enclosed between the curves
$$y = |x^3|$$
 and $x = y^3$ is

- A) $\frac{1}{2}$

- C) $\frac{1}{8}$ D) $\frac{1}{16}$

8. Let
$$f(x)$$
 be a differential function such that $f'(x) = f(x) + \int_0^2 f(x) dx$ and $f(0) = \frac{(4-e^2)}{3}$. Then $f(x)$ is:

- A) $e^x \frac{(e^2 1)}{3}$ B) $e^x \frac{(e^2 1)}{4}$ C) $e^x \frac{(e^2 + 1)}{3}$ D) $e^x \frac{(4 e^2)}{3}$

9. A coin is tossed
$$n$$
 times. The maximum value of n such that the probability of getting no head is greater than $1/16$ is

- A) 4
- B) 3
- C) 5
- D) 2

- A) 51243
- B) 51423
- C) 51234
- D) 51342