MHT-CET 2022 Question Paper

6th August 2022 (Shift – I)

8.

9.

If matrix A = $\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ is such that AX = I, where $\int \frac{5(x^6 + 1)}{x + 1} dx =$ 1. I is 2×2 unit matrix, then X = $1 \begin{bmatrix} 3 & -2 \end{bmatrix}$ (A) $1 \begin{bmatrix} 3 & 2 \end{bmatrix}$ **(B)** $\int f(x) dx =$ 2. $\frac{-\pi}{2}$ Where $f(x) = \sin |x| + \cos |x|, x \in \begin{bmatrix} -\pi, \pi \\ -2, 2 \end{bmatrix}$ (A) 0 **(B)** 2 (C) (D) 8 4 3. The principal solutions of tan $3\theta = -1$ are $\left\{\frac{\pi}{4}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{\pi}{16}, \frac{19\pi}{4}, \frac{23\pi}{24}\right\}$ (A) [π 7π 11π 5π 19π 23π] **(B)** 4 12 12 4 12 12 (π π) (C) $\left\{\frac{\pi}{4}, \frac{\pi}{12}, \frac{13\pi}{12}, \frac{7\pi}{4}, \frac{19\pi}{4}, \frac{23\pi}{12}\right\}$ (D) 4. For three simple statements p, q, and r, $p \rightarrow (q \lor r)$ is logically equivalent to (A) $(p \lor q) \rightarrow r$ $(B) \quad (p \to \sim q) \land (p \to r)$ (C) $(p \rightarrow q) \lor (p \rightarrow r)$ (D) $(p \rightarrow q) \land (p \rightarrow \sim r)$ If \overline{a} and \overline{b} are two vectors such that $|\overline{a}| = |\overline{b}| = \sqrt{2}$ with $\overline{a} \cdot \overline{b} = -1$, then the angle 5. between a and b is 5π (A) **(B)** 3 6 <u>5π</u> <u>3π</u> (D) (C) 4 Argument of $\frac{1-i\sqrt{3}}{1+i\sqrt{3}}$ is 6. (A) 60° **(B)** 210° 120° (D) 240° (C)

- (where C is a constant of integration.) (A) $\frac{5x^7}{7} + 5x + 5\tan^{-1}x + C$ (B) $5\tan^{-1}x + \log(x^2 + 1) + C$ (C) $5(x + 1) + \log(x + 1) + C$ (D) $x^5 - \frac{5x^3}{2} + 5x + C$ Let a, b, c be distinct non-negative numbers. If the vectors ai + aj + ck, i + k and ci + cj + bk lie in a plane, then c is
 - (A) not arithmetic mean of a and b.
 - **(B)** the geometric mean of a and b.
 - the arithmetic mean of a and b. (C)
 - (D) the harmonic mean of a and b.

e

1

$$\lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \sin x} \right)^{\cos x} =$$
(A) 0 (B)
(C) 1 (D)

0. If
$$y = \sec^{-1} \left(\frac{x + x^{-1}}{x - x^{-1}} \right)$$
, then $\frac{dy}{dx} =$
(A) $\frac{-2}{1 + x^2}$ (B) $\frac{-1}{1 + x^2}$
(C) $\frac{-2}{x^2}$ (D) $\frac{-1}{x^2}$

- 11. If the line passing through the points (a, 1, 6)and (3, 4, b) crosses the yz – plane at the point $\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right]$, then (A) a = 5, b = 1(B) a = -5, b = 1(C) a = -5, b = -1(D) a = 5, b = -1
- 20 meters of wire is available to fence of a 12. flowerbed in the form of a circular sector. If the flowerbed is to have maximum surface area, then the radius of the circle is
 - (A) 8 m 5 m **(B)** (C) 2 m (D) 4 m

MHT-CET 2022 Question Paper 6th August 2022 (Shift – I)

13. Five letters are placed at random in five addressed envelopes. The probability that all the letters are not dispatched in the respective right envelopes is 119

120

1 5

(A)
$$\frac{4}{5}$$
 (B)
(C) $\frac{1}{120}$ (D)

14. If
$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then A =
(A) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$
(C) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

The general solution of the differential equation 15. $x^2 + y^2 - 2xy \frac{dy}{dt} = 0$ is

(where C is a constant of integration.)

- (A) $2(x^2 y^2) + x = C$
- (B) $x^2 + y^2 = Cy$
- $(C) \quad x^2 y^2 = Cx$
- (D) $x^2 + y^2 = Cx$
- 16. If the lines 2x - 3y = 5 and 3x - 4y = 7 are the diameters of a circle of area 154 sq. units, then equation of the circle is

$$\begin{pmatrix} \text{Taken } \pi = \frac{22}{7} \\ \text{(A)} \quad x^2 + y^2 - 2x - 2y - 49 = 0 \\ \text{(B)} \quad x^2 + y^2 - 2x + 2y - 49 = 0 \\ \text{(C)} \quad x^2 + y^2 - 2x - 2y - 47 = 0 \\ \text{(D)} \quad x^2 + y^2 - 2x + 2y - 47 = 0 \end{cases}$$

17. The joint equation of two lines passing through the origin and perpendicular to the lines given by $2x^2 + 5xy + 3y^2 = 0$ is

= 0= 0

= 0

- (A) $3x^2 5xy + 2y^2 = 0$
- (B) $3x^2 5xy 2y^2 = 0$ (C) $2x^2 5xy + 3y^2 = 0$
- (D) $3x^2 + 5xy + 2y^2 = 0$

18.
$$\int \frac{e^x}{(2+e^x)(e^x+1)} \, dx =$$

(where C is a constant of integration.)

(A)
$$\log\left(\frac{e^{x}+2}{e^{x}+1}\right) + C$$

(B) $\log\left(\frac{e^{x}}{e^{x}+2}\right) + C$
(C) $\frac{e^{x}+1}{e^{x}+2} + C$
(D) $\log\left(\frac{e^{x}+1}{e^{x}+2}\right) + C$

19. The function
$$f(x) = 2x^3 - 9x^2 + 12x + 29$$
 is
monotonically increasing in the interval
(A) $(-\infty,\infty)$ (B) $(-\infty,1) \cup (2,\infty)$
(C) $(-\infty,1)$ (D) $(2,\infty)$
20. If $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -3 \\ | \lfloor -1 & 2 & 3 \end{bmatrix}$, then $A_{31} + A_{4} + A_{32} = A_{33} = A_{$

22. A round table conference is to be held amongst 20 countries. If two particular delegates wish to sit together, then such arrangements can be done in _____ ways. 101

(A) 18! (B)
$$\frac{19!}{2!}$$

(C)
$$2 \times (18)!$$
 (D) $19! \times 2!$

23. The general solution of differential equation $e^{\frac{1}{2}\left(\frac{dy}{dx}\right)}$ $=3^{x}$ is

(where C is a constant of integration.) (A) $x = (\log 3)y^2 + C$

(B)
$$y = x^2 \log 3 + C$$

(C)
$$y = x \log 3 + C$$

(D) $y = 2x \log 3 + C$

24. If
$$x^y = e^{x-y}$$
, then $\frac{dy}{dx} =$

(A)
$$\frac{\log x}{(1+\log x)^2}$$
 (B) $\frac{\log x}{1+\log x}$

(C)
$$\frac{x \log x}{\left(1 + \log x\right)^2}$$
 (D) $\frac{\log x}{x \left(1 + \log x\right)^2}$

The vector projection of \vec{b} on \vec{a} , where $\vec{a}=3\hat{i}+2\hat{j}+5\hat{k}$ and $\vec{b}=7\hat{i}-5\hat{j}-\hat{k}$ is 25.

(A)
$$\frac{3(\hat{3}\hat{i}+\hat{2}\hat{j}+5\hat{k})}{\sqrt{38}}$$
 (B) $\frac{9\hat{i}+6\hat{j}+15\hat{k}}{19}$
(C) $\frac{3(\hat{3}\hat{i}+\hat{2}\hat{j}+5\hat{k})}{38}$ (D) $\frac{6(\hat{3}\hat{i}+\hat{2}\hat{j}+5\hat{k})}{\sqrt{38}}$

26. The equation of the line perpendicular to 2x - 3y + 5 = 0 and making an intercept 3 with positive Y-axis is

(A) 3x + 2y - 6 = 0

(B)
$$3x + 2y - 12 = 0$$

(C)
$$3x + 2y - 7 = 0$$

(D)
$$3x + 2y + 6 = 0$$

2

(D)

MHT-CET 2022 Question Paper 6th August 2022 (Shift – I)

The area of the region bounded by the y-axis,

27	те 2	$2e^{x} +$	$3e^{-x}$	=	Ax -	+ Blo	g (3e ²	2x + 4) + C,
27.	$\int \frac{1}{3e^x + 4e^{-x}} dx$								
	then values of A and B are respectively (where C is a constant of integration.)								
	(A)	<u>3</u> 4	<u>1</u> 24			(B)	$\frac{4}{3}, \frac{1}{3}$	-24	
	(C)	$\frac{1}{4}$,	<u>1</u> 24			(D)	<u>3</u> ,=	- <u>1</u> 94	
28.	If th	e s	lope	of o	one o	f the	lines	s give	n by
	$ax^{2} +$	$x^2 + 2hxy + by^2 = 0$ is two times the other, then						, then	
	(A)	8h	$^{2} = 9a$	ıb		(B)	8h =	= 9ab	
	(C)	8h	$^{2} = 9a$	ub ²		(D)	8h =	= 9ab ²	
29.	Two numbers are selected at random from the first six positive integers. If X denotes the larger of two numbers, then $Var(X) =$								
	(A)	14				(B)	14		
	(\mathbf{C})	ß				(\mathbf{D})	70		
	(C)	7				(D)	-7		
		3					3		
30.	The r	atio	in w	hich	the pl	lane		$2\hat{j}+3\hat{k}$	= 17
	divides the line joining the points $-2\hat{i}+4\hat{j}+7\hat{k}$							1 j + 7k	
	and 3^{\prime}	i−5		ìs					
	(A)	5:	3			(B)	4:5	5	
	(C)	3:	10			(D)	10 :	3	
	(0)		10			(2)	10.		
31.	If surrounding air is kept at 20 °C and body						body		
	temperature of the body after 15 minutes, then the								
	(A)	54	7 °C	the t	Jouy	(\mathbf{R})	51.7	1 °C	viii oe
	(\mathbf{C})	52	.7 ℃			(D)	50.7	°C	
	(0)	02	., e			(2)	2011	Ũ	
32.	A random variable X has the following probability distribution								
	X		0	1	2	3	4	5	6
	P (X))	k	3k	5k	7k	9k	11k	13k
	then P (X \geq 2) =								
	(A)	1	-			(B)	<u>+5</u>		
		49 40					49 15		
	(C)	40				(D)	40		
		49	,	1	000 A r		49		
33.	Give that $f(x) = \frac{1 - \cos 4x}{x^2}$ if $x < 0$ = a if $x = 0$								
		$=$ $\frac{\sqrt{x}}{\sqrt{x}}$ if $x > 0$							
		$- \frac{1}{\sqrt{16+\sqrt{x}-4}} - 4$							
	is continuous at $x = 0$, then a =								
	(A)	16				(B)	2		
	(C)	4				(D)	8		

 $y = \cos x, y = \sin x, \text{ when } 0 \le x \le \frac{\pi}{4}, \text{ is}$ (A) $\sqrt{2}$ sq. units
(B) $2(\sqrt{2}-1)$ sq. units
(C) $(\sqrt{2}-1)$ sq. units
(D) $(\sqrt{2}+1)$ sq. units

34.

35. Given three vectors \overline{a} , \overline{b} , \overline{c} , two of which are collinear. If \overline{a} + \overline{b} is collinear with \overline{c} and \overline{b} + \overline{c} is collinear with \overline{a} and $|\overline{a}| = |\overline{b}| = |\overline{c}| = \sqrt{2}$, then $\overline{a} \cdot \overline{b} + \overline{b} \cdot \overline{c} + \overline{c} \cdot \overline{a} =$ (A) -3 (B) 5 (C) 3 (D) -1

36. In a triangle ABC, with usual notations $\angle A = 60^{\circ}, \text{ then } \begin{pmatrix} 1 + \frac{a}{c} + \frac{b}{c} \\ 1 + \frac{c}{c} - \frac{a}{b} \\ 1 + \frac{c}{b} - \frac{a}{b} \end{pmatrix} =$ (A) 3 (B) $\frac{1}{2}$ (C) $\frac{3}{2}$ (D) 1

37. If y = 4x - 5 is tangent to the curve $y^2 = px^3 + q$ at (2, 3), then (A) p = -2, q = 7 (B) p = 2, q = -7(C) p = 2, q = 7 (D) p = -2, q = -7

- 38. Which of the following statement pattern is a contradiction?

(C)
$$S_1 \equiv (\sim p \lor \sim q) \lor (p \lor \sim q)$$

(D) $S_3 \equiv (\sim p \land q) \land (\sim q)$

39. Let $\cos (\alpha + \beta) = \frac{4}{5}$ and $\sin (\alpha - \beta) = \frac{5}{13}$, where $0 \le \alpha, \beta \le \frac{\pi}{4}$, then $\tan 2\alpha = \frac{20}{56}$

(A)
$$\frac{25}{7}$$
 (B) $\frac{35}{33}$
(C) $\frac{19}{12}$ (D) $\frac{25}{16}$

40. If the position vectors of the points A and B are $3\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} - 2\hat{j} - 4\hat{k}$ respectively, then the equation of the plane through B and perpendicular to AB is

(A)
$$2x + 3y + 6z + 28 = 0$$

(B)
$$2x + 3y + 6z - 11 = 0$$

(C)
$$2x - 3y - 6z - 32 = 0$$

(D) 2x + 3y + 6z + 9 = 0

		R	MHT-CET 2022 Question Paper 6 th August 2022 (Shift – I)
41.	The particular solution of the differential	49.	If $f(x) = \frac{a^x - a^{-x}}{x}$, where a, x satisfy the
	equation $\frac{dy}{dx} - e^x = ye^x$, when $x = 0$ and $y = 1$ is (A) $\log \left(\frac{y+1}{2}\right) = e^x - 1$ (B) $\log (y-1) = e^x - 1$ (C) $\log 2(y-1) = e^x - 1$ (D) $\log \left(\frac{y+1}{2}\right) = e^x - 1$		$a^{x} + a^{-x}$ necessary conditions, then f ⁻¹ (x) = (A) $\frac{1}{2}\log_{a}\left(\frac{x}{1-x}\right)$ (B) $\frac{1}{2}\log_{a}\left(\frac{1+x}{x}\right)$ (C) $\frac{1}{2}\log_{a}\left(\frac{1+x}{1-x}\right)$ (D) $\frac{1}{2}\log_{a}\left(\frac{2+x}{2-x}\right)$
42	If the standard deviation of first n natural	50.	For a Binomial distribution, $n = 6$, if $9P(X = 4) = P(X = 2)$, then $q = \frac{3}{2}$
72.	numbers is 2, then the value of n is (A) 6 (B) 7 (C) 5 (D) 4		(A) $\frac{1}{5}$ (B) $\frac{1}{4}$ (C) $\frac{1}{4}$ (D) $\frac{1}{2}$
43.	If \overline{a} , \overline{b} , \overline{c} are position vectors of points A, B, C respectively, with $2\overline{a} + 3\overline{b} - 5\overline{c} = \overline{0}$, then the ratio in which point C divides segment AB is (A) 3:2 externally (B) 2:3 externally (C) 3:2 internally (D) 2:3 internally		
44.	The second derivative of a sin ³ t w.r.t. a cos ³ t at t = $\pi/4$ is (A) $\frac{-4\sqrt{2}}{3a}$ (B) $\frac{4\sqrt{2}}{3a}$ (C) $\frac{4\sqrt{3}}{3a}$ (D) $\frac{1}{12a}$		
45.	$\int_{2}^{3} \log x = $ (A) $\frac{1}{2} \log 6 \log 3$ (B) $\log 6 \log \frac{3}{2}$ (C) $\frac{1}{2} \log 6 \log \frac{3}{2}$ (D) $2 \log 6 \log \frac{3}{2}$		
46.	With reference to the principal values, if $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$, then $x^{100} + y^{100} + z^{100} =$ (A) 1 (B) 2 (C) 3 (D) 6		
47.	For the differential equation $\begin{bmatrix} 1 - \left(\frac{dy}{dx}\right)^2 \end{bmatrix}^{\frac{3}{2}} = 8 \frac{d^2y}{dx^2}$ has the order and degree respectively. (A) 2 and 6 (B) 2 and 3		
	(C) 2 and 2 (D) 2 and 1		
48.	The angle between two lines $\frac{x+1}{2} = \frac{y+3}{2} = \frac{z-4}{-1}$		
	and $\frac{x-4}{1} = \frac{y+4}{2} = \frac{z+1}{2}$ is (A) $\cos^{-1}\left(\frac{4}{9}\right)$ (B) $\cos^{-1}\left(\frac{1}{9}\right)$ (C) $\cos^{-1}\left(\frac{2}{9}\right)$ (D) $\cos^{-1}\left(\frac{5}{9}\right)$		

4