Ex 3.1 Class 11 Maths Question 1:
Find the radian measures corresponding to the following degree measures:
(i) 25°
(ii) $-47^{\circ} 30^{\prime}$
(iii) 240°
(iv) 520° Ans:
(i) 25°

We know that $180^{\circ}=\pi$ radian
$\therefore 25^{\circ}=\frac{\pi}{180} \times 25$ radian $=\frac{5 \pi}{36}$ radian
(ii) $-47^{\circ} 30^{\prime}$
$-47^{\circ} 30^{\prime}=-47 \frac{1}{2}$ degree $\left[1^{\circ}=60^{\prime}\right]$
$=\frac{-95}{2}$ degree

Since $180^{\circ}=\pi$ radian
$\frac{-95}{2}$ deg ree $=\frac{\pi}{180} \times\left(\frac{-95}{2}\right)$ radian $=\left(\frac{-19}{36 \times 2}\right) \pi$ radian $=\frac{-19}{72} \pi$ radian
$\therefore-47^{\circ} 30^{\prime}=\frac{-19}{72} \pi$ radian
(iii) 240°

We know that $180^{\circ}=\pi$ radian
$\therefore 240^{\circ}=\frac{\pi}{180} \times 240$ radian $=\frac{4}{3} \pi$ radian
(iv) 520°

We know that $180^{\circ}=\pi$ radian
$\therefore 520^{\circ}=\frac{\pi}{180} \times 520$ radian $=\frac{26 \pi}{9}$ radian
(iii) 240°

We know that $180^{\circ}=\pi$ radian
$\therefore 240^{\circ}=\frac{\pi}{180} \times 240$ radian $=\frac{4}{3} \pi$ radian
(iv) 520°

We know that $180^{\circ}=\pi$ radian
$\therefore 520^{\circ}=\frac{\pi}{180} \times 520$ radian $=\frac{26 \pi}{9}$ radian

Ex 3.1 Class 11 Maths Question 2:

Find the degree measures corresponding to the following radian measures
$\left(\right.$ Use $\left.\pi=\frac{22}{7}\right)$.
(i) $\frac{11}{16}$ (ii) -4 (iii) $\frac{5 \pi}{3}$ (iv) $\frac{7 \pi}{6}$

Ans:
(i) 1116

We know that: π radian $=180^{\circ}$
$\therefore 1116$ radain $=180 \pi \times 1116 \times$ degree
$=45 \times 11 \pi \times 4$ degree
$=45 \times 11 \times 722 \times 4$ degree
$=3158$ degree
$=3938$ degree
$=39^{\circ}+3 \times 608$ minutes $\left[1^{\circ}=60^{\prime}\right]$
$=39^{\circ}+22^{\prime}+12$ minutes $=$
$39^{\circ} 22^{\prime} 30^{\prime \prime}\left[1^{\prime}=60^{\circ}\right]$.
(ii) -4

We know that π radian $=180^{\circ}$

$$
\begin{array}{rlr}
-4 \text { radian } & =\frac{180}{\pi} \times(-4) \text { deg ree }=\frac{180 \times 7(-4)}{22} \text { deg ree } \\
& =\frac{-2520}{11} \text { deg ree }=-229 \frac{1}{11} \text { deg ree } \\
& =-229^{\circ}+\frac{1 \times 60}{11} \text { minutes } & {\left[1^{\circ}=60^{\prime}\right]} \\
& =-229^{\circ}+5^{\prime}+\frac{5}{11} \text { min utes } \\
& =-229^{\circ} 5^{\prime} 27^{\prime \prime} & {\left[1^{\prime}=60^{\prime \prime}\right]}
\end{array}
$$

(iii) $\frac{5 \pi}{3}$

We know that π radian $=180^{\circ}$
$\therefore \frac{5 \pi}{3}$ radian $=\frac{180}{\pi} \times \frac{5 \pi}{3}$ deg ree $=300^{\circ}$
(iv) $\frac{7 \pi}{6}$

We know that π radian $=180^{\circ}$

$$
\therefore \frac{7 \pi}{6} \text { radian }=\frac{180}{\pi} \times \frac{7 \pi}{6}=210^{\circ}
$$

Ex 3.1 Class 11 Maths Question 3:

A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
Ans:
Number of revolutions made by the wheel in 1 minute $=360 \therefore$
Number of revolutions made by the wheel in 1 second $=3606=6$
In one complete revolution, the wheel turns an angle of 2π radian.
Hence, in 6 complete revolutions, it will turn an angle of $6 \times 2 \pi$ radian, i.e., 12π radian
Thus, in one second, the wheel turns an angle of 12π radian. Ex

3.1 Class 11 Maths Question 4:

Find the degree measure of the angle subtended at the centre of a circle of radius $100 \mathrm{~cm} y$ an arc of length 22 cm (Use $\pi=227$). Ans:
We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then θ
$=1 r$
Therefore, for $r=100 \mathrm{~cm}, \mathrm{l}=22 \mathrm{~cm}$, we have

$$
\begin{aligned}
& \theta=\frac{22}{100} \text { radian }=\frac{180}{\pi} \times \frac{22}{100} \text { degree }=\frac{180 \times 7 \times 22}{22 \times 100} \text { degree } \\
&=\frac{126}{10} \text { degree }=12 \frac{3}{5} \text { degree }=12^{\circ} 36^{\prime} \\
& {\left[1^{\circ}=60^{\prime}\right] }
\end{aligned}
$$

Thus, the required angle is $12^{\circ} 36^{\prime}$.

Ex 3.1 Class 11 Maths Question 5:

In a circle of diameter 40 cm , the length of a chord is 20 cm . Find the length of minor arc of the chord. Ans:

Given, diameter $=40 \mathrm{~cm} \therefore$ radius $(\mathrm{r})=$ $402=20 \mathrm{~cm}$ and length of chord, $A B$ $=20 \mathrm{~cm}$ Thus, $\triangle \mathrm{OAB}$ is an equilateral triangle.
We know that, $\theta=$
Arc AB radius \Rightarrow
Arc $A B=\theta \times r=\pi 3$
$\times 20$.
$=203 \pi \mathrm{~cm}$.

Ex 3.1 Class 11 Maths Question 6:

If in two circles, arcs of the same length s ubtend angles 60° and 75° at the centre, find the ratio of their radii. Ans:

Let the radii of the two circles be r_{1} and r_{2}.
Let an arc of length 1 subtend an angle of 60° at the centre of the circle of radius r_{1}, while let an arc of length l subtend an angle of 75° at the centre of $t h$ e circle of radius r_{2}.
Now, $60^{\circ}=\pi 3$ radian and 75°
$=5 \pi 12$ radian

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian t the centre, then $\theta=\operatorname{lr}$ or $l=r \theta \therefore l=r 1 \pi 3$ and $l=r 25 \pi 12 \Rightarrow r 1 \pi 3=r 25 \pi 12 \Rightarrow r=r 254 r 1 r 2=54$
Thus, the ratio of the radii is $5: 4$.

Ex 3.1 Class 11 Maths Question 7:

Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length (i) 10 cm
(ii) 15 cm
(iii) 21 cm .

Ans:
We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then $\theta=1$ r.
It is given that $r=75 \mathrm{~cm}$
(i) Here, $\mathrm{l}=10 \mathrm{~cm} \theta=$ 1075 radian $=215$ radian (ii) Here, l = 15 $\operatorname{cm} \theta=1575$ radian $\theta=$ 15 radian (iii) Here, l = $21 \mathrm{~cm} \theta=2175$ radian $=$ 775 radian.

Maths Question 1:
Find the values of other five trigonometric functions if $\cos x=-12 x$ lies in third quadrant. Ans:

$$
\begin{array}{r}
\cos x=-\frac{1}{2} \\
\therefore \quad \sec x=\frac{1}{\cos x}=\frac{1}{\left(-\frac{1}{2}\right)}=-2 \\
\sin ^{2} x+\cos ^{2} x=1 \\
\Rightarrow \sin ^{2} x=1-\cos ^{2} x \Rightarrow \sin ^{2} x=1-\left(-\frac{1}{2}\right)^{2} \\
\Rightarrow \\
\sin ^{2} x=1-\frac{1}{4}=\frac{3}{4} \Rightarrow \sin x= \pm \frac{\sqrt{3}}{2}
\end{array}
$$

Since x lies in the $3^{\text {rd }}$ quadrant, the value of $\sin x$ will be negative.

$$
\therefore \quad \sin x=-\frac{\sqrt{3}}{2}
$$

$$
\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{\sqrt{3}}{2}\right)}=-\frac{2}{\sqrt{3}}
$$

$$
\tan x=\frac{\sin x}{\cos x}=\frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(-\frac{1}{2}\right)}=\sqrt{3}
$$

$$
\cot x=\frac{1}{\tan x}=\frac{1}{\sqrt{3}}
$$

Ex 3.2 Class 11 Maths Question 2:
Find the values of other five trigonometric functions if $\sin x=35, x$ lies in second quadrant. Ans:

```
sin x = 35 cosec x =
1 sin}x=1(35)=53 sin 2 x +
\mp@subsup{cos}{}{2}}\textrm{x}=1=>\mp@subsup{\operatorname{cos}}{}{2}\textrm{x}=1
\mp@subsup{\operatorname{sin}}{}{2}x
=> cos}
=> cos}\mp@subsup{}{}{2}x=1-92
```

$$
\Rightarrow \cos ^{2} x=1625
$$

$$
\Rightarrow \cos x= \pm 45
$$

Since x lies in the 2nd quadrant, the value of $\cos x$ will be negative

$$
\begin{aligned}
& \cos x=-\frac{4}{5} \\
& \sec x=\frac{1}{\cos x}=\frac{1}{\left(-\frac{4}{5}\right)}=-\frac{5}{4} \\
& \tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{3}{5}\right)}{\left(-\frac{4}{5}\right)}=-\frac{3}{4} \\
& \cot x=\frac{1}{\tan x}=-\frac{4}{3}
\end{aligned}
$$

Ex 3.2 Class 11 Maths Question 3:

Find the values of other five trigonometric functions if $\cot x=34, x$ lies in third quadrant. Ans:

$$
\begin{aligned}
& \cot x=\frac{3}{4} \\
& \tan x=\frac{1}{\cot x}=\frac{1}{\left(\frac{3}{4}\right)}=\frac{4}{3} \\
& 1+\tan ^{2} x=\sec ^{2} x \\
& \Rightarrow \quad 1+\left(\frac{4}{3}\right)^{2}=\sec ^{2} x \quad \Rightarrow \quad 1+\frac{16}{9}=\sec ^{2} x \\
& \Rightarrow \quad \frac{25}{9}=\sec ^{2} x \quad \Rightarrow \quad \sec x= \pm \frac{5}{3}
\end{aligned}
$$

Since x lies in the $3^{\text {rd }}$ quadrant, the value of $\sec x$ will be negative.

$$
\begin{aligned}
\therefore \quad \sec x & =-\frac{5}{3} \\
\cos x & =\frac{1}{\sec x}=\frac{1}{\left(-\frac{5}{3}\right)}=-\frac{3}{5} \\
\tan x & =\frac{\sin x}{\cos x}
\end{aligned}
$$

$\Rightarrow 43=\sin x-35 \Rightarrow \sin x=$
$(43) \times(-35)=-45 \Rightarrow \operatorname{cosec}$ $x=1 \sin x=-54$.

Ex 3.2 Class 11 Maths Question 4:

Find the values of other five trigonometric functions if $\sec x=135$, x lies in fourth quadrant. Ans:

$$
\begin{aligned}
& \sec x=\frac{13}{5} \\
& \cos x=\frac{1}{\sec x}=\frac{1}{\left(\frac{13}{5}\right)}=\frac{5}{13} \\
& \qquad \sin ^{2} x+\cos ^{2} x=1 \\
& \Rightarrow \quad \sin ^{2} x=1-\cos ^{2} x \quad \Rightarrow \sin ^{2} x=1-\left(\frac{5}{13}\right)^{2} \\
& \Rightarrow \sin ^{2} x=1-\frac{25}{169}=\frac{144}{169} \Rightarrow \sin x= \pm \frac{12}{13} \\
& \text { Since } x \text { lies in the } 4^{\text {th }} \text { quadrant, the value of } \sin x \text { will be negative. } \\
& \therefore \quad \sin x=-\frac{12}{13} \\
& \qquad \operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{12}{13}\right)}=-\frac{13}{12} \\
& \tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{-12}{13}\right)}{\left(\frac{5}{13}\right)}=-\frac{12}{5} \\
& \cot x=\frac{1}{\tan x}=\frac{1}{\left(-\frac{12}{5}\right)}=-\frac{5}{12}
\end{aligned}
$$

Ex 3.2 Class 11 Maths Question 5:
Find the values of other five trigonometric functions if $\tan x=512$, x lies in second quadrant. Ans:

```
tan x = - 512 cot x =
1 tan}x=1(-512)=-125 1 
\mp@subsup{\operatorname{tan}}{}{2}x=\mp@subsup{\operatorname{sec}}{}{2}x
```

$$
\begin{aligned}
& \Rightarrow \quad 1+\left(-\frac{5}{12}\right)^{2}=\sec ^{2} x \Rightarrow 1+\frac{25}{144}=\sec ^{2} x \\
& \Rightarrow \quad \frac{169}{144}=\sec ^{2} x \Rightarrow \sec x= \pm \frac{13}{12}
\end{aligned}
$$

Since x lies in the $2^{\text {nd }}$ quadrant, the value of $\sec x$ will be negative.

$$
\begin{gathered}
\therefore \quad \sec x=-\frac{13}{12} \\
\cos x=\frac{1}{\sec x}=\frac{1}{\left(-\frac{13}{12}\right)}=-\frac{12}{13} \\
\tan x=\frac{\sin x}{\cos x} \\
\Rightarrow \quad-\frac{5}{12}=\frac{\sin x}{\left(-\frac{12}{13}\right)} \Rightarrow \sin x=\left(-\frac{5}{12}\right) \times\left(-\frac{12}{13}\right)=\frac{5}{13} \\
\operatorname{cosec} x= \\
=\frac{1}{\sin x}=\frac{1}{\left(\frac{5}{13}\right)}=\frac{13}{5}
\end{gathered}
$$

Ex 3.2 Class 11 Maths Question 6:

Find the value of the trigonometric function $\sin 765^{\circ}$. Ans:
It is known that the values of $\sin x$ repeat after an interval of 2π or $360^{\circ} .$. $\sin 765^{\circ}=\sin \left(2 \times 360^{\circ}+45^{\circ}\right)$
$=\sin 45^{\circ}=1$

Ex 3.2 Class 11 Maths Question 7:

Find the value of the trigonometric function $\operatorname{cosec}\left(-1410^{\circ}\right)$ Ans:
It is known that the values of cosec x repeat after an interval of 2π or 360°.
$\therefore \operatorname{cosec}\left(-1410^{\circ}\right)=\operatorname{cosec}\left(-1410^{\circ}+4 \times 360^{\circ}\right)=\operatorname{cosec}\left(-1410^{\circ}+1440^{\circ}\right)$
$=\operatorname{cosec} 30^{\circ}=2$.

Ex 3.2 Class 11 Maths Question 8:

Find the value of the trigonometric function tan $19 \pi 3$.
Ans:
It is known that the values of $\tan x$ repeat after an interval of π or 180°.

```
\therefore
tan19\pi3=tan613\pi
=
tan(6\pi+\pi3)=\operatorname{tan}\pi3
= tan 60 % = \sqrt{}{3}.
```


Ex 3.2 Class 11 Maths Question 9:

Find the value of the trigonometric function $\sin (-11 \pi 3)$.
Ans:
It is known that the values of cot x repeat after an interval of π or 180°.
$: \sin (11 \pi 3)=\sin (-11 \pi 3+2 \times 2 \pi)$
$=\sin (\pi 3)=\sin 60^{\circ}=3 \sqrt{2}$
Ex 3.2 Class 11 Maths Question 10:
Find the value of the trigonometric function $\cot (-15 \pi 4)$.
Ans:

It is known that the values of cot x repeat after an interval of ir or 1800 .
$\therefore \cot (-15 \pi 4)=\cot (-15 \pi 4+4 \pi)=\cot \pi 4=1$.
NCERT Solutions for Class 11 Maths Chapter 3 Exercise 3.3

Ex 3.3 Class 11 Maths Question 1:

Prove that: $\sin ^{2} \pi 6+\cos ^{2} \pi 3-\tan ^{2} \pi 4=-12$ Ans:
L.H.S. $=\sin ^{2} \pi 6+\cos ^{2} \pi 3-\tan ^{2} \pi 4$
$=(12) 2+(12) 2-(1)^{2}$
$=14+14-1=-12=$
R.H.S.

Hence proved.

Ex 3.3 Class 11 Maths Question 2:

Prove that: $2 \sin ^{2} \pi 6+\operatorname{cosec}^{2} 7 \pi 6 \cos ^{2} \pi 3=32$ Ans:

$$
\begin{aligned}
\text { L.H.S. } & =2 \sin ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3} \\
& =2\left(\frac{1}{2}\right)^{2}+\operatorname{cosec}^{2}\left(\pi+\frac{\pi}{6}\right)\left(\frac{1}{2}\right)^{2}=2 \times \frac{1}{4}+\left(-\operatorname{cosec} \frac{\pi}{6}\right)^{2}\left(\frac{1}{4}\right) \\
& =\frac{1}{2}+(-2)^{2}\left(\frac{1}{4}\right) \\
& =\frac{1}{2}+\frac{4}{4}=\frac{1}{2}+1=\frac{3}{2}=\text { R.H.S. }
\end{aligned}
$$

Ex 3.3 Class 11 Maths Question 3: Prove that : $\cot ^{2} \pi 6+\operatorname{cosec} 5 \pi 6+3 \tan ^{2} \pi 6=6$ Ans:

$$
\begin{aligned}
\text { L.H.S. } & =\cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6} \\
& =(\sqrt{3})^{2}+\operatorname{cosec}\left(\pi-\frac{\pi}{6}\right)+3\left(\frac{1}{\sqrt{3}}\right)^{2} \\
& =3+\operatorname{cosec} \frac{\pi}{6}+3 \times \frac{1}{3}=3+2+1=6 \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence proved.
Ex 3.3 Class 11 Maths Question 4:
Prove that: $2 \sin ^{2} 3 \pi 4+2 \cos ^{2} \pi 4+2 \sec ^{2} \pi 3=10$ Ans:
L.H.S $=2 \sin 23 \pi 4+2 \cos 2 \pi 4+2 \sec 2 \pi 3$
$=2\{\sin (\pi-\pi 4)\} 2+2(12 \sqrt{ }) 2+2(2) 2$
$=2\{\sin \pi 4\} 2+2 \times 12+8$
$=2(12 \sqrt{ }) 2+1+8$
$=1+1+8$
$=10=$ R.H.S.
Hence proved.

Ex 3.3 Class 11 Maths Question 5:

Find the value of: (i) $\sin 75^{\circ}$,
(ii) $\tan 15^{\circ}$ Ans:
(i) $\sin 75^{\circ} \sin \left(45^{\circ}+30^{\circ}\right)$
$=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$
$[\because \sin (x+y)=\sin x \cos y+\cos x \sin$
$(12 \sqrt{ })(3 \sqrt{2})+(12 \sqrt{ })(12)$
y]
$=$
$=3 \sqrt{2} 2 \sqrt{ }+122 \sqrt{ }=3 \sqrt{ }+122 \sqrt{ }$
(ii) $\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)$

$$
\begin{aligned}
& =\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}} \\
& =\frac{1-\frac{1}{\sqrt{3}}}{1+1\left(\frac{1}{\sqrt{3}}\right)}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}} \\
& =\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)(\sqrt{3}-1)}=\frac{3+1-2 \sqrt{3}}{(\sqrt{3})^{2}-(1)^{2}} \\
& =\frac{4-2 \sqrt{3}}{3-1}=2-\sqrt{3}
\end{aligned}
$$

Ex 3.3 Class 11 Maths Question 6:
$\cos (\pi 4-x) \cos (\pi 4-y)-\sin (\pi 4-x) \sin (\pi 4-y)=\sin (x+y)$

Ans:

L.H.S. $=\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)$

Let $\frac{\pi}{4}-x=A$ and $\frac{\pi}{4}-y=B$
Then, \quad L.H.S. $=\cos A \cos B^{6}-\sin A \sin B=\cos (A+B)$

$$
\begin{aligned}
& =\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}\right] \\
& =\cos \left(\frac{\pi}{2}-x-y\right)=\cos \left[\frac{\pi}{2}-(x+y)\right] \\
& =\sin (x+y)=\text { R.H.S. } \quad \text { Hence proved. }
\end{aligned}
$$

Ex 3.3 Class 11 Maths Question 7:
Prove that: $\tan (\pi 4+x) \tan (\pi 4-x)=(1+\tan x 1-\tan x) 2$
Ans:

$$
\begin{aligned}
& \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \text { and } \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B} \\
& \therefore \quad \text { L.H.S. }=\frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}=\left(\frac{\left(\frac{\tan \frac{\pi}{4}+\tan x}{1-\tan \frac{\pi}{4} \tan x}\right)}{\left(\left(\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x}\right)\right.}=\frac{\left(\frac{1+\tan x}{1-\tan x}\right)}{\left(\frac{1-\tan x}{1+\tan x}\right)}\right.
\end{aligned}
$$

$=(1+\tan x 1-\tan x) 2$
= R.H.S
Hence proved.
Ex 3.3 Class 11 Maths Question 8:
Prove that: $\cos (\pi+x) \cos (-x) \sin (\pi-x) \cos (\pi 2+x)=\cot ^{2} x$
Ans:
L.H.S $=\cos (\pi+x) \cos (-x) \sin (\pi-x) \cos (\pi 2+x)$
$=[-\cos x][\cos x](\sin x)(-\sin x)=-\cos 2 x-\sin 2 x$
$=\cot ^{2} \mathrm{x}$
= R.H.S Hence
proved.
Ex 3.3 Class 11 Maths Question 9:

$$
\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]
$$

= 1
Ans:

$$
\begin{aligned}
& \text { L.H.S. }=\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right] \\
&= \sin x \cos x[\tan x+\cot x] \quad\left[\begin{array}{l}
\because \cos \left(\frac{3 \pi}{2}+\theta\right)=\sin \theta \\
\cot \left(\frac{3 \pi}{2}-\theta\right)=\tan \theta
\end{array}\right] \\
&=\sin x \cos x\left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right)=(\sin x \cos x)\left[\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x}\right]
\end{aligned}
$$

= 1 = R.H.S
Hence proved.
Ex 3.3 Class 11 Maths Question 10:
Prove that: $\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$ Ans:
$=\cos x=$ R.H.S.

Hence proved.

Ex 3.3 Class 11 Maths Question 11:

Prove that: $\cos (3 \pi 4+x)-\cos (3 \pi 4-x)=-2-\sqrt{\sin x}$
Ans:
It is known that $\cos \mathrm{A}-\cos \mathrm{B}=$
$-2 \sin (A+B 2) \circ \sin (A-B 2)$
\therefore L.H.S. $==\cos (3 \pi 4+x)-\cos (3 \pi 4-x)$
$=-2 \sin \{(3 \pi 4+x)+(3 \pi 4-x) 2\} \circ \sin \{(3 \pi 4+x)-(3 \pi 4-x) 2\}$
$=-2 \sin (3 \pi 4) \sin x$
$=-2 \sin (-\pi 4) \sin \mathrm{x}=$
$-\sqrt{2} \sin x=$ R.H.S.
Hence proved.

Ex 3.3 Class 11 Maths Question 12:

Prove that: $\sin ^{2} 6 \mathrm{x}-\sin ^{2} 4 \mathrm{x}=\sin 2 \mathrm{x} \sin 10 \mathrm{x}$
Ans:
It is known that $\sin A+\sin B=2$
$\sin (A-B 2) \cos (A-B 2) \sin A-\sin B=2$
$\cos (A+B 2) \sin (A-B 2)$ L.H.S. $=\sin ^{2} 6 x-$
$\sin ^{2} 4 \mathrm{x}$
$=(\sin 6 x+\sin 4 x)(\sin 6 x-\sin 4 x)$
$=(2 \sin 5 x \cos x)(2 \cos 5 x \sin x)$
$=(2 \sin 5 x \cos 5 x)(2 \sin x \cos x)$
$=\sin 10 x \sin 2 x=$ R.H.S.
Hence proved.

Ex 3.3 Class 11 Maths Question 13:

Prove that: $\cos ^{2} 2 x \cos ^{2} 6 x=\sin 4 x \sin 8 x$ Ans:
It is known that $\cos A+\cos B=2$
$\cos (\mathrm{A}+\mathrm{B} 2) \cos (\mathrm{A}-\mathrm{B} 2) \cos \mathrm{A}-\cos =2$
$\sin (A+B 2) \sin (A-B 2)$
\therefore L.H.S $=\cos ^{2} 2 \mathrm{x}-\cos ^{2} 6 \mathrm{x}$
$=(\cos 2 x+\cos 6 x)(\cos 2 x-6 x)$
$=[2 \cos (2 x+6 x 2) \cos (2 x-6 x 2)][-2 \sin (2 x+6 x 2) \sin (2 x-6 x) 2]$
\therefore L.H.S. $=\cos ^{2} 2 x-\cos ^{2} 6 x$
$=(\cos 2 x+\cos 6 x)(\cos 2 x-6 x)$
$=[2 \cos 4 x \cos (-2 x)][-2 \sin 4 x \sin (-2 x)]$
$=[2 \cos 4 x \cos 2 x][-2 \sin 4 x(-\sin 2 x)]$
$=(2 \sin 4 x \cos 4 x)(2 \sin 2 x \cos 2 x)$
$=\sin 8 x \sin 4 x=$ R.H.S.
Hence proved.

Ex 3.3 Class 11 Maths Question 14:

Prove that: $\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$ Ans:
L.H.S. $=\sin 2 x+2 \sin 4 x+\sin 6 x$
$=[\sin 2 x+\sin 6 x]+2 \sin 4 x$
$=[2 \sin (2 x+6 x 2) \cos (2 x-6 x 2)]+2 \sin 4 x$
$[\because \sin A+\sin B=2 \sin (A+B 2) \cos (A-B 2)]$
$=2 \sin 4 \mathrm{x} \cos (-2 \mathrm{x})+2 \sin 4 \mathrm{x}$
$=2 \sin 4 \mathrm{x} \cos 2 \mathrm{x}+2 \sin 4 \mathrm{x}$
$=2 \sin 4 \mathrm{x}(\cos 2 \mathrm{x}+1)$
$=2 \sin 4 \mathrm{x}\left(2 \cos ^{2} \mathrm{x}-1+1\right)$

Hence proved.
Ex 3.3 Class 11 Maths Question 15:
$\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\operatorname{sins} 3 x)$ Ans:
L.H.S. $=\cot 4 x(\sin 5 x+\sin 3 x)$

$$
\begin{aligned}
& \begin{array}{l}
=\frac{\cos 4 x}{\sin 4 x}\left[2 \sin \left(\frac{5 x+3 x}{2}\right) \cos \left(\frac{5 x-3 x}{2}\right)\right] \\
=\left(\frac{\cos 4 x}{\sin 4 x}\right)[2 \sin 4 x \cos x]=2 \cos 4 x \cos x
\end{array} \\
& \qquad \begin{array}{r}
\text { R.H.S. }=\cot x(\sin 5 x-\sin 3 x) \\
\quad=\frac{\cos x}{\sin x}\left[2 \operatorname{sos}\left(\frac{5 x+3 x}{2}\right) \sin \left(\frac{5 x-3 x}{2}\right)\right. \\
\quad\left[\because \sin A+\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right] \\
\quad=\frac{\cos x}{\sin x}[2 \cos 4 x \sin x] \\
=
\end{array} \quad 2 \cos 4 x \cos x
\end{aligned}
$$

$$
\text { L.H.S. }=\text { R.H.S. }
$$

Hence proved.

Ex 3.3 Class 11 Maths Question 16:

Prove that: $\cos 9 \mathrm{x}-\cos 5 \mathrm{x} \sin 17 \mathrm{x}-\sin 3 \mathrm{x}=-\sin 2 \mathrm{x} \cos 10 \mathrm{x}$ Ans:
It is known that

Ex 3.3 Class 11 Maths Question 17:
Prove that: $\sin 5 \mathrm{x}+\sin 3 \mathrm{x} \cos 5 \mathrm{x}+\cos 3 \mathrm{x}=\tan 4 \mathrm{x}$ Ans:

$$
\begin{aligned}
& \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right), \\
& \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) \\
& \therefore \text { L.H.S. }=\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=\frac{-2 \sin \left(\frac{9 x+5 x}{2}\right) \sin \frac{(9 x-5 x)}{2}}{2 \cos \left(\frac{17 x+3 x}{2}\right) \sin \left(\frac{17 x-3 x}{2}\right)} \\
& =\frac{-2 \sin 7 x \sin 2 x}{2 \cos 10 x \sin 7 x}=-\frac{\sin 2 x}{\cos 10 x} \\
& =\text { R.H.S. Hence proved. }
\end{aligned}
$$

It is known that $\sin A+\sin =2$
$\sin (\mathrm{A}+\mathrm{B} 2) \cos (\mathrm{A}-\mathrm{B} 2) \cos \mathrm{A}+\cos =2$
$\cos (\mathrm{A}+\mathrm{B} 2) \cos (\mathrm{A}-\mathrm{B} 2)$
\therefore L.H.S $=\sin 5 x+\sin 3 x \cos 5 x+\cos 3 x$
$=$
$2 \sin (5 x+3 x 2) \cos (5 x-3 x 2) 2 \cos (5 x+3 x 2) \cos (5 x-3 x 2$
) $=2 \sin 4 \mathrm{x} \cos \mathrm{x} 2 \cos 4 \mathrm{x} \cos \mathrm{x}=\sin 4 \mathrm{x} \cos 4 \mathrm{x}=\tan 4 \mathrm{x}=$ R.H.S.

Hence proved.

Ex 3.3 Class 11 Maths Question 18:

Prove that: $\sin x-\sin y \cos x+\cos y=\tan x-y 2$. Ans:
It is known that:

$$
\begin{gathered}
\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) . \\
\cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
\therefore \text { L.H.S. }=\frac{\sin x-\sin y}{\cos x+\cos y}=\frac{2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)}{2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)} \\
=\frac{\sin \left(\frac{x-y}{2}\right)}{\cos \left(\frac{x-y}{2}\right)}=\tan \left(\frac{x-y}{2}\right)=\text { R.H.S. }
\end{gathered}
$$

Hence proved.

Ex 3.3 Class 11 Maths Question 19:
Prove that: $\sin \mathrm{x}+\sin 3 \mathrm{x} \cos \mathrm{x}+\cos 3 \mathrm{x}=\tan 2 \mathrm{x}$ Ans:
It is known that $\begin{aligned}: \sin A+\sin B & =2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) . \\ \cos A+\cos B & =2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\end{aligned}$
L.H.S. $=\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}$
$=\frac{2 \sin \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)}{2 \cos \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)}=\frac{2 \sin 2 x \cos (-x)}{2 \cos 2 x \cos (-x)}$
$=\frac{\sin 2 x}{\cos 2 x}=\tan 2 x=$ R.H.S. \quad Hence proved.

Ex 3.3 Class 11 Maths Question 20:
Prove that: $\sin \mathrm{x}-\sin 3 \mathrm{x} \sin 2 \mathrm{x}-\cos 2 \mathrm{x}=2 \sin \mathrm{x}$ Ans:
It is known that
$\sin \mathrm{A}-\sin \mathrm{B}=2 \cos (\mathrm{~A}+\mathrm{B} 2) \sin (\mathrm{A}-\mathrm{B} 2) \cos ^{2} \mathrm{~A}$
$-\sin ^{2} \mathrm{~A}=\cos 2 \mathrm{~A}$
\therefore L.H.S. $==\sin x-\sin 3 x \sin 2 x-\cos 2 x$
$=2 \cos (\mathrm{x}+3 \mathrm{x} 2) \sin (\mathrm{x}-3 \mathrm{x} 2)-\cos 2 \mathrm{x}$
$=2 \cos 2 x \sin (-x)-\cos 2 x$
$=-2 \times(-\sin x)=2 \sin x$
$=$ R.H.S
Hence proved.

Ex 3.3 Class 11 Maths Question 21:

Prove that: $\cos 4 \mathrm{x}+\cos 3 \mathrm{x}+\cos 2 \mathrm{x} \sin 4 \mathrm{x}+\sin 3 \mathrm{x}+\sin 2 \mathrm{x}=\cot 3 \mathrm{x}$ Ans:

$$
\begin{aligned}
& \text { L.H.S. }=\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\frac{(\cos 4 x+\cos 2 x)+\cos 3 x}{(\sin 4 x+\sin 2 x)+\sin 3 x} \\
& \begin{aligned}
= & \frac{2 \cos \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\cos 3 x}{2 \sin \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\sin 3 x} \\
& {\left[\because \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) .\right.} \\
\sin A+\sin B & \left.=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right] \\
& =\frac{2 \cos 3 x \cos x+\cos 3 x}{\sin 3 x \cos x+\sin 3 x}
\end{aligned}
\end{aligned}
$$

Ex 3.3 Class 11 Maths Question 22:

Prove that : $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$ Ans:
L.H.S. $=\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x$
$=\cot x \cot 2 x-\cot 3 x(\cot 2 x+\cot x)$
$=\cot x \cot 2 x-\cot (2 x+x)(\cot 2 x+\cot x)$
$=\cot x \cot 2 x-[\cot 2 x \cot x-1 \cot x+\cot 2 x](\cot 2 x+\cot x)$
$[\because \cot (A+B)=\cot A \cot B-1 \cot A+\cot B]=$
$\cot x \cot 2 x-(\cot 2 x \cot x-1)=1=$ R.H.S.
Hence proved.

Ex 3.3 Class 11 Maths Question 23:

Prove that: $\tan 4 x=4 \tan x(1-\tan 2 x) 1-6 \tan 2 x+\tan 4 x$.
Ans:
It is known that: $\tan 2 \mathrm{~A}$
$=2 \tan \mathrm{~A} 1-\tan 2 \mathrm{~A}$
L.H.S. $=\tan 4 x=\tan 2(2 x)=\frac{2 \tan 2 x}{1-\tan ^{2}(2 x)}$

$$
\begin{aligned}
& =\frac{2\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)}{1-\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)^{2}}=\frac{\left(\frac{4 \tan x}{1-\tan ^{2} x}\right)}{\left[1-\frac{4 \tan ^{2} x}{\left(1-\tan ^{2} x\right)^{2}}\right]} \\
& =\frac{\left(\frac{4 \tan x}{1-\tan ^{2} x}\right)}{\left[\frac{\left(1-\tan ^{2} x\right)^{2}-4 \tan ^{2} x}{\left(1-\tan ^{2} x\right)^{2}}\right]}=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{\left(1-\tan ^{2} x\right)^{2}-4 \tan ^{2} x} \\
& =\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1+\tan ^{4} x-2 \tan ^{2} x-4 \tan ^{2} x} \\
& =\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}=\text { R.H.S. } \quad \text { Hence proved. }
\end{aligned}
$$

Ex 3.3 Class 11 Maths Question 24:
Prove that: $\cos 4 \mathrm{x}=18 \sin ^{2} \mathrm{x} \cos ^{2} \mathrm{x}$ Ans:
L.H.S. $=\cos 4 x=\cos 2(2 x)$
$=1-2 \sin ^{2} 2 \mathrm{x}\left[\because \cos 2 \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}\right]$
$=1-2(2 \sin x \cos x)^{2}[\because \sin 2 A=2 \sin A \cos A]=$
$1-8 \sin ^{2} x \cos ^{2} x$
= R.H.S.
Hence proved.

Ex 3.3 Class 11 Maths Question 25:

Prove that: $\cos 6 x=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$ Ans:
We know that: $\cos 3 x=4 \cos ^{3} x-3 \cos x 0 n$
replacing x by $2 x$, we get $\cos 3(2 x)=4 \cos ^{3}$
$(2 x)-3 \cos 2 x \Rightarrow \cos 6 x=4\left(2 \cos ^{2} x-1\right)^{3}-$
$3\left(2 \cos ^{2} x-1\right)$
$\left[\because \cos 2 x=2 \cos ^{2} x-1\right]$
$=4\left[8 \cos ^{6} x-12 \cos ^{4} x+6 \cos ^{2} x-1\right]-6 \cos ^{2} x+3$
$\left[\because(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\right]$
$=32 \cos ^{6} x-48 \cos ^{4} x+24 \cos ^{2} x-4-6 \cos ^{2} x+3 \Rightarrow$
$\cos 6 x=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$
Hence proved.

