Chapter 11. Magnetic materials

MCQ'S (1 Mark Each)

1) The magnetic susceptibility is given by

a)
$$\chi = \frac{1}{H}$$
 b) $\chi = \frac{B}{H}$ c) $\chi = \frac{M_{net}}{V}$ d) $\chi = \frac{M}{H}$

Ans : d) $\chi = \frac{M}{H}$

2) The relation between relative permeability and magnetic susceptibility is given by

a)
$$\chi = \mu_r + 1$$
 b) $\chi = -\mu_r - 1$ c) $\mu_r = 1 - \chi$ d) $\mu_r = 1 + \chi$

Ans : d) $\mu_r = 1 + \chi$

3) If an electron of charge (-e) and mass m_e revolves around the nucleus of an atom having orbital magnetic moment m_o , then angular momentum of electron is

a)
$$L = \frac{m_o e}{2m_e}$$
 b) $L = \frac{e}{2m_o m_e}$ c) $L = \frac{2m_o m_e}{e}$ d) $L = \frac{2e}{m_o m_e}$

Ans : c) $L = \frac{2m_o m_e}{e}$

4) If m_o and L denote the orbital angular moment and the angular momentum of the electron due to its orbital motion, then the gyromagnetic ratio is given by

a)
$$\frac{L}{m_o}$$
 b) $\frac{m_o}{L}$ c) Lm_o d) $\sqrt{\frac{m_o}{L}}$
Ans : b) $\frac{m_o}{L}$

5) Relative permeability of iron 5500, then its magnetic susceptibility will be

a) 5500×10^7 b) 5501 c) 5499 d) 5500×10^{-7}

Ans: c) 5499, hint: $\chi = \mu_r - 1$

6) What is magnetization of a bar magnet having length 6 cm and area of cross section $5 cm^2$?

 $(m_{net} = 1)$

a)1.
$$2 \times 10^{-4}$$
 A/m b) 3. 3×10^{4} A/m c) 1. 25×10^{-4} A/m d) 3. 3×10^{-4} A/m

Ans: b) 3.3×10^4 A/m , $M = \frac{m_{net}}{V} = \frac{m_{net}}{AL}$

7) A magnetic material of susceptibility 3×10^{-4} , and magnetic intensity is 4×10^{-4} Am⁻¹. Then

The magnetization in the units of Am^{-1} is

a) 12×10^8 b) 1.33×10^8 c) 0.75×10^{-8}

d) 14×10⁻

Ans : a) 12×10^8 , M = χ H

Very Short Answer (VSA) (1 MARK Each)

- 1. Give gyro magnetic ratio.
- 2. What is stated in term of Bohr magneton.
- 3. Define magnetization.
- 4. What does the ratio of magnetization to magnetic intensity indicate?
- 5. What is diamagnetism?
- 6. State the formula for the periodic time of angular oscillations of the bar magnet, in terms of moment of inertia.
- 7. The relative permeability of a medium is 0.075. What is its magnetic susceptibility?

(Ans: 0.925, hint: $\chi = \mu_r - 1$)

- 8. The moment of a magnet ($15 \text{ cm} \times 2cm \times 1cm$) is $1.2 \text{ A} \cdot m^2$. What is its intensity of magnetization? (Ans: $M = 4 \times 10^4 \text{ Am}^{-1}$)
- 9. The electron in hydrogen atom is moving with a speed of 2. 5×10^6 m/s in an orbit of radius 0.5 A° . What is the Magnetic moment of the revolving electron? (Ans: $m_o = \frac{evr}{2}$ = $10^{-23} Am^2$).

Short Answer I (SA1) (2 MARKS Each)

- 1. Show that the orbital magnetic dipole moment of a resolving electron is $\frac{evr}{2}$.
- 2. Derive the quantity for Bohr magneton and also state its value.
- 3. Define magnetization. State its SI unit and dimensions.
- 4. What is a magnetic hysteresis?
- 5. Define: 1) retentivity 2) coercivity.
- 6. Explain magnetic shielding.
- 7. Calculate the gyro magnetic ratio of electron.

(given e =1.6×10⁻¹⁹ C, $m_c = 9.1 \times 10^{-31}$ kg)

Ans.: hint: gyromagnetic ratio =
$$\frac{e}{2m_e}$$
 = 8.8×10¹⁰ C kg⁻¹

8. An iron rod of area of cross-section $0.1m^2$ is subjected to a magnetizing field of 1000 A/m. Calculate the magnetic permeability of the iron rod.

(
$$\chi$$
 for iron = 599, $\mu_0 = 4\pi \times 10^{-7}$ SI unit)

Ans.: 7.54× 10⁻⁴ , **hint:** $\mu_r = \chi + 1$, $\mu = \mu_r \mu_o$

 A solenoid has core of a material with relative permeability 500 and its windings carry current of 1 A. The number of turns of the solenoid is 500 per meter.
Calculate the magnetization of the material.

Ans.: $2.495 \times 10^5 \text{ Am}^{-1}$, $H = \text{Ni}, \chi = \mu_r - 1$, $M = XH = (\mu_r - 1)H$

Short Answer II (SA2) (3 MARKS Each

1) Define magnetic intensity. Explain magnetization of a material.

- Obtain an expression for the orbital magnetic moment of an electron rotating about the nucleus in an atom.
- 3) Define gyromagnetic ratio. Find relation for Bohr magneton.
- 4) What is a paramagnetic material? Give two examples.
- 5) State any four properties of a paramagnetic material.
- 6) State Curie's law of Paramagnetic material.
- 7) What is a ferromagnetic material? Give two examples.
- 8) Explain magnetic hysteresis in a ferromagnetic material.
- 9) When a plate of magnetic material of size $10 \text{ } cm \times 0.5 \text{ } cm \times 0.2 \text{ } cm$ (length,breadth and thickness respectively) is located in magnetizing field of $0.5 \times 10^4 \text{ Am}^{-1}$ then magnetic moment of 5 Am^2 is induced in it. Find out magnetic induction in the plate. (Ans : $M = 5 \times 10^6 \text{ Am}^{-1}$, B = 6.29 T)
- 10) A magnet of magnetic moment $3Am^2$ weighs 75 g. The density of the material of the magnet is $7500 kg/m^3$ What is the magnetization.? (Ans: M= 3×10⁵ A/m)
- 11) Find the relative permeability, if the permeability of a metal is $0.1256 \text{ Tm}A^{-1}$

(Ans: 10^5)

Long Answer (LA) (4 marks Each)

- Define magnetization. State its SI unit and dimensions. Derive the relation between magnetic field intensity(H) and magnetization (M) for a magnetic material placed in a magnetic field.
- 2) Explain the origin of magnetism in material, hence find the magnetic moment of an electron revolving around the nucleus of an atom.
- Derive an expression for a torque acting on a magnetic dipole in a region of uniform magnetic induction. Express it in vector form.
- 4) State any four properties of a diamagnetic material.
- 5) An electron in an atom is revolving round the nucleus in a circular orbit of radius 5.3×10^{-11} m, with a speed of 2×10^{6} ms⁻¹. Find resultant orbital magnet moment and angular momentum of electron.

$$(e = 1.6 \times 10^{-19} \text{ C}, m = 9.1 \times 10^{-31} \text{ kg})$$

(Ans: $m_o = 8.48 \times 10^{-24} Am^2$, $L = 9.646 \times 10^{-35} kg.m^2/s$