Total No. of Questions: 24 Total No. of Printed Pages: 3 Regd.



## MATHEMATICS

Paper - II (A)

(English Version)

Time: 3 Hours

Max. Marks: 75

Instructions to candidate: This Question paper consists of three sections - A, B and C.

SECTION - A

 $(10 \times 2 = 20)$ 

- I. Very short answer type questions:
  - (i) Answer all questions.
  - (ii) Each question carries two marks.
  - 1. Find the square root of (-5 + 12i).
  - 2. If  $z_1 = -1$ ,  $z_2 = -i$  then find Arg  $(z_1, z_2)$ .
  - 3. Simplify  $\left(\frac{(\cos\alpha + i\sin\alpha)^4}{(\sin\beta + i\cos\beta)^8}\right)$ .
  - 4. If  $x^2 6x + 5 = 0$  and  $x^2 3ax + 35 = 0$  have a common root, then find
  - 5. If 1, 1,  $\alpha$  are the roots of  $x^3 6x^2 + 9x 4 = 0$  then find  $\alpha$ .
  - 6. If  $^{12}P_5 + 5$ .  $^{12}P_4 = ^{13}P_r$ , find r.
  - 7. If  ${}^{n}C_{5} = {}^{n}C_{6}$  then find  ${}^{13}C_{n}$ .
    - 8. Write down and simplify the  $7^{th}$  term in  $(3x 4y)^{10}$ .
  - 9. Find the mean deviation from the mean of the following discrete 6, 7, 10, 12, 13, 4, 12, 16.
  - 10. If the mean and variance of the binomial variable x are 2.4 at respectively, find p (1 <  $x \le 4$ ).



(ii) Each question  $\frac{2-i}{(1-2i)^2}$  and  $\frac{-2-1}{25}$  are conjugate to each other.

12. Determine the range of the following expression 
$$\frac{x^2+x+1}{x^2-x+1}$$
,  $x \in \mathbb{R}$ .

- 13. Find the sum of all 4-digit numbers that can be formed using the digits 1, 3, 5, 7, 9.
- 14. Find the number of ways of selecting a cricket team of 11 players from 7 batsmen and 6 bowlers such that there will be at least 5 bowlers in the team.

18. Resolve the following fraction into partial fractions:  $\frac{5x+6}{(2+x)(1-x)}$ .

- 16. If A and B are two events with  $P(A \cup B) = 0.65$  and  $P(A \cap B) = 0.15$  then find the value of  $P(A^c) + P(B^c)$ .
  - 17. A problem in calculus is given to two students A and B whose chances of solving it are  $\frac{1}{3}$  and  $\frac{1}{4}$  respectively. Find the probability of the problem being solved if both of them try independently.

 $(5 \times 7 = 35)$ 

III. Long Answer type questions:

- (i) Answer any five questions.
- (ii) Each question carries seven marks.

18. Show that one value of 
$$\left(\frac{1+\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{8}-i\cos\frac{\pi}{8}}\right)^{8/3}$$
 is -1.

- Solve the following equation  $x^4 10x^3 + 26x^2 10x + 1 = 0$ .
- 20. If P and Q are the sum of odd terms and the sum of even terms respectively in the expansion of  $(x + a)^n$  then prove that
  - (i)  $P^2 Q^2 = (x^2 a^2)^n$
  - (ii)  $4 PQ = (x + a)^{2n} (x a)^{2n}$ .
- 21. If  $x = \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \frac{1.3.5.7}{3.6.9.12} + \dots \alpha$  then prove that  $9x^2 + 24x = 11$ .
  - 22. Find the mean deviation from the mean for a continuous frequency distribution.

| Sales (in D                                 |       | 1981  |       | 4,7   |       |        |
|---------------------------------------------|-------|-------|-------|-------|-------|--------|
| Sales (in Rs. thousand)  Number of companie | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
| Number of companies                         | 5     | 15    | 25    | . 30  | 20    | 5      |

- 23. State and prove "Addition theorem on probability".
- 24. The range of a random variable X is  $\{0, 1, 2\}$ . Given that  $P(x = 0) = 3c^3$ ,  $P(x = 1) = 4c 10c^2$ , P(x = 2) = 5c 1
  - (i) Find the value of c and
  - (ii) P(x < 1),  $P(1 < x \le 2)$ ,  $P(0 < x \le 3)$ .