SECTION - A

1. The ionic radius of Na^{+}ion is $1.02 \AA$. The ionic radii (in \AA) of Mg^{2+} and Al^{3+}, respectivelyare :
(1) 0.72 and 0.54
(2) 0.68 and 0.72
(3) 1.05 and 0.99
(4) 0.85 and 0.99

Ans. (1)
Sol. For iso-electronic system
$r_{\alpha} \frac{1}{Z_{\text {eff. }}}$

2. Match List-I with List-II :

List-I
(Chemicals)
(a) Alcoholic potassium hydroxide
(b) $\mathrm{Pd} / \mathrm{BaSo}_{4}$
(c)BHC (Benzene hexachloride)
(d) Polyacetylene

Choose the most appropriate match :
(1) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(2) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
(3) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
(4) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)

List-II

(Use/Preparation/Constituent)
(i) electrodes in batteries
(ii) obtained by addition reaction
(iii) used for β-elimination reaction
(iv) Lindlar's Catalyst

Ans. (4)
Sol. a/c. $\mathrm{KOH} \quad \Rightarrow \quad$ Used for B. elimination reaction
Pd/ Ba son $\quad \Rightarrow \quad$ Lindlar's catalyst
BHC (Benzon lexa chloride) $\quad \Rightarrow \quad$ Addition product of benzen and chloride.
Poly actylene $\quad \Rightarrow \quad$ Used in electrods in batteries
3. The statements that are TRUE:
(A) methane leads to both global warming and photochemical smog
(B) methane is generated from paddy fields
(C) methane is a stronger global warming gas than CO_{2}
(D) methane is a part of reducing smog.

Choose the most appropriate answer from the option given below:
(1) (B), (C), (D) only
(2) (A), (B), (C) only
(3) (A), (B), (D) only
(4) (A) and (B) only

Ans. (2)

Sol. Contribution of global warming gas
$\mathrm{CO}_{2}>\mathrm{CH}_{4}>\mathrm{CFC}>\mathrm{O}_{3}>\mathrm{N}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}$
But CH_{4} is 40 times stronger green house gases than CO_{2} its has more heating effect.
4. Compound with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ can show :
(1) Both positional isomerism and metamerism
(2) Metamerism
(3) Positional isomerism
(4) Functional group isomerism

Ans. (4)

Sol. $\quad \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ DOU $=1$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{O} \& \mathrm{CH}_{3}-\underset{\|}{\mathrm{C}}-\mathrm{CH}_{3}$ are functional isomer.
5. Match List-I with List-II :

List-I

(a) $\mathrm{Ca}(\mathrm{OCl})_{2}$
(b) $\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$
(c) CaO
(d) CaCO_{3}

List-II

(i) Antacid
(ii) Cement
(iii) Bleach
(iv) Plaster of Paris

Choose the most appropriate answer from the option given below:
(1) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
(2) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
(3) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
(4) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)

Ans. (1)
Sol. $\mathrm{Ca}(\mathrm{OCl})_{2} \longrightarrow$ Bleaching power
$\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O} \longrightarrow$ Plaster of paris
$\mathrm{CaO} \quad \longrightarrow$ cement
$\mathrm{CaCO}_{3} \longrightarrow$ Antacid
6. In a binary compound, atoms of element A form a hep structure and those of element M occupy $2 / 3$ of the tetrahedral voids of the hep structure. The formula of the binary compound is :
(1) $M_{2} A_{3}$
(2) MA_{3}
(3) $M_{4} A$
(4) $M_{4} A_{3}$

Ans. (4)
Sol. $A \rightarrow h c p$
$M \rightarrow 2 / 3^{\text {rd }}$ of tetrahedral
$M_{2 \times 12 / 3} A_{6}=M_{8} A_{6}=M_{4} A_{3}$
7. Match List-I with List-II :

List-I

(Class of Drug)
(a) Antacid
(b) Artificial Sweetner
(c) Antifertility
(d) Tranquilizers

List-II

(Example)
(i) Novestrol
(ii) Cimetidine
(iii) Valium
(iv) Alitame

Choose the most appropriate answer from the option given below:
(1) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
(2) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
(3) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
(4) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

Ans. (2)
Sol. Antacid - Cinetidine
Artificial sweetener - Alitame
Antifertility - Novestrol
Tranquilizers - Valium
8. Reagent, 1-naphthylamine and sulphanilic acid in acetic acid is used for the detection of :
(1) NO
(2) $\mathrm{N}_{2} \mathrm{O}$
(3) NO_{3}^{-}
(4) NO_{2}^{-}

Ans. (4)

Based on NCERT

9. The correct structures of trans- $\left[\mathrm{NiBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and meridonial- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$ respectively are :
(1)

(2)

(3)

(4)

and

Ans. (2)
Sol. Trans $\left[\mathrm{Ni} \mathrm{Br}_{2}\left(\mathrm{Pph}_{3}\right)_{2}\right]$

Meridonial $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$

10. Match List-I with List-II :

List-I

(a) Chlorophyll
(b) Vitamin - B_{12}

List-II

(i) Ruthenium
(c) Anticancer drug
(ii) Platinum
(d) Grubbs catalyst
(iii) Cobalt

Choose the most appropriate answer from the option given below:
(1) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
(2) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
(3) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(4) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)

Ans. (3)

Sol. $\Rightarrow \quad$ Cis - Platin $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right.$] used in treatment of cancer.
$\Rightarrow \quad$ Chlorophyll is complex of Mg
$\Rightarrow \quad$ Vitamin B_{12} is a complex of $C o$
$\Rightarrow \quad$ Grubb's catalyst are a series of catalyst containing ruthenium
11. The number of ionisablehydrogens present in the product obtained from a reaction of phosphorus trichloride and phosphonic acid is :
(1) 3
(2) 1
(3) 0
(4) 2

Ans. (4)
Sol. $\mathrm{PCl}_{3}+\mathrm{H}_{3} \mathrm{PO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \xrightarrow{\substack{\text { pyrophosphorous } \\ \text { acid }}} \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{HCl}$

Structure of pyrophosphorous acid shows that it has two acidic or ionisable hydrogen.
12. A certain orbital has no angular nodes and two radial nodes. The orbital is:
(1) $2 p$
(2) $3 p$
(3) 2 s
(4)3s

Ans. (4)

Sol. No angular nodes $\Rightarrow \ell=0$
Radial nodes $=\mathrm{n}-\ell-1=\mathrm{n}-0-1=2$

$$
\mathrm{n}=3
$$

Ans. 3S
13.

Consider the above chemical reaction and identity product " A " :
(1)

(2)

(3)

(4)

Ans. (3)

Sol.

14. Given below are two statements: One is labelled as Assertion A and the other is labeled as Reason R :
Assertion A:During the boiling of water having temporary hardness, $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$ is converted to MgCO_{3}.
Reason R: The solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is greater than that of MgCO_{3}.
In the light of the above statements, choose the most appropriate answer from the options given below.
(1) A is false but R is true
(2) Both A and R are true and R is the correct explanation of A.
(3)Both A and R are true but R is NOT the correct explanation of A
(4) A is true but R is false.

Ans. (1)
Sol. $\quad \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\text { Boiling }} \mathrm{Mg}(\mathrm{OH})_{2} \downarrow+\mathrm{CO}_{2}$
Temporary Hardness
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\text { Boling }} \mathrm{CaCO}_{3} \downarrow+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{K}_{\mathrm{sp}} \mathrm{Mg}(\mathrm{OH})_{2} \longrightarrow \mathrm{~K}_{\text {sp }} \mathrm{MgCO}_{3}$
and Hence $\mathrm{Mg}(\mathrm{OH})_{2}$ precipitation first
15. The chemical is added to reduce the melting point of the reaction mixture during the extraction of aluminium is :
(1) Cryolite
(2) Calamine
(3) Kaolite
(4) Bauxite

Ans. (1)
Sol. For reducing the melting point of Alumina, Cryolite i.e. $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ is added.
16.

Considering the above chemical reaction, identity the product " X " :
(1)

(3)

(4)

Ans. (3)

Sol.

17.

Considering the above reaction, X and Y respectively are :

(3)

(4)

Ans. (4)

Sol.

18. Reaction of Grignard reagent, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$ with $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$ followed by hydrolysis is gives compound " A " which reacts instantly with Lucas reagent to give compound $B, C_{10} \mathrm{H}_{13} \mathrm{Cl}$. The Compound B is :
(1)

(2)

(3)

(4)

Ans. (4)
Sol. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O} \xrightarrow[\mathrm{H}^{+}]{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{mgBr}}(A) \xrightarrow{\text { Lucas reagent }}(B) \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{Cl}$

19. A non-reducing sugar " A " hydrolyses to give two reducing mono saccharides. Sugar A is:
(1) Glucose
(2) Fructose
(3) Sucrose
(4) Galactose

Ans. (3)
Sol. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Sucrose D-glucose D-furctose
(Non reducing sugar) (reducing sugar)
20. Match List-I with List-II :

List-I

(Process)
(a) Deacon's process
(b) Contact process
(i) ZSM-5
(c) Cracking of hydrocarbons
(ii) CuCl_{2}
(d) Hydrogenation of vegetables oils
(iii) Particles ${ }^{\prime} \mathrm{Ni}^{\prime}$
(iv) $\mathrm{V}_{2} \mathrm{O}_{5}$

List-II

(Catalyst)

Choose the most appropriate answer from the option given below:
(1) (a)-(i), (b)-(iii), (c)-(ii),
(d)-(iv)
(2) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
(3) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
(4) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

Ans. (3)

Sol. Deacon's process is used for industrial preparation of Chlorine gas
$\mathrm{HCl}+\mathrm{O}_{2} \xrightarrow{\mathrm{CuCl}_{2}} \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$

Contact process in used for industrial preparation of sulphuric acid \& $\mathrm{V}_{2} \mathrm{O}_{5}$ in catalyst involved in the process.

$\mathrm{CXH}_{4} \xrightarrow[\text { Cracking }]{\text { ZSM }}$ products

SECTION - B

1. 2 molal solution of a weak acid HA has a freezing point of $3.885^{\circ} \mathrm{C}$. The degree of dissociation of this acid is \qquad $\times 10^{-3}$. (Round off to the Nearest Integer).
[Given : Molal depression constant of water $=1.85 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ Freezing point of pure water $=0^{\circ} \mathrm{C}$]
Ans. 50
Sol. $\mathrm{T}_{\mathrm{f} \text { sol. }}=-3.885^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{\mathrm{f}}=+3.885=\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$3.885=\mathrm{i} \times 1.85 \times 2$
$i=\frac{3.885}{1.85 \times 2}=[1+\propto]$
$\propto=\frac{0.185}{3.7}=0.05=50 \times 10^{-3}$
Ans. 50
2. The total number of unpaired electrons present in the complex $\mathrm{K}_{3}\left[\mathrm{Cr}(\text { oxalate })_{3}\right]$ is
\qquad .
Ans. (3)
Sol. $\mathrm{K}_{3}\left[\mathrm{Cr}(\mathrm{OH})_{3}\right]$
Chromium \& in +3 oxidation state
$\mathrm{Cr} \rightarrow 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
$\mathrm{Cr}^{3+} \rightarrow 3 \mathrm{~d}^{3} 3$ unpaired electron the hybridisation of chromium in the complex is $\mathrm{d}^{2} \mathrm{sp}^{3}$
3. $A X$ is a covalent diatomic molecule where A and X are second row elements of periodic table. Based on Molecular orbital theory, the bond order of AX is 2.5. The total number of electrons in $A X$ is \qquad .(Round off to the Nearest Integer).
Ans. (15)
Sol. The comp. AX is NO its bond order is 2.5 \& it has total 15 electrons
4. grams of 3-Hydroxy propanal ($\mathrm{MW}=74$) must be dehydrated to produce 7.8 g of aerolein ($\mathrm{MW}=56$) $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}\right)$ if the percentage yield is 64 . (Round off to the Nearest Integer). [Given : Atomic masses: C : 12.0 u, H: 1.0 u, O : 16.0 u]
Ans. 16
Sol. $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHO}$
xmol

$$
\begin{gathered}
\downarrow-\mathrm{H}_{2} \mathrm{O} \\
\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O} \\
7.8 \mathrm{gm} \\
\frac{7.8}{50}=0.14 \mathrm{~mol}
\end{gathered}
$$

$\%$ yield $=\frac{7.8 / 56}{x} \times 100=64$
$x=\frac{7.8 \times 100}{56 \times 64}=\frac{780}{56 \times 64} \mathrm{~mol}$
$W_{\text {Reactant }}=\frac{780}{56 \times 64} \times 74=16.11 \mathrm{gm}$
5. A reaction of 0.1 mole of Benzylamine with bromomethane gave 23 g of Benzyl trimethyl ammonium bromide. The number of moles of bromomethane consumed in this reaction are $\mathrm{n} \times 10^{-1}$, when $\mathrm{n}=$ \qquad . (Round off to the Nearest Integer).
[Given : Atomic masses : C : $12.0 \mathrm{u}, \mathrm{H}: 1.0 \mathrm{u}, \mathrm{N}: 14.0 \mathrm{u}, \mathrm{Br}: 80.0 \mathrm{u}$]]
Given : 4.00
Ans. (3)
Sol. $\mathrm{Ph}-\mathrm{CH}_{2} \mathrm{NH}_{2}+3 \mathrm{CH}_{3} \mathrm{Br} \longrightarrow \mathrm{PhCH}_{2} \mathrm{~N}^{+}(\mathrm{Me})_{3} \mathrm{Br}^{-}$
0.1 mol

$$
\frac{23 \mathrm{~g}}{230}=0.1 \mathrm{~mol}
$$

\therefore moles of $\mathrm{CH}_{3} \mathrm{Br}=0.3=3 \times 10^{-1} \mathrm{~mol}$
6. $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{s})$

This reaction was studied at -100 C and the following data was obtained.

Run	$[\mathrm{NO}]_{0}$	$\left[\mathrm{Cl}_{2}\right]_{0}$	r_{0}
1	0.10	0.10	0.18
2	0.10	0.20	0.35
3	0.20	0.20	1.40

$[\mathrm{NO}]_{0}$ and $\left[\mathrm{Cl}_{2}\right]_{0}$ are the initial concentrations and r_{0} is the initial reaction rate.
The overall order of the reaction is \qquad . (Round off to the Nearest Integer).
Given : 1.00

Ans. (3)
Sol. Exp. (I) $\quad 0.18=K(0.1)^{x}(0.1)^{+y} \quad . .$. (1)
Exp. (II) $\quad 0.35=K(0.1)^{x}(0.2)^{y} \quad \ldots$. (2)
Exp. (III) $\quad 1.40=K(0.2)^{x}(0.2)^{Y} \quad \ldots .(3)$
(2) $\div(3)$
$\frac{0.35}{1.40}=\frac{K \times(0.1)^{x}(0.2)^{y}}{K(0.2)^{\times}(0.2)^{y}}$
$\frac{1}{4}=\left(\frac{1}{2}\right)^{x} \Rightarrow x=2$
(1) $\div(2)$
$\frac{1}{2}=\left(\frac{1}{2}\right)^{y} \Rightarrow y=1$
7. For the reaction
$2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{~s})$
The magnitude of the standard molar free energy change,
$\Delta_{\mathrm{r}} \mathrm{G}_{\mathrm{m}}^{0}=-$ \qquad kJ (Round off the Nearest Integer).
$\left[\begin{array}{l}\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{s})}^{\circ}=-0.440 \mathrm{~V} ; \mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}(\mathrm{s})}^{\circ}=-0.036 \mathrm{~V} \\ \mathrm{E}_{\mathrm{I}_{2} / 2 \mathrm{I}^{-}}^{\circ}=0.539 \mathrm{~V} ; \quad \mathrm{F}=96500 \mathrm{C}\end{array}\right]$

Ans. 45 kJ

Sol. $2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{+2}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{~s})$
$1 \times \mathrm{E}_{\mathrm{Fe}^{-3} / \mathrm{Fe}^{-2}}^{\circ}+2 \times \mathrm{E}_{\mathrm{Fe}^{e^{2}} / \mathrm{Fe}}^{\circ}=3 \times \mathrm{E}_{\mathrm{Fe}^{-3} / \mathrm{Fe}}^{\circ}$
$\mathrm{E}_{\mathrm{Fe}^{-3} / \mathrm{Fe}^{+2}}^{\circ}=3 \times(-0.036)-2 \times(-0.44)$
$=-0.108+0.88$
$=0.772 \mathrm{~V}$
$\mathrm{E}_{\mathrm{cell}}^{\circ}=\mathrm{E}_{\mathrm{Fe}^{3} / / \mathrm{Fe}^{+2}}^{\circ}+\mathrm{E}_{\mathrm{\Gamma} / \mathrm{I}_{2}}^{\circ}$
$=0.772-0.539=0.233 \mathrm{~V}$
$\Delta \mathrm{G}^{\circ}=\mathrm{nFE}$ cell
$=+2 \times 96500 \times 0.233$
$=44969 \mathrm{~J}=44.9 \mathrm{KJ} \simeq 45 \mathrm{KJ}$
8. For the reaction
$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$
The reaction enthalpy $\Delta_{\mathrm{r}} \mathrm{H}=$ \qquad $\mathrm{kJ} \mathrm{mol}{ }^{-1}$. Round off to the Nearest Integer).
[Given:Bond enthalpies in $\mathrm{kJ} \mathrm{mol}^{-1}$; $\mathrm{C}-\mathrm{C}: 347, \mathrm{C}=\mathrm{C}: 611 ; \mathrm{C}-\mathrm{H}: 414 ; \mathrm{H}-\mathrm{H}$; 436]

Ans. $128 \mathrm{~kJ} / \mathrm{mol}$

Sol. $\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$
$\Delta \mathrm{H}=$??
$=2 \times \mathrm{E}_{\mathrm{C}-\mathrm{H}}-\mathrm{E}_{\mathrm{C}=\mathrm{H}}-\mathrm{E}_{\mathrm{H}-\mathrm{H}}+\mathrm{E}_{\mathrm{C}-\mathrm{C}}$
$=2 \times 414+347-611-436$
$=828+347-1047$
$=128 \mathrm{~kJ} / \mathrm{mol}$
9. In order to prepare a buffer solution of pH 5.74 , sodium acetate is added to acetic acid. If the concentration of acetic acid in the buffer is 1.0 M , the concentration of sodium acetate in the buffer is \qquad M. (Round off to the Nearest Integer).
[Given: pKa (acetic acid) $=4.74$]
Ans. 10
Sol. Buffer $p^{H}=5.74$

$$
\begin{aligned}
& =P_{\text {aceticacid }}^{\mathrm{Ka}}+\log \left[\frac{\text { Sodium acetate }}{\text { Acetic acid }}\right] \\
& \frac{\text { Sodium acetate }}{\text { Acetic acetic }}=10
\end{aligned}
$$

Sodium acetate $=10 \mathrm{M}$
10. Complete combustion of 3 g of ethane gives $\mathrm{x} \times 10^{22}$ molecules of water. The value of x is \qquad . [Round off to the Nearest Integer].
[Use: $\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}$; Atomic masses in u:C:12.0; $\mathrm{O}: 16.0: \mathrm{H}: 1.0$]

Given :18

Ans. 18
Sol. $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
3gm
0.3 mol
0.1 mol
$0.3 \mathrm{~N}_{\mathrm{A}}$
$=0.3 \times 6.023 \times 10^{23}$ molecules of $\mathrm{H}_{2} \mathrm{O}$
$=1.8069 \times 10^{23}$
$=18.069 \times 10^{22}$

