## MHT CET 2023 Question Paper Shift 1

## Question 1. Find variance of first 2 n natural numbers.

Answer. $4 \mathrm{n}^{2}-1 / 12$

## Solution:

To find the variance of the first $2 n$ natural numbers, we first need to find the mean of the sequence. The mean is simply the sum of the numbers divided by the total count of numbers:
mean $=(1+2+3+\ldots+2 n) / 2 n$
Using the formula for the sum of an arithmetic series, we can simplify the expression for the mean to:
mean $=(2 n+1) / 2$

Next, we need to find the variance. The variance is defined as the average of the squared differences from the mean. In other words:
variance $=\left[(1-\text { mean })^{\wedge} 2+(2-\text { mean })^{\wedge} 2+\ldots+(2 n-\text { mean })^{\wedge} 2\right] / 2 n$

We can simplify this expression by expanding the squares and using the formula for the sum of the first n natural numbers:
variance $=\left[n(2 n+1)(4 n+1)-6 n(2 n+1)+6 n^{\wedge} 2\right] /(12 n)$

Simplifying this expression, we get:
variance $=\left(4 n^{\wedge} 2-1\right) / 12$

Therefore, the variance of the first $2 n$ natural numbers is $\left(4 n^{\wedge} 2-1\right) / 12$.

Question 2. Mean + Variance $=1.8, n=5$,
Find $p$ (probability of success).
Answer. p = 1/5
Question 3. If $X \sim(5, p) P(X=3)=5 P(X=4)$, find variance.
Answer. 50/49

Question 4. $x^{2}-3 x y+d y^{2}+3 x-5 y+2=0 ; d \geq 0$ is $\tan ^{-1}(1 / a)$ then the value of $d$ is?

Question 5. The negation of inverse of the statement
$\left(p^{\wedge} q\right) \rightarrow(p \vee \sim q)$
Question 6. The value of $\mathrm{i}^{248}+\mathrm{i}^{246}+\mathrm{i}^{\mathbf{2 4 4}}+\mathrm{i}^{242}+\mathrm{i}^{240} / \mathrm{I}^{249}+\mathrm{i}^{247}+\mathrm{i}^{245}+\mathrm{i}^{243}+$ $\mathbf{i}^{241}$ ?

Question 7. Diff $\tan ^{-1}\left(\sqrt{ } 1+x^{2}-1 / x\right)$ wrt $\cos ^{-1}\left(\sqrt{ }\left(1+\sqrt{ } 1+x^{2} / 2 \sqrt{i}+x^{2}\right)\right)$
Question 8. Rolle Theorem $f(x)=\sin x+\cos x$. Find $c \varepsilon[0,2, \pi]$

Question 9. $\int \log \left(x^{2}+a^{2}\right) / x^{2} d x$
Question 10. $y=\tan ^{-1}\left(4 \sin 2 x / \cos 2 x-6 \sin ^{2} x\right) d x$

