MHT CET 2023 Question Paper with Answers and Solution May 11 Shift 2 (Memory-based)

Question 1. The value of $\int(1-\cos x) \cdot \operatorname{cosec}^{2} d x$ is?

Answer. $\cos (x)+\sin (x)+\cot (\cos (x))+C$
Solution. To evaluate the integral $\int(1-\cos x) \operatorname{cosec}^{\wedge} 2(x) d x$, we can simplify the integrand using trigonometric identities.

Recall that $\operatorname{cosec}^{\wedge} 2(x)$ is equal to $1+\cot ^{\wedge} 2(x)$, where $\cot (x)$ is the cotangent of x.
$\int(1-\cos x) \operatorname{cosec}^{\wedge} 2(x) d x=\int(1-\cos x)\left(1+\cot ^{\wedge} 2(x)\right) d x$
Expanding the expression:
$=\int\left(1-\cos x+\cot ^{\wedge} 2(x)-\cos ^{*} \cot ^{\wedge} 2(x)\right) d x$
Now, let's evaluate each term separately:
$\int(1-\cos x) d x=x-\sin (x)+C_{1}$
$\int \cot ^{\wedge} 2(x) d x$ can be integrated by using the formula $\int \cot ^{\wedge} 2(x) d x=-x-$ $\cot (\mathrm{x})+\mathrm{C}_{2}$
$\int \cos x{ }^{*} \cot ^{\wedge} 2(x) d x$ can be integrated by substitution. Let's denote $\cos (x)$ as u :
$u=\cos (x) d u=-\sin (x) d x$

Replacing dx and $\cos (\mathrm{x})$ with du and u , respectively, we have:
$\int u * \cot ^{\wedge} 2(x)(-d u / \sin (x))=-\int u \cot ^{\wedge} 2(x) d u=-\int \cot ^{\wedge} 2(x) d u$

Using the formula mentioned earlier, we know that $\int \cot ^{\wedge} 2(x) d x=-x-$ $\cot (\mathrm{x})$
$+C_{2}$. Hence, the integral of $-\int \cot ^{\wedge} 2(x)$ du will be $-\left(-u-\cot (u)+C_{2}\right)=u+$ $\cot (\mathrm{u})-\mathrm{C}_{2}$.

Putting it all together, the integral becomes:
$x-\sin (x)+C_{1}+\left(-x-\cot (x)+C_{2}\right)+(\cos (x)+\cot (\cos (x))-$
C_{2}) Simplifying:
$=x-x+\cos (x)+\sin (x)+\cot (\cos (x))+C_{1}-C_{2}$
The final result is $\cos (x)+\sin (x)+\cot (\cos (x))+C$, where $C=C_{1}-C_{2}$ is the constant of integration.

Question 2. The function of $f(x)=2 x^{3}-9 x^{2}+12 x+29$ is monotonically increasing in the interval

A. $(-\infty, 1)$
B. $(-\infty, 1) \cup(2, \infty)$
C. $(-\infty,-\infty)$
D. $(2, \infty)$

Answer. B

Solution. To determine whether the function $f(x)=2 x^{\wedge} 3-9 x^{\wedge} 2+12 x+$ 29 is monotonically increasing in an interval, we need to analyze the first derivative of the function, which is given by:
$f^{\prime}(x)=6 x^{\wedge} 2-18 x+12$

To find the critical points of the function (where the derivative is equal to zero), we need to solve the equation $f^{\prime}(x)=0$:
$6 x^{\wedge} 2-18 x+12=0$
Dividing both sides by 6 , we get:
$x^{\wedge} 2-3 x+2=0$
Factoring the left-hand side, we get:
$(x-1)(x-2)=0$
So the critical points are $\mathrm{x}=1$ and $\mathrm{x}=2$.
Now we need to analyze the sign of the derivative in the different intervals: Interval ($-\infty, 1$):

For $\mathrm{x}<1$, we can choose $\mathrm{x}=0$ as a test point. Plugging this into the derivative, we get:
$f^{\prime}(0)=6(0)^{\wedge} 2-18(0)+12=12$

Since $f^{\prime}(0)>0$, the derivative is positive in the interval $(-\infty, 1)$. This means that the function is monotonically increasing in this interval.

Interval (1, 2):

For $1<x<2$, we can choose $x=1.5$ as a test point. Plugging this into the derivative, we get:
$f^{\prime}(1.5)=6(1.5)^{\wedge} 2-18(1.5)+12=-3$

Since $f^{\prime}(1.5)<0$, the derivative is negative in the interval (1,2). This means that the function is not monotonically increasing in this interval.

Interval (2, ∞):

For $x>2$, we can choose $x=3$ as a test point. Plugging this into the derivative, we get:
$f^{\prime}(3)=6(3)^{\wedge} 2-18(3)+12=30$

Since $f^{\prime}(3)>0$, the derivative is positive in the interval $(2, \infty)$. This means that the function is monotonically increasing in this interval.

Therefore, the function $f(x)=2 x^{\wedge} 3-9 x^{\wedge} 2+12 x+29$ is monotonically increasing in the interval $(-\infty, 1) \cup(2, \infty)$, which corresponds to option B.

Question 3. The equation of the tangent to the curve $\mathbf{y}=\sqrt{ }\left(9-2 x^{2}\right)$, at the point where the ordinates and abscissa are equal, is?

Answer. y > 0

Question 4. For all real x, the minimum value of function $f(x)=1-x+x^{2} / 1-x+x$
A. $1 / 3$
B. 0
C. 3
D. 1

Question 5. The minimum value of function (1-x+x)/(1+x+x2)
A. $1 / 3$
B. 0
C. 3
D. 1

Answer. A

Question 6. $\int \sin (\log x) d x$
A. $(x / 2)[\sin (\log x)-\cos (\log x)]$
B. $\cos (\log x)-x$
C. $\int(x-1) e^{x} /(x+1)^{3}$
D. $-\cos \log x$

Answer. A

Question 7. If the line $(x-1) / 2=(y+1) / 3=(z-2) / 4=仓$ meets the plane, $x+2 y+3 z=15$ at a point P, then the distance of P from the origin is?
A. $7 / 2$
B. $9 / 2$
C. $\sqrt{5} / 2$
D. $2 \sqrt{ } 5$

Question 8. If $\cos x+\cos y-\cos (x+y)=3 / 2$ then,
A. $x+y=0$
B. $x=2 y$
C. $x=y$
D. $2 \mathrm{x}=\mathrm{y}$

Answer.

C

Question 9. If the vertices of a triangle are $(-2,3),(6,-1)$ and $(4,3)$, then the co-ordinates of the circumcentre of the triangle are? A. $(1,1)$
B. $(-1,-1)$
C. $(-1,1)$
D. $(1,-1)$

Answer. D

Question 10. If $\cos -1 \sqrt{ } p+\cos -1 \sqrt{ }(1-p)+\cos -1 \sqrt{ }(1-a)=3 仓\rangle / 4$, then q is? A. 1/2
B. $1 / \sqrt{ } 2$
C. 1
D. $1 / 3$

Answer. A

Question 11. In $\triangle A B C b=\sqrt{ } 3, c=1$ angle $A=30$, then largest angle?

Answer. 120

Question 12. If the area of the parallelogram with a and b as two adjacent sites 16 sq, units, then the area of the Parallelogram having $3 a+2 b$ and $a+3 b$ as two adjacent sides in sq.units is
A. 96
B. 112
C. 144
D. 128

Answer. B

Question 13. $d y / d x+y / x=\sin n$
Answer. $x y+\cos y-\sin x=c$

Question 14. $x=5 / 1-21$, value of $x^{3}+x^{2}-x^{1} 22$
Answer. $x^{2}-2 x+1=-4$

Question 15. Equation of tangent to the curve $y=\sqrt{ }\left(9-2 x^{2}\right)$ where $x=y$.

