CCE RR
 UNREVISED REDUCED SYLLABUS

 KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU - 560003

S. S. L. C. EXAMINATION, MARCH/APRIL, 2023

యూదరి లుత్తరగళు
MODEL ANSWERS

దినాంళ : 03. 04. 2023]
Date: 03.04.2023]

Code no. : 81-E
ఎిజయ : గొణిక

Subject : MATHEMATICS
(山్లుసరావతిఃత లాలా అభ్యథీ / Regular Repeater)
(ఇంగ్లిషో మూధ్యమ / English Medium)

[Max. Marks : 80

$\begin{aligned} & \text { Qn. } \\ & \text { Nos. } \end{aligned}$	$\begin{aligned} & \text { Ans. } \\ & \text { Key } \end{aligned}$	Value Points	Marks allotted
I.		Multiple choice questions : $8 \times \mathbf{1}=8$	
1.		The common difference of the Arithmetic progression	
		- $3,-1,1,3 \ldots$ is	
		$\begin{array}{ll}\text { (A) } 3 & \text { (B) } 2\end{array}$	
		$\begin{array}{ll}\text { (C) -1 } & \text { (D) }-2\end{array}$	
		Ans. :	
	(B)	2	1
2.		The median of the scores $6,4,2,10$ and 7 is (A) 6 (B) 10	
		(C) 4 (D) 2	
		Ans. :	
	(A)	6	1

Qn. Nos.	Ans. Key	Value Points	Marks allotted
3.	(D)	The total surface area of a right circular cylinder having radius ' r ' and height ' h ' is (A) $\quad \pi r(r+h)$ (B) $2 \pi r h$ (C) $2 \pi r(r-h)$ (D) $2 \pi r(r+h)$ Ans. : $2 \pi r(r+h)$	1
4.		Which of the following are the sides of a right angled triangle ? (A) $2,3,4$ (B) $4,5,6$ (C) $3,4,5$ (D) $6,8,12$ Ans. :	
	(C)	3, 4, 5	1
5.		In the given figure, $P B$ is a tangent drawn at the point A to the circle with centre ' O '. If $\left\lfloor A O P=45^{\circ}\right.$, then the measure of $\lfloor O P A$ is	
		(A) 45° (B) 90° (C) 35° (D) 65° Ans. :	
	(A)		1

$\begin{aligned} & \text { Qn. } \\ & \text { Nos. } \end{aligned}$	Ans. Key	Value Points	Marks allotted	
6.	(C)	In the figure, if $D E \\| B C$, then the correct relation among the following is (A) $\frac{A D}{A B}=\frac{A E}{E C}$ (B) $\frac{A D}{D B}=\frac{E C}{A E}$ (C) $\frac{A D}{D B}=\frac{A E}{E C}$ (D) $\frac{D B}{A D}=\frac{A E}{E C}$ Ans. : $\frac{A D}{D R}=\frac{A E}{F C}$	1	
7.	(D)	The lines represented by the equations $4 x+5 y-10=0$ and $8 x+10 y+20=0$ are (A) intersecting lines (B) perpendicular lines to each other (C) coincident lines (D) parallel lines Ans. : parallel lines	1	
8.	(B)	The distance of the point $(-8,3)$ from the x-axis is (A) - 8 units (B) 3 units (C) - 3 units (D) 8 units Ans. : 3 units	1	

Qn.
Nos.

Ans. :
$A C=A D+D C$
$10=8+D C$
$D C=10-8=2$
$B D^{2}=A D \times D C$
$B D^{2}=8 \times 2$
$B D=\sqrt{8 \times 2}$
$B D=\sqrt{16}$
$B D=4 \mathrm{~cm}$.
$8 \times 1=8$
9.

If the pair of lines represented by the linear equations
$x+2 y-4=0$ and $a x+b y-12=0$ are coincident lines, then find the values of ' a ' and ' b '.

Ans. :
$x+2 y-4=0$
$a x+b y-12=0$
coincident lines

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
& \frac{1}{a}=\frac{2}{b}=\frac{-4}{-12}
\end{aligned}
$$

Value Points		Marks allotted	
	$\frac{1}{a}=\frac{1}{3}$	$\frac{2}{b}=\frac{1}{3}$	
\therefore	$a=3$	$b=6$	$1 / 2$

11.

$\triangle A B C \sim \triangle P Q R$. Area of the $\triangle A B C$ is $64 \mathrm{~cm}^{2}$ and the area of the $\triangle P Q R$ is $100 \mathrm{~cm}^{2}$. If $A B=8 \mathrm{~cm}$, then find the length of $P Q$.
Ans. :

$$
\left.\begin{array}{l}
\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\frac{A B^{2}}{P Q^{2}} \\
\frac{\sigma 4}{100}=\frac{B^{2}}{P Q^{2}} \\
P Q^{2}=100 \\
P Q=\sqrt{100} \\
P Q=10 \mathrm{~cm}
\end{array}\right\}
$$

$1 / 2$

$1 / 2$
12. Express the equation $x(2+x)=3$ in the standard form of a quadratic equation.

Ans. :

$$
\begin{aligned}
& x(2+x)=3 \\
& 2 x+x^{2}=3
\end{aligned}
$$

Standard form : $x^{2}+2 x-3=0$
Find the discriminant of the quadratic equation
$2 x^{2}-4 x+3=0$.
Ans. :

$$
\begin{aligned}
& 2 x^{2}-4 x+3=0 \\
& \Delta=b^{2}-4 a c \\
& \Delta=(-4)^{2}-4 \times 2 \times 3 \\
& \\
& =16-24 \\
& \Delta
\end{aligned}=-8
$$

\therefore Discriminant $=-8$

| $1 / 2$ | |
| :--- | :--- | :--- |
| $1 / 2$ | 1 |

[Turn over

Qn.
Nos.

Value Points

14.

Find the coordinates of the mid-point of the line segment joining the points $(6,3)$ and $(4,7)$.

Ans. :
$(6,3) \quad(4,7)$
$\left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right)$
Co-ordinates of Mid-point $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{6+4}{2}, \frac{3+7}{2}\right) \\
& =(5,5)
\end{aligned}
$$

15.

If one root of the quadratic equation $(2 x+1)(x-3)=0$ is $-\frac{1}{2}$ then find the other root.

Ans. :

$$
\begin{aligned}
& (2 x+1)(x-3)=0 \quad \text { One root is }-1 / 2 \\
& x-3=0 \\
& x=3
\end{aligned}
$$

16. Write the formula to find the volume of the frustum of a cone given in the figure.

Ans. :
$\left.\begin{array}{c}\text { Volume of the frustum } \\ \text { of the cone }\end{array}\right\} \quad(V)=\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$

Qn.

Nos.

Value Points	Marks allotted

III.

Answer the following questions : $8 \times 2=16$
17.

Find the distance between the origin and the point $(6,8)$. Ans. :
$(6,8)$

$$
\begin{aligned}
& x, y \\
& d=\sqrt{x^{2}+y^{2}} \\
& =\sqrt{6^{2}+8^{2}} \\
& =\sqrt{36+64}=\sqrt{100} \\
& d=10 \text { units. }
\end{aligned}
$$

18. Solve the given pair of linear equations :

$$
\begin{aligned}
& 3 x+y=12 \\
& x+y=6
\end{aligned}
$$

Ans. :

$$
\begin{gathered}
3 x+y=12 \\
x+y=6 \\
(-)(-) \quad(-) \quad \text { subtracting } \\
2 x=6 \\
x=\frac{6}{2} \\
x=3 \\
x+y=6 \\
3+y=6 \\
y=6-3 \\
y=3
\end{gathered}
$$

Qn.
$\left.\begin{array}{l}\text { Value } \\ \text { Find the } 20^{\text {th }} \text { term of the Arit } \\ 4,7,10, \ldots \ldots \text { by using formu } \\ \text { Ans. : } \\ 4,7,10 \ldots \ldots \ldots \ldots \ldots a_{20}=? \\ \begin{array}{l}a=4, d=7-4=3 \quad n=20 \\ \begin{array}{l}a_{n}=a+(n-1) d \\ a_{20}=4+(20-1) \times 3 \\ \end{array} \\ =4+19 \times 3 \\ =4+57\end{array} \\ \therefore \quad a_{20}=61\end{array}\right\}$

Find the roots of the equation $2 x^{2}-5 x+3=0$ by using 'quadratic formula'.

OR

Find the roots of the equation $x^{2}-3 x-10=0$ by factorisation method.
Ans. :
$2 x^{2}-5 x+3=0$
$a=2 \quad b=-5 \quad c=3$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 2 \times 3}}{2 \times 2}$
$x=\frac{5 \pm \sqrt{25-24}}{4}$
$x=\frac{5 \pm \sqrt{1}}{4}$
$x=\frac{5 \pm 1}{4}$
$x=\frac{5+1}{4}, \quad x=\frac{5-1}{4}$
$x=\frac{6}{4}, \quad x=\frac{4}{4}$
$x=\frac{3}{2}$
$x=1$

Qn. Nos.	Value Points	Marks allotted	
23.	Ans. : $\begin{aligned} & \cos \theta=\sin 60^{\circ} \cdot \cos 30^{\circ}-\sin 30^{\circ} \cdot \cos 60^{\circ} \\ & \cos \theta=\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}-\frac{1}{2} \times \frac{1}{2} \\ &=\frac{3}{4}-\frac{1}{4} \\ & \cos \theta=\frac{1}{2} \\ & \cos \theta=\cos 60^{\circ} . \\ & \therefore \quad \theta=60^{\circ} \end{aligned}$ OR $\begin{aligned} & \sin 3 A=\cos \left(A-26^{\circ}\right) \\ & \cos \left(90^{\circ}-3 A\right)=\cos \left(A-26^{\circ}\right) \\ & 90^{\circ}-3 A=A-26^{\circ} \\ & 90^{\circ}+26^{\circ}=A+3 A \\ & 116^{\circ}=4 A \\ & A=\frac{116^{\circ}}{4} \\ & A=29^{\circ} \end{aligned}$ In the given figure, $A B C D$ is a trapezium in which $A B \\| D C$, and $B C \perp D C$. If $A B=6 \mathrm{~cm}, C D=10 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$, then find the distance between the parallel lines.	2	

Draw $A E \perp D C$
$\therefore A B C E$ is a rectangle

$$
\therefore E C=\mathrm{A} B=6 \mathrm{~cm}
$$

$$
D C=D E+E C
$$

$$
10=D E+E C
$$

$$
10=D E+6
$$

$$
D E=10-6=4 \mathrm{~cm}
$$

In $\triangle A D E$

$$
\begin{aligned}
& A D^{2}=A E^{2}+D E^{2} \\
& 5^{2}=A E^{2}+4^{2} \\
& 25=A E^{2}+16 \\
& A E^{2}=25-16 \\
& A E^{2}=9 \\
& A E=\sqrt{9} \\
& A E=3 \mathrm{~cm}
\end{aligned}
$$

\therefore Distance between the parallel lines $=3 \mathrm{~cm}$.

Qn.
Nos.
24.

Draw a circle of radius 4 cm and construct a pair of tangents to the circle such that the angle between them is 60°.

Ans. :
Angle between the Radii $=180^{\circ}-60^{\circ}=120^{\circ}$

Drawing a circle of radius 4 cm
Drawing 2 arcs
Drawing a pair of tangents to circle
Answer the following questions:
$9 \times 3=27$
25.

Find the roots of the equation
$\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}, x \neq-4,7$.

OR

Examine whether the equation
$(x-2)(x+1)=(x-1)(x+3)$ is a quadratic equation.
Ans. :
$\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}$
$\frac{x-7-(x+4)}{(x+4)(x-7)}=\frac{11}{30}$

Qn.
Nos.

Value Points		Marks allotted
$\frac{x-7-x-4}{x^{2}}=\frac{11}{30}$		
$x^{2}-7 x+4 x-28$	1/2	
-11		
$x^{2}-3 x-28=30$		
-1 1		
$\frac{1}{x^{2}-3 x-28}=\frac{1}{30}$	1/2	
$-30=x^{2}-3 x-28$		
$x^{2}-3 x-28+30=0$	1/2	
$x^{2}-3 x+2=0$		
$x^{2}-2 x-1 x+2=0$		
$x(x-2)-1(x-2)=0$		
$(x-1)(x-2)=0$	1/2	
$x-1=0 \quad x-2=0$		3
$x=1 \quad x=2$	1/2	
OR		
$(x-2)(x+1)=(x-1)(x+3)$		
$x(x+1)-2(x+1)=x(x+3)-1(x+3)$	1/2	
$x^{2}+x-2 x-2=x^{2}+3 x-x-3$	1/2	
$-x-2=2 x-3$	1/2	
$2 x-3+x+2=0$		
$3 x-1=0$	1/2	
This is not of the form $a x^{2}+b x+c=0$	1/2	
$\therefore \quad$ This is not a quadratic equation.	1/2	3
Prove that		
$\sqrt{\frac{1+\cos A}{1-\cos A}}=\operatorname{cosec} A+\cot A$		

| Value Points |
| :---: | :---: |
| Find the mode for the following data : |
| Class-interval Frequency
 $1-3$ 6
 $3-5$ 9
 $5-7$ 15
 $7-9$ 9
 $9-11$ 1 |

Ans. :

C.I.	frequency f_{i}	Mid point x_{i}	$x_{i} f_{i}$
$1-5$	4	3	12
$6-10$	3	8	24
$11-15$	2	13	26
$16-20$	1	18	18
$21-25$	5	23	115
	$\sum f_{i} 15$		$\sum f_{i} x_{i}=195$

\therefore mean $\bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{195}{15}$

$$
\operatorname{Mean}(\bar{x})=13
$$

OR

From the frequency distribution table, we find that

$$
f_{0}=9, \quad f_{1}=15, \quad f_{2}=9, \quad h=2, \quad l=5
$$

$$
\text { Mode }=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h
$$

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$

Value Points	
$=$	$5+\left(\frac{15-9}{2 \times 15-9-9}\right) \times 2$
$=5+\left(\frac{6}{30-18}\right) \times 2$	
$=5+\left(\frac{\varnothing^{1}}{1 \not 2 / 2}\right) \times \not 2$	
$=5+1$	

Mode $=6$ 1/2
Find the ratio in which the line segment joining the points $A(-6,10)$ and $B(3,-8)$ is divided by the point (-4, 6).

OR

Find the area of a triangle whose vertices are $A(1,-1)$, $B(-4,6)$ and $C(-3,-5)$
Ans. :

$$
\begin{aligned}
& \begin{array}{lll}
A(-6,10) & B(3,-8) & P=(-4,6) \\
\left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right) & (x, y) \\
& m_{1}: m_{2}=? &
\end{array} \\
& \frac{m_{1}}{m_{2}}=\frac{x-x_{1}}{x_{2}-x} \quad \text { or } \quad \frac{y-y_{1}}{y_{2}-y} \\
& \frac{m_{1}}{m_{2}}=\frac{-4-(-6)}{3-(-4)} \text { or } \frac{6-10}{-8-6} \\
& \frac{m_{1}}{m_{2}}=\frac{-4+6}{3+4} \quad \text { or } \quad \frac{-4}{-14} \\
& \frac{m_{1}}{m_{2}}=\frac{2}{7} \quad \text { or } \quad \frac{2}{7} \\
& \therefore m_{1}: m_{2}=2: 7
\end{aligned}
$$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
3

Value Points	Marks allotted

To prove : $P Q=P R$ allotted

Construction ; Join $O P, O Q$ and $O R$
Proof: In the firgure
$\angle O Q P=\angle O R P=90^{\circ} \quad\left[\begin{array}{l}O Q \perp P Q \\ O R \perp P R\end{array}\right]$
$O Q=O R($ radii of same circle $)$
$O P=\mathrm{O} P($ common side)
$\triangle O Q P \cong \triangle O R P$ [RHS]
$\therefore P Q=P R$ (C.P.CT)
$1 / 2$
Note : If the theorem is proved as given in the test-book, give full marks.
30.

The volume of a solid metallic cylinder is $4851 \mathrm{~cm}^{3}$. It is fully melted and recast into a solid sphere. Find the radius of the sphere.

Ans. :
Volume of metallic cylinder $(v)=4851 \mathrm{~cm}^{3}$
Volume of cylinder $=$ Volume of sphere

$$
\begin{gathered}
=\frac{4}{3} \pi r^{3} \\
\\
4851=\frac{4}{3} \times \frac{22}{7} \times r^{3} \\
\\
r^{3}=\frac{4851 \times 3 \times 7}{4 \times 2 / 2^{2}} \\
\\
\\
r^{3}=\frac{9261}{8} \\
\end{gathered} \quad r=\sqrt[3]{\frac{9261}{8}}
$$

Value Points	al

Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 8 cm and then construct another triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the first triangle.

Ans. :

Construction of given triangle
Construction of acute angle with division
Drawing parallel lines
Obtaining of required triangle 11/2
32. The distance between two cities ' A ' and ' B ' is 132 km .

Flyovers are built to avoid the traffic in the intermediate towns between these cities. Because of this, the average speed of a car travelling in this route through flyovers increases by $11 \mathrm{~km} / \mathrm{h}$ and hence, the car takes 1 hour less time to travel the same distance than earlier. Find the current average speed of the car.

If the speed increases by $11 \mathrm{~km} / \mathrm{hr}$
Then the speed of the Car $=(x+11) \mathrm{km} / \mathrm{hr}$
Time taken $=\frac{132}{x+11}$ Hours
According to the data

$$
\begin{aligned}
& \frac{132}{x}-\frac{132}{x+11}=1 \\
& \frac{132(x+11)-132 x}{x(x+11)}=1
\end{aligned}
$$

$132 x+1452-1,82 x=1 x(x+11)$

$$
\begin{aligned}
& 1452=x^{2}+11 x \\
& x^{2}+11 x-1452=0 \\
& x^{2}+44 x-33 x-1452=0 \\
& x(x+44)-33(x+44)=0 \\
& (x-33)(x+44)=0 \\
& x-33=0
\end{aligned}
$$

\therefore Average speed of the car $(x)=33 \mathrm{~km} / \mathrm{hr}$
\therefore Current Average speed is $(x+11) \mathrm{km} / \mathrm{hr}$

$$
\begin{aligned}
& =33+11 \\
& =44 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Qn.
Nos.

Value Points	
A life insurance agent found the following data distribution of ages of 100 policy holders. Draw a "L than type ogive" for the given data :	
Age (in years)	Number of policy holders (cumulative frequency)
Below 20	2
Below 25	6
Below 30	24
Below 35	45
Below 40	78
Below 45	89
Below 50	100

Ans. :

Drawing axes and writing scale
$(1 / 2+1 / 2)=1$
Marking points
Drawing ogive
33.

- ife insurance agent found the following data for allotted an type ogive" for the given data :

Value Points	Marks allotted

V.

Answer the following questions:
$4 \times 4=16$
34. The sum of 2 nd and 4 th terms of an arithmetic progression is 54 and the sum of its first 11 terms is 693. Find the arithmetic progression. Which term of this progression is 132 more than its 54th term ?

OR

The first and the last terms of an arithmetic progression are 3 and 253 respectively. If the 20 th term of the progression is 98 , then find the arithmetic progression. Also find the sum of the last 10 terms of this progression. Ans. :

$$
\begin{align*}
& a_{2}+a_{4}=54 \\
& a+d+a+3 d=54 \\
& 2 a+4 d=54 \div 2 \\
& a+2 d=27 \ldots \ldots \ldots \ldots \text { (i) } \tag{i}\\
& S_{11}=693 \\
& 693=\frac{11}{2}[2 a+(11-1) d] \\
& 693=\frac{11}{2}[2 a+10 \mathrm{~d}] \\
& 693=\frac{11}{2} \times \not 2[a+5 d] \\
& a+5 d=\frac{693}{11} \\
& a+5 d=63 \ldots \ldots \ldots \ldots . \text { ii) }
\end{align*}
$$

(ii) - (i)
$\not q+5 d=63$
$\not q+2 d=27$
$(-)$

$$
\begin{gathered}
(-) \quad(-) \\
\hline 3 d=36 \\
d=\frac{36}{3} \\
d=12
\end{gathered}
$$

Qn.

RR(B)/300/4481 (MA)

Qn.

Qn.

Nos.

Value Points	Marks allotted

36.

Prove that "If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar". Ans. :

Data: In $\triangle A B C$ and $\triangle D E F$

$$
\begin{aligned}
& \angle A=\angle D \\
& \angle B=\angle E \\
& \angle C=\angle F
\end{aligned}
$$

To prove : $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
Construction : Cut $D P=A B$ and $D Q=A C$ and join $P Q$
Proof: In $\triangle A B C$ and $\triangle D P Q$

$$
\begin{aligned}
& A B=D P(\text { const. }) \\
& A C=D Q(\text { const }) \\
& \angle A=\angle D(\text { Data })(\text { S.A.S postulate })
\end{aligned}
$$

$\therefore \triangle A B C \cong \triangle D P Q$
$\therefore B C=P Q$

$$
\angle B=\angle P
$$

But $\angle B=\angle E$ (Data)

$$
\therefore \angle P=\angle E
$$

But these are corresponding angles
$\therefore P Q|\mid E F$
Value Points
$\frac{D P}{D E}-\frac{D Q}{D F}=\frac{P Q}{E F}(\mathrm{C}$. B. P. T.)
$\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}, \triangle A B C \sim \Delta D E F$

Hence proved

Note : Proving this theorem as mentioned in the textbook, marks should be given
37.

In the given figure, a rope is tightly stretched and tied from the top of a vertical pole to a peg on the same level ground such that the length of the rope is 20 m and the angle made by it with the ground is 30°. A circus artist climbs the rope, reaches the top of the pole and from there he observes that the angle of elevation of the top of another pole on the same ground is found to be 60°. If the distance of the foot of the longer pole from the peg is 30 m , then find the height of this pole. (Take $\sqrt{3}=1.73$)

Qn.
Nos.
VI.

Value Points
Answer the following question :

A wooden solid toy is made by mounting a cone on the circular base of a hemisphere as shown in the figure. If the area of base of the cone is $38.5 \mathrm{~cm}^{2}$ and the total height of the toy is 15.5 cm , then find the total surface area and volume of the toy.

Ans. :

Area of the base of the cone $=38.5 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \pi r^{2}=38 \cdot 5 \mathrm{~cm}^{2} \\
& \frac{22}{7} \times r^{2}=38 \cdot 5 \\
& r^{2}=\frac{38 \cdot 5 \times 7}{22}
\end{aligned}
$$

$$
r=3.5 \mathrm{~cm}
$$

Qn. Nos.	Value Points	Marks allotted
	Height of the cone $(h)=$ height of the toy - Height of hemisphere $\begin{aligned} & =15 \cdot 5-3 \cdot 5 \\ & h=12 \mathrm{~cm} \end{aligned}$ Slant height of the cone $\Rightarrow l^{2}=h^{2}+r^{2}$ $\begin{aligned} & =12^{2}+(3 \cdot 5)^{2} \\ & =144+12 \cdot 25 \\ & =156 \cdot 25 \\ & l=\sqrt{156 \cdot 25} \\ & l=12 \cdot 5 \mathrm{~cm} \end{aligned}$ T. S. A of the toy = C.S.A. of cone + C.S.A of hemisphere $\begin{aligned} & =\pi r l+2 \pi r^{2} \\ & =\pi r[l+2 r] \\ & =\frac{22}{V_{1}} \times 3 \cdot 5^{0.5}(125+2 \times 3.5) \\ & =11(12 \cdot 5+7) \\ & =11 \times 19 \cdot 5 \end{aligned}$ T.S.A of the toy $=214.5 \mathrm{~cm}^{2}$ Volume of the toy = Volume of cone + volume of hemisphere $\begin{aligned} & =\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3} \\ & =\frac{1}{3} \pi r^{2}(h+2 r) \\ & =\frac{1}{3} \times \frac{22}{8} \times 3.5^{0.5} \times 3 \cdot 5(12+2 \times 3.5) \end{aligned}$	

Qn. Nos.	Value Points	Marks allotted
	$=\frac{38 \cdot 5}{3}(12+7)$	
	$=\frac{38 \cdot 5 \times 19}{3}$	
	$=\frac{731 \cdot 5}{3}$	
	$=243 \cdot 8$	$1 / 2$
Volume of the toy $=243 \cdot 8 \mathrm{~cm}^{3}$	5	

