Unofficial CUET Physics Question Paper 2024

Questions
The kinetic energy of an electron at ground level in hydrogen atoms is K units. The value of its potential energy and total energy respectively are _.

Two nuclei have mass numbers A and B respectively. The density ratio of the nuclei is

A point source causing photoelectric emission from a metallic plate is moved away from the plate. The variation in photoelectric current with distance from the source is correctly represented by the graph

A proton accelerated through a potential difference V has a de Broglie wavelength λ. On doubling the accelerating potential, de Broglie wavelength of the proton

The shortest wavelengths emitted in the hydrogen spectrum corresponding to different spectral series are under:

Silicon can be doped using one of the following elements as dopant:

Given below are V versus I graphs for different types of $p-n$ junction diodes marked A, B, C, and D

A wire carrying current 1 , bent as shown in the figure, is placed in a uniform field B that emerges normally out from the plane of the figure. The force on this wire is:

The refractive index of the material of an equilateral prism is $\sqrt{2}$. The angle of the minimum deviation of that prism is \qquad

The transfer of an integral number of _ is one of the evidence of quantization of electric charge.
When a slab of insulating material 4 mm thick is introduced between the plates of a parallel plate capacitor of separation 4 mm, it is found that the distance between the plates has to be increased by 3.2 mm to restore the capacity to its original value. The dielectric constant of the material is:
A copper ball of density $8.0 \mathrm{~g} / \mathrm{cc}$ and 1 cm in diameter is immersed in oil of density $0.8 \mathrm{~g} / \mathrm{cc}$. The charge on the ball of it remains just suspended in oil in an electric field of intensity 600 V / m
acting in the upward direction is

A 50 Hz ac current of crest value. A flows through the primary of a transformer. If the mutual inductance between the primary and secondary be 0.5 H , the crest voltage induced in the secondary is \qquad
A long solenoid of diameter 0.1 m has 2 * 10 curns per meter. At the centre of the solenoid a coil of $100,0.1 \mathrm{~mm}$ is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to OA from 4 Ain 0.05 s . If the resistance of the coil is $10 \pi^{2} \Omega$, then the total charge flowing through the coil during this time is
Lower half of a convex lens is made opaque. Which of the following statements describes the image of the object placed in front of the lens?
Two slits are made 0.1 mm apart and the screen is placed 2 m away. The fringe separation when a light of wavelength 500 nm is used is \qquad
For an astronomical telescope having an objective lens of focal length 10 m and an eyepiece lens of focal length 10 cm telescope the tube length and magnification respectively are _.
According to Bohr's model (A)The radius of the orbiting electron is directly proportional to ' n '. (B) The speed of the orbiting electron is directly proportional to ' $1 / n$ '. (C) The magnitude of the total energy of the orbiting electron is directly proportional to 'I/n2'. (D) The radius of the orbiting electron is directly proportional to ' n '

For a full wave rectifier, if the input frequency is 50 Hz , the output frequency will be_.

For an electric dipole in a non-uniform electric field with dipole moment parallel to direction of the field, the force F and torque T on the dipole respectively are

Two charged metallic spheres with radii R, and $R 2$ are brought in contact and then separated. The ratio of Q2 on the two spheres respectively will be _.

Two charged particles, placed at a distance d apart in vacuum, exert a force F on each other. Now, each of the charges is doubled. To keep the force unchanged, the distance between the charges should be changed to _.

Two parallel plate capacitors of capacitance $2 \mu F$ and $3 \mu F$ are joined in series and the combination is connected to a battery of V volts. The values of potential across the two capacitors V 1 and V 2 and energy stored in the two capacitors U 1 and U 2 respectively are related as _.

Two resistances of 100Ω and 200Ω are connected in series across a 20 V battery as shown in figure below. The reading in a 200Ω voltmeter connected across the 200Ω resistance is

The current through a $4 / 3 \Omega$ external resistance connected to a parallel combination of two cells of 2 V and 1 V emf and internal resistance of 1Ω and 2Ω respectively is \qquad

A metallic wire of uniform area of cross section has a resistance R, resistivity p and power rating P at V volts. The wire is uniformly stretched to reduce the radius to half the original radius. The value of resistance, resistivity, and power rating at V volts are now denoted by R , p , and P respectively. The corresponding values are correctly related as _.

Three magnetic materials are listed below (A) paramagnetics (B) diamagnetics (C) ferromagnetics

In the circuit shown below, a current 31 enters at A. The semicircular parts ABC and ADC have equal radii ' r ' but resistances $2 R$ and R respectively. The magnetic field at the center of the circular loop $A B C D$ is _

A square loop with each side 1 cm , carrying a current of 10 A , is placed in a magnetic field of 0.2 T . The direction of the magnetic field is parallel to the plane of the loop. The torque experienced by the loop is

Radiation of frequency $2 v_{o}$ is incident on a metal with threshold frequency v_{o}. The correct statement of the following is _.

