

UNREVISED REDUCED SYLLABUS

ಕರ್ನಾಟಕ ಶಾಲಾ ಪರೀಕ್ಷೆ ಮತ್ತು ಮೌಲ್ಯ ನಿರ್ಣಯ ಮಂಡಲಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ – 2023

S. S. L. C. EXAMINATION, MARCH/APRIL, 2023

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 10. 04. 2023]

Date : 10. 04. 2023]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Phy)

CODE NO. : 83-E (Phy)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

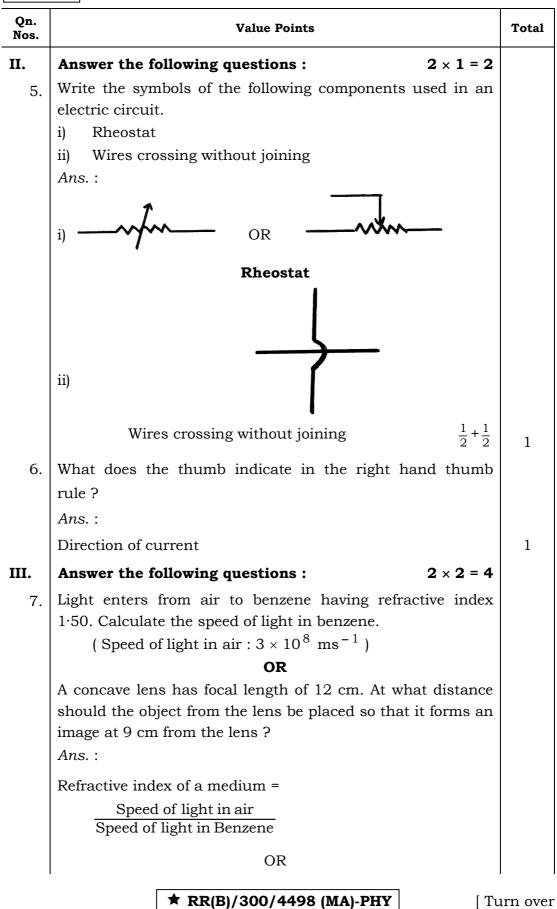
(ಭೌತ ವಿಜ್ಞಾನ, ರಸಾಯನ ವಿಜ್ಞಾನ ಮತ್ತು ಜೀವ ವಿಜ್ಞಾನ / Physics, Chemistry & Biology)

(ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Repeater)

(ಭೌತಶಾಸ್ತ್ರ / Physics)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80


[Max. Marks: 80

PART – A (Physics)

Qn. Nos.	Value Points					
I.	Multiple choice questions : $4 \times 1 = 4$					
1.	The device used to measure the rate of current in a circuit is					
	(A) Ammeter					
	(B) Voltmeter					
	(C) Galvanometer					
	(D) Battery					
	Ans. :					
	(A) Ammeter	1				
	★ RR(B)/300/4498 (MA)-PHY	ırn over				

Qn. Nos.	Value Points	Total
2.	The focal Length of a lens is + 0.50 m. The power of the lens	
	and type is	
	(A) + $2 \cdot 0$ D and concave lens	
	(B) + $2 \cdot 0$ D and convex lens	
	(C) -2.0 D and concave lens	
	(D) -2.0 D and convex lens	
	Ans. :	
	(B) + $2 \cdot 0$ D and convex lens	1
3.	A light ray enters to rarer medium from a denser medium.	
	Then the speed of that light ray	
	(A) decreases and bends towards the normal	
	(B) increases and bends away from the normal	
	(C) decreases and bends away from the normal	
	(D) increases and bends towards the normal	
	Ans. :	
	(B) increases and bends away from the normal	1
4.	The inner wall of the solar cooker is painted black. Because	
	black colour	
	(A) reflects light	
	(B) converges solar rays	
	(C) prevents from rusting	
	(D) absorbs more heat	
	Ans. :	
	(D) absorbs more heat	1
	★ RR(B)/300/4498 (MA)-PHY	-

83-E (PHY)

n. os.	Value Points		Tota
	$n_m = \frac{C}{V}$	$\frac{1}{2}$	
1.5	$0 = \frac{3 \times 10^8}{\text{Speed of light in Benzene}}$	$\frac{1}{2}$	
1.5	$0 \times \text{Speed of light in Benzene} = 3 \times 10^8$	$\frac{1}{2}$	
Sp	eed of light in Benzene = $\frac{3 \times 10^8}{1 \cdot 50}$	$\frac{1}{2}$	
Sp	eed of light in Benzene = $2 \times 10^8 \text{ ms}^{-1}$		2
	OR		
<i>f</i> =	$= -12 \text{ cm}$ $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$		
v :	$= -12 \text{ cm} \qquad \qquad \frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ $= -9 \text{ cm} \qquad \qquad \frac{1}{u} = \frac{1}{v} - \frac{1}{f}$ $= ? \qquad \qquad \frac{1}{u} = \frac{1}{-9} - \frac{1}{-12}$	$\frac{1}{2}$	
u	= ? $\frac{1}{u} = \frac{1}{-9} - \frac{1}{-12}$		
	$\frac{1}{u} = -\frac{1}{9} + \frac{1}{12}$	$\frac{1}{2}$	
	$\frac{1}{u} = \frac{-4+3}{36}$		
	$\frac{1}{u} = \frac{-1}{36}$	$\frac{1}{2}$	
	-u = 36		
	u = -36 cm	$\frac{1}{2}$	2
	me the major constituent of biogas and operties of biogas.	write the	
	OR		
Lis	t the hazards of nuclear power generation.		
An	s. :		
*	Methane / CH ₄	$\frac{1}{2}$	
*	When burnt leaves no residue like ash		
*	It burns without smoke		
*	Its heating capacity is high	1 1	
	3	$3 \times \frac{1}{2} = 1\frac{1}{2}$	2
	OR		

★ RR(B)/300/4498 (MA)-PHY

83-E (PHY)

 There is a risk of accidental leakage of nuclear radiation (Consider any suitable answer) 	1 r 1 2
 environmental contamination * There is a risk of accidental leakage of nuclea radiation (Consider any suitable answer) 	1 r 1 2
radiation (Consider any suitable answer)	1 2
\mathbf{W} Answer the following questions $\mathbf{v} = \mathbf{v}^2 + \mathbf{v}^2 = \mathbf{v}^2$	9
IV. Answer the following questions : $3 \times 3 = 0$	
9. State Ohm's law. On which factors does the resistance of	a
conductor depend ? Mention the SI unit of electric power.	
OR	
State Joule's law of heating. How is fuse connected in th	e
circuits ? Name the metal used in the filament and the ga	s
filled in electric bulb.	
Ans. :	
At constant temperature, the potential difference, V, acros	s
the ends of a given metallic wire in an electric circuit i	s
directly proportional to the current flowing through it.	1
OR	
$V \propto I$	
V = IR	
The factors on which resistance of a conductor depends	
i) The length of the conductor	
ii) Area of cross-section of the conductor	L 2
iii) The nature of the material	
iv) The temperature. (Any three)	
\star watt – W	1 <u>2</u> 3
OR	
* RR(B)/300/4498 (MA)-PHY	Turn ove

5

83-E (I	рну)	0	CC	E RR
Qn. Nos.		Value Points		Total
	Hea	t produced in a resistor is		
	i)	directly proportional to the square of current for a giv resistance,	$\frac{1}{2}$	
	ii)	directly proportional to resistance for a given curre	ent, $\frac{1}{2}$	
	iii)	directly proportional to the time for which the curr flows through the resistor	ent $\frac{1}{2}$	
	Note	e: If the student writes directly $H = I^2 R t - 1$ mark		
	*	Tungsten	$\frac{1}{2}$	
	*	Nitrogen / N ₂ OR Argon / Ar	1	
10.	-	pnsider if He / Ne / Kr written) resistors R_1 , R_2 and R_3 have the values 10 Ω, 20	Ω (3
	to a	60Ω respectively, which have been parallelly connect battery of 24 V in an electric circuit. Then calculate owing :		
	i)	The current flowing through each resistor		
	ii)	The total current in the circuit		
	iii)	The total resistance of the circuit.		
	Ans			
	i)	$I_1 = \frac{V}{R_1} = \frac{24 \text{ V}}{10 \Omega} = 2.4 \text{ A}$	$\frac{1}{2}$	
		$I_2 = \frac{V}{R_2} = \frac{24 \text{ V}}{20 \Omega} = 1.2 \text{ A}$	$\frac{1}{2}$	
		$I_3 = \frac{V}{R_3} = \frac{24 \text{ V}}{60 \Omega} = 0.4 \text{ A}$	$\frac{1}{2}$	
	ii)	$I = I_1 + I_2 + I_3$		
		= $(2\cdot4 + 1\cdot2 + 0\cdot4)$ A		
		= 4A	$\frac{1}{2}$	

★ RR(B)/300/4498 (MA)-PHY

83-E (PHY)

Qn. Nos.	Value Points	Total
	iii) $\frac{1}{R_p} = \frac{1}{10} + \frac{1}{20} + \frac{1}{60} = \frac{1}{6}$ $\frac{1}{2}$	
	$\frac{1}{R_p} = \frac{1}{6}$	
	$R_p = 6 \Omega. \qquad \frac{1}{2}$	3
11.	Draw the ray diagram for the image formation in a convex lens when the object is placed beyond $2F_1$. Mention the	
	position and nature of the image formed. [F_1 : Principal focus of the lens]	
	Ans. :	
	$\begin{array}{c} A \\ B \\ 2F_1 \\ F_1 \\ N \end{array} \begin{array}{c} C \\ B \\ 2F_1 \\ F_1 \\ N \end{array} \begin{array}{c} B \\ F_2 \\ F_2 \\ F_1 \\ F_1 \\ N \end{array} \begin{array}{c} B \\ 2F_2 \\ F_1 \\ F_1 \\ F_1 \\ N \end{array}$	
	For ray diagram — 2	
	* Position of the image : Between $F_2 \& 2F_2$. $\frac{1}{2}$	
	* Nature of the image : Real and inverted. $\frac{1}{2}$	3
7 .	Answer the following question : $1 \times 4 = 4$	
12.	a) What is solenoid ? Write the properties of the magnetic	
	field lines formed around a current carrying solenoid.	
	b) What is alternating current ? Electric appliances	
	having metallic body are connected to earth wire, why ? Ans. :	
	a) ★ A coil of many circular turns of insulated copper	
	a, in con or many chedian tarno or moutated copper	
	wire wrapped closely in the shape of a cylinder is	

*** RR(B)/300/4498 (MA)-PHY** [Turn over

Qn.		
Nos.	Value Points	Total
	* At the ends/poles of a solenoid, the magnetic field lines are appear in the form of concentric circles. $\frac{1}{2}$	
	* At the centre inside the solenoid the magnetic field lines are appear in the form of parallel straight lines. $\frac{1}{2}$	
b)	 ★ The current that changes direction after equal intervals of time is called an alternating current. 1 	
	* The metallic body is connected to the earth wire provides a low resistance conducting path for the current. $\frac{1}{2}$	
	* Thus, it ensures that any leakage of current to the metallic body of the appliance keeps its potential to that of the earth and the user may not get a severe electric shock. $\frac{1}{2}$	4
VI. Ans	swer the following question : $1 \times 5 = 5$	
13. a)	Define focal length, principal axis and aperture of the spherical lens.	
b) Ans	State two laws of refraction of light.	
a)	 * The distance of the principal focus from the optical centre of a lens is called its focal length. 1 * An imaginary straight line passing through the two centres of curvature of a lens in called its 	
	principal axis.1★The effective diameter of the circular outline of a	
b)	 spherical lens is called its aperture. 1 * The incident ray, the refracted ray and the normal to the interface of two transparent media at the point of incidence, all lie in the same plane. 1 	
	 The ratio of sine of angle of incidence to the sine of angle of refraction is a constant, for the light of a 	

★ RR(B)/300/4498 (MA)-PHY

CCE RR UNREVISED REDUCED SYLLABUS

ಕರ್ನಾಟಕ ಶಾಲಾ ಪರೀಕ್ಷೆ ಮತ್ತು ಮೌಲ್ಯ ನಿರ್ಣಯ ಮಂಡಲಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU – 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ – 2023

S. S. L. C. EXAMINATION, MARCH/APRIL, 2023

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 10. 04. 2023]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Chem.)

CODE NO. : 83-E (Chem.)

Date : 10. 04. 2023]

ವಿಷಯ : ವಿಜ್ಞಾನ

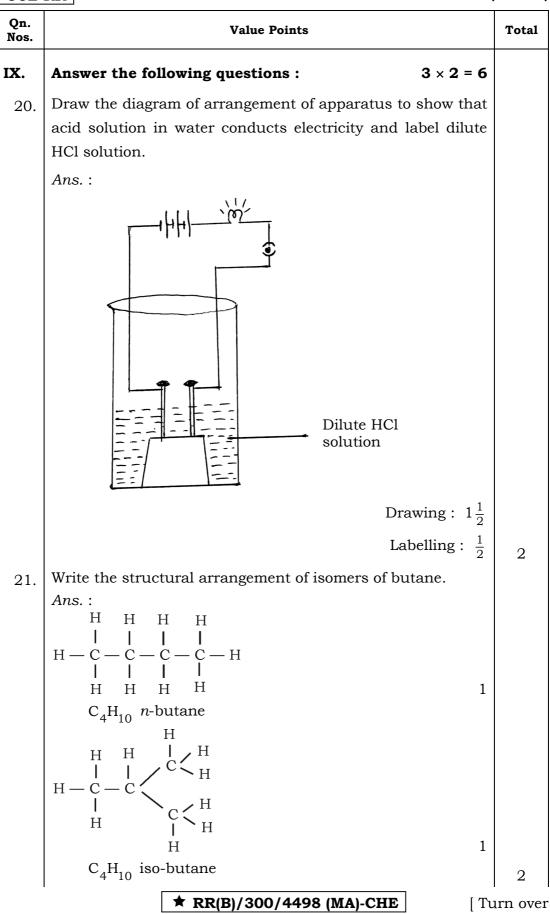
Subject : SCIENCE

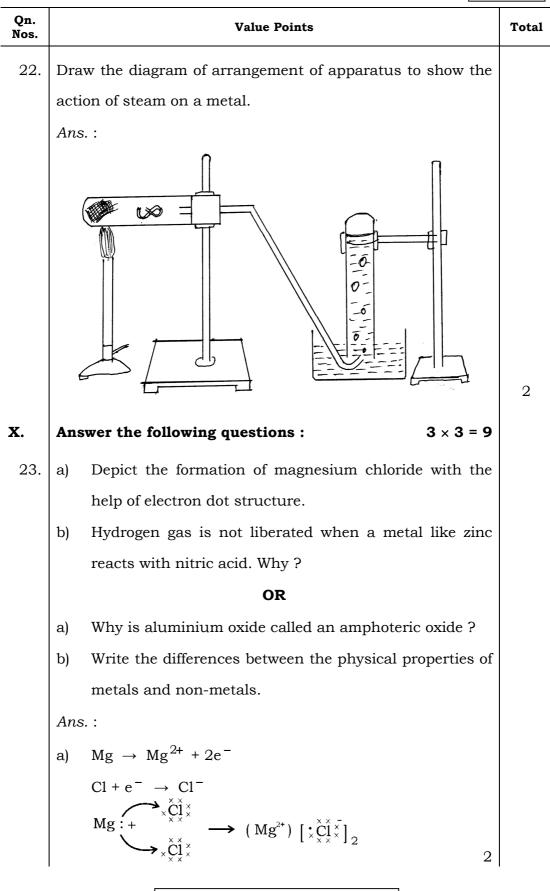
(ಭೌತ ವಿಜ್ಞಾನ, ರಸಾಯನ ವಿಜ್ಞಾನ ಮತ್ತು ಜೀವ ವಿಜ್ಞಾನ / Physics, Chemistry & Biology)

(ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Repeater)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80


[Max. Marks : 80


PART – B (Chemistry)

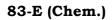
Qn. Nos.		Value Points				
VII.	Mu	ltiple choice	questions :		2 × 1 = 2	
14.	A n	on-metallic o	xide reacts with	base and produce	s salt and	
	wat	er. Then the	property of this r	non-metallic oxide	is	
	(A)	acidic	(B)	basic		
	(C)	neutral	(D)	amphoteric		
	Ans	. :				
	(A)	acidic				1
		*	r RR(B)/300/44	98 (MA)-CHE	[Tư	ırn over

Qn. Nos.	Value Points	Total
15.	Among ${}_{2}X^{4}$, ${}_{8}Y^{16}$, ${}_{10}Z^{20}$; the elements having zero	
10.	Among 2^{Λ} , 8^{I} , 10^{L} ; the elements having zero valency are	
	[2, 8, 10 are atomic numbers of elements]	
	(A) $2^{X^{4}}$ and $8^{Y^{16}}$ (B) $8^{Y^{16}}$ and $10^{Z^{20}}$	
	(A) $2^{X^{4}}$ and $8^{Y^{16}}$ (B) $8^{Y^{16}}$ and $10^{Z^{20}}$ (C) $2^{X^{4}}$ and $10^{Z^{20}}$ (D) $2^{X^{4}}$, $8^{Y^{16}}$ and $10^{Z^{20}}$	
	Ans.: -20	
	(C) $_{2}X^{4}$ and $_{10}Z^{20}$	1
VIII.	Answer the following questions : $4 \times 1 = 4$	
16.	The general formula of cycloalkanes is $\mathbf{C}_{n}\mathbf{H}_{2n}$ and its first	
	member is cyclopropane (${\rm C_3H_6}$). Write the molecular	
	formula and structural arrangement of the fourth member	
	of this homologous series. Ans. :	
	Molecular formula : C_6H_{12} $\frac{1}{2}$	
	Structural arrangement	
	$\begin{array}{c} \Pi \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1
17.	2 State Mendeleev's periodic law.	1
17.	Ans. :	
	The properties of elements are the periodic functions of their	
	atomic masses.	1
18.	Potassium is kept immersed in kerosene. Why ?	
	Ans. :	
	Potassium reacts so vigorously that it catches fire.	1
19.	How many electrons are shared to form hydrogen molecule ?	
	Ans. :	
	One pair / Two electrons	1
	★ RR(B)/300/4498 (MA)-CHE	

83-E (Chem.)

★ RR(B)/300/4498 (MA)-CHE

83-E (Chem.)


CE I	KK		```	0		83-E (Ch	
n. os.			Value 1	Points			Т	
	b)	\star Nitric acid	is a strong	g oxidising	g agent	$\frac{1}{2}$		
		\star It oxidises	the hydr	ogen pro	duced to	water and		
		itself gets reduced to oxides of nitrogen. $\frac{1}{2}$						
OR								
	a)	Aluminium oxic	le reacts	with bot	h acids a	as well as		
		bases to produce salt and water / Aluminium oxide shows both acidic as well as basic						
behaviour.						l as basic		
	b)	benavioui.		I		1		
		Metals			Non-metal	ls		
	*	Malleable		★ Non-	malleable			
	*	Ductile		★ Non-ductile				
	*	Good conductor						
		and electricity	•		electricity			
	*	Have high melti		1	low meltin			
4.	a)	Obacing the rive		y <i>two</i> diffe		1+1		
4.	a)	Observe the give answer the follow	-					
	\square	Groups →	01					
	Ре	riods J	1	2	13	17		
		2		Be		—		
		3	Na	Mg	A1	C1		
		4		Ca	_	_		
		i) Which elem	nent is mo	re electro	positive ?	Why ?		
		ii) Atoms of v	which ele	ment hav	ve minimu	ım atomic		
		radius ? W	hy ?					
	b)	Mention the per			mber of th	ne element		
		that has atomic	number 1	.9.				

*** RR(B)/300/4498 (MA)-CHE** [Turn over

Qn. Ios.	Value Points						Tot
	Ans	s. :					
	a)	i)	Na			$\frac{1}{2}$	
				easily / elect	ncy / It loses ro-positivity dec	one valence	
		ii)	C1			$\frac{1}{2}$	
			OR It ha valence s	s high effec hell and pu / across th	and it has 3 o ctive nuclear c Il the electrons e period the a	harge on the closer to the	
	b)	Peri	od — 4			$\frac{1}{2}$	
		Gro	up — 1			$\frac{1}{2}$	3
	rea	ctions ctions Zino Sod	s. Write b s. c reacts wit	oalanced ch h dilute sulf rogen carb		ons for these	
	OR						
	a)		-		itions are giver cidic and basic		
			S	Solution	pH Value		
			ŝ	e e	pH Value 5		
					-		
				e	5		

★ RR(B)/300/4498 (MA)-CHE

Qn. Nos.		Value Points					
	Ans	5. :					
	a)	★ Hydrogen gas		$\frac{1}{2}$			
		$\star Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2 \uparrow \qquad 1$					
	b)	* Carbon dioxide $\frac{1}{2}$					
		★ NaHCO ₃ + HCl \longrightarrow	1	3			
		OR			0		
	a)						
	Acidic solutions Basic solutions						
	e f						
	h g						
		$4 \times \frac{1}{2}$					
	b)	b) Milk of magnesia / Magnesium hydroxide / Mg (OH) $_2$					
		OR Sodium hydrogen carbonate	e / NaHCO	1	0		
			0		3		
XI.		swer the following question		4 = 4			
26.	a)	What are functional group group present in propanal this compound.	-				
	b)	Write the molecular formula of ethane.	a and electron dot stru	cture			
	Ans						
	a)	\star An atom / atoms / 1	heteroatoms responsib	le to			
		bring specific propertie	es in carbon compound	is by			
		replacing hydrogen ator	n / atoms.	1			
		★ Aldehyde		$\frac{1}{2}$			
		$\star H - \begin{array}{c} H & H & O \\ I & I & H \\ C - C - C - C - H \\ H & H \end{array}$		1			
-		★ RR(B)/300/4	4408 (MA) CHE	[Th	ırn ov		

8

CCE RR

Qn. Nos.			Value Points	Total
	b)	*	C_2H_6 $\frac{1}{2}$	
		*	$H \xrightarrow{H} H$	4

★ RR(B)/300/4498 (MA)-CHE

CCE RR UNREVISED REDUCED SYLLABUS

ಕರ್ನಾಟಕ ಶಾಲಾ ಪರೀಕ್ಷೆ ಮತ್ತು ಮೌಲ್ಯ ನಿರ್ಣಯ ಮಂಡಲಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU – 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ – 2023

S. S. L. C. EXAMINATION, MARCH/APRIL, 2023

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 10. 04. 2023]

Date : 10. 04. 2023]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Bio)

CODE NO. : 83-E (Bio)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

(ಭೌತ ವಿಜ್ಞಾನ, ರಸಾಯನ ವಿಜ್ಞಾನ ಮತ್ತು ಜೀವ ವಿಜ್ಞಾನ / Physics, Chemistry & Biology)

(ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Repeater)

(ಜೀವಶಾಸ್ತ್ರ / Biology)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks: 80

PART – C (Biology)

Qn. Nos.		Value Points	Total
XII.	Mu	Itiple choice questions : $2 \times 1 = 2$	
27.	"A p	person immediately starts running soon after observing a	
	sna	ke." The correct transmission path of reflex impulse in	
	this	situation is	
	(A)	Receptor \rightarrow Sensory neuron \rightarrow Brain \rightarrow Relay neuron	
		\rightarrow Motor neuron \rightarrow Effector	
	(B)	Receptor \rightarrow Sensory neuron \rightarrow Spinal cord \rightarrow Relay	
		neuron \rightarrow Motor neuron \rightarrow Effector	

★ RR(B)/300/4498 (MA)-BIO

[Turn over

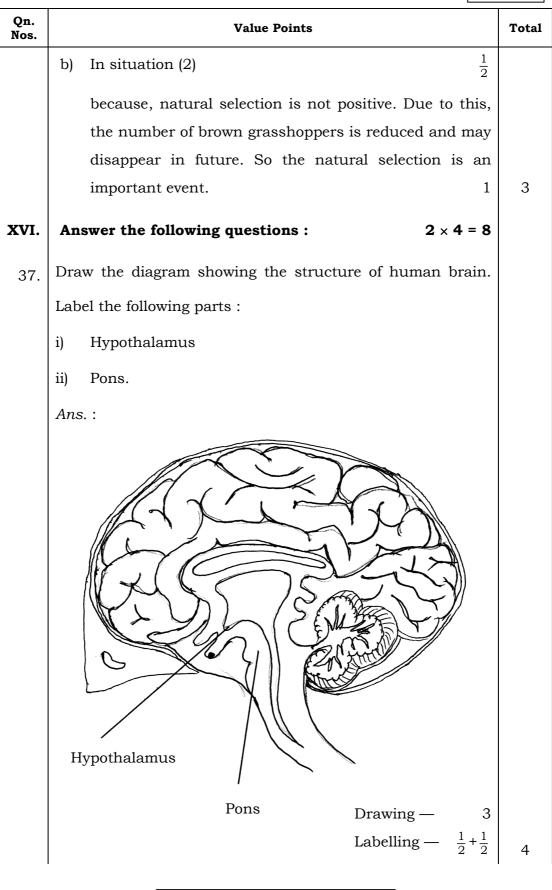
Qn. Nos.	Value Points	Tota
	(C) Effector \rightarrow Spinal cord \rightarrow Sensory neuron \rightarrow Relay	
	neuron \rightarrow Motor neuron \rightarrow Receptor	
	(D) Effector \rightarrow Motor neuron \rightarrow Relay neuron \rightarrow Brain \rightarrow	
	Sensory neuron \rightarrow Receptor	
	Ans. :	
	(B) Receptor \rightarrow Sensory neuron \rightarrow Spinal cord \rightarrow Relay	
	neuron \rightarrow Motor neuron \rightarrow Effector	1
28.	In humans, the testes are located outside the lower	
	abdomen in the scrotum because	
	(A) to protect testes from mechanical shocks	
	(B) to increase the production of sperms	
	(C) to maintain the secretion of testosterone hormone	
	(D) to maintain the temperature required for sperm	
	production.	
	Ans. :	
	(D) to maintain the temperature required for sperm	
	production.	1
KIII.	Answer the following questions : $2 \times 1 = 2$	
29.	What is the role of abscisic acid in plants ?	
	Ans. :	
	Abscisic acid inhibits growth in plants.	1
30.	Name any two sexually transmitted diseases and that are	
30.	caused by the bacteria.	
	Ans. :	
	t Canamhaaa	
	2	
	* Syphilis $\frac{1}{2}$	1

★ RR(B)/300/4498 (MA)-BIO

Qn. Nos.	Value F	Points	Tota
XIV.	Answer the following question	ns : 3 × 2 = 6	
31.	Mention the tools used fo	r tracing the evolutionary	
	relationships between the organ	nisms.	
	Ans. :		
	★ Excavating	$\frac{1}{2}$	
	\star Time-dating	$\frac{1}{2}$	
	\star Studying fossils	$\frac{1}{2}$	
	★ Determining DNA sequence	1	2
32.	Observe the given below figure		-
		← → B	
	∎← Germinatio	on of Seed	
	a) Which parts of the plant w	-	
	b) What is the role of <i>B</i> in get	_	
	Ans. :		
	a) A — Shoot / stem / futu:	re shoot / plumule $\frac{1}{2}$	
	C — Root / future root /	Radicle. $\frac{1}{2}$	
	b) B — Cotyledon (food sto	ore) provides nourishment to	
	the plumule and rad	. =	2
33.	List the differences between t	he biodegradable substances	
	and non-biodegradable substar	nces.	
	Ans. :		
	Bio-degradable substances	Non-bio-degradable	
		substances	
	\star Broken down by	\star Not broken down by	
	biological processes	biological processes	
	\star Do not persist in the	\star Persist in the	
	environment for a long	environment for a long	
	time	time	
	★ Less harmful	★ More harmful	
	\star Cause less pollution	\star Cause more pollution	
	(Any two differences)	1 + 1	2
	★ RR(B)/300/	4498 (MA)-BIO [Tu	ırn ov

3

83-E	(Bio)
------	-------


Qn. Nos.	Value Points	Tota
xv.	Answer the following questions : $3 \times 3 = 9$	
34.	What is pollination ? What are the changes that occur in the flower after pollination ? <i>Ans.</i> :	
	The transfer of pollen from the stamen to the stigma.	
	* Germination of the pollen : Pollen tube develops. $\frac{1}{2}$	
	* Fertilization : Pollen grain enters the ovary through pollen tube and fuses with the ovum / egg. Zygote is formed. $\frac{1}{2}$	
	* Ovum develops into seed. Ovary grows rapidly and ripens into fruit. $\frac{1}{2}$	
	Petals, sepals, stamen, style and stigma may shrivel and fall off. $\frac{1}{2}$	3
35.	How is ozone layer formed at higher levels of atmosphere and what is its function ?	
	Ans.:	
	* Ozone at the higher levels of the atmosphere is a product of UV radiation acting on oxygen (O_2)	
	molecule. The higher energy UV radiations split apart some molecular oxygen ($\rm O_2)$ into free oxygen ($\rm O$)	
	atoms. 1	
	OR	
	$O_2 \xrightarrow{UV} O + O$	
	$0 + 0_2 \longrightarrow 0_3$ 1	
	Ozone	
	\star Ozone shields the surface of the earth from ultraviolet	
	radiations (<i>UV</i>) from the sun. 1	3
36.	Tall pea plant producing red flowers ($TT RR$) is crossed with	
	short pea plant producing white flowers (<i>tt rr</i>).	
	i) Mention the type of plants produced from these plants in the F_1 generation.	

4

		2 (51
Qn. Nos.	Value Points	Tota
i	i) Write the ratio of plants obtained in the F_2 generation	
	by crossing the plants of F_1 generation and name the	
	varieties of plants obtained.	
	OR	
I	Analyse the situations given below. Answer the questions	
Ę	given :	
	Situation 1 : The number of green grasshoppers in a green zone has been increasing from one generation to another generation.Situation 2 : The number of brown grasshoppers in the same green zone has been reducing.	
I	Here,	
	a) Where could genetic drift be happened more ? Why ?	
	b) How can natural selection be considered as an important factor in organic evolution ?	
1	Ans. :	
	i) Parents : $TT RR \times tt rr$	
	Gametes : $TR \times tr$ F_1 generation : $Tt Rr$ OR	
	Hybrid / mixed red flowers producing tall pea plants. $\frac{1}{2}$	
	, 2	
	Types of plants a) 9-Tall — Red flowers producing pea plants $\frac{1}{2}$	
	b) 3-Tall — White flowers producing pea plants $\frac{1}{2}$	
	c) 3-Short — Red flowers producing pea plants $\frac{1}{2}$	
	d) 1-Short — White flowers producing pea plant $\frac{1}{2}$	3
	OR	_
	a) In situation (1), $\frac{1}{2}$	
	because, natural selection is positive. Among the organisms of new generation of green grasshoppers new combination in genetic material have been accumulating and genetic drift increases.	
		100

*** RR(B)/300/4498 (MA)-BIO** [Turn over

83-E ((Bio)
--------	-------

★ RR(B)/300/4498 (MA)-BIO

83-E (Bio)

)n. Ios.	Value Points	To
38.	Write any four differences between aerobic and anaerobic respiration.	
	OR	
	Explain the role of xylem and phloem tissues in the transportation of materials in plants.	
	Ans. : Aerobic respiration Anaerobic respiration	
	 ★ Occurs in the presence of oxygen ★ Occurs in the absence of oxygen 	
	* Carbon dioxide and water are produced * Ethanol and carbon dioxide are produced	
	* Takesplacein* Takesplaceinyeastmitochondriacells	
	 ★ More amount of energy is released ★ Lesser amount of energy is released 	
	4 imes 1	4
	OR	
	<i>Xylem</i> : Water conducting tissue.	
	★ In xylem tissue, vessels and tracheids of roots, stem and leaves are interconnected to form a continuous	
	system of water-conducting channel reaching all parts	
	of the plant. 1	
	* Transpiration (loss of water through stomata) creates suction pressure and creates a column of water. $\frac{1}{2}$	
	* This steadily pushes the water upward with dissolved minerals in it. $\frac{1}{2}$	

★ RR(B)/300/4498 (MA)-BIO

[Turn over

Qn. Nos.	Value Points		Tota
	Phloem : Food conducting tissue.		
	★ Phloem translocates soluble products photosynthesis, amino acids and other substand	of .ces	
	from the leaves to storage organs of roots, fruits a seeds, and to the growing organs.	and 1	
	★ Translocation takes place in sieve tube with the help companion cell, both in upward and downwa directions.		
	 ★ Osmotic pressure helps water to move into the phlo tissue and moves other materials from the phloem other tissues. 		4

=

_

8